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Preface 
The advent of the microchip has resulted in the 
invention of a product which, ten years ago, was 
completely unthinkable. This product is the personal 
computer and there are now millions of families who own 
their own computer. This book is about one such 
machine, the Dragon. 

The Dragon is a second-generation personal computer. 
In contrast to early personal machines which were slow, 
had small memories and low-resolution monochrome 
displays, the Dragon offers a fairly large memory, 
high-resolution colour graphics, sound synthesis and a 
professional-quality keyboard. There are two versions 
of the Dragon available, the Dragon 32 and the Dragon 
64, and the material in this book is relevant to both 
of these machines. 

Personal computers are remarkable value for money. 
Most of them are more powerful than machines of the 
early 1960's which cost hundreds of thousands of pounds 
or dollars. Furthermore, personal machines are well-
built and reliable, much more so than early large 
computers. However, the weakest aspect of most 
personal machines is the descriptive documentation 
provided with the machine. Whilst this is no real 
hardship to those who only use their machine for game 
playing, the hobbyist who wishes to make the most of 
his machine has a tough time finding out technical 
details of his system. 

This book is intended for such readers and for those 
readers who have explored the BASIC programming 
capabilities of their machine and now want to go 
further. We do not assume any technical knowledge of 
computing apart from an ability to write and understand 
BASIC programs. Inevitably, this means we must include 
some introductory material which can be skipped by 
readers with experience in computing. 

When this book was written, the only Dragon 
available was the Dragon 32. As a result, the material 
here was written for that machine but most of the 
examples are equally relevant to the Dragon 64. Time 
has not permitted us to include Dragon 64 details in 
the text, but we have provided an appendix (Appendix 5) 
summarising the differences between the Dragon 32 and 
the Dragon 64. We have also included an appendix 



(Appendix 8) which covers details of the Dragon's disk 
operating system. 

Many readers will be aware that the Dragon and the 
Tandy Color Computer make use of the same M6809 
processor chip and the same BASIC system developed by 
Microsoft. As a result, much of the material here is 
also relevant to the Tandy machine and users of that 
system may be able to pick up useful hints and tips 
from it. 

The book is about the internal workings of the 
Dragon rather than about programming. We describe the 
M6809 processor which is used in the Dragon and show 
how machine code programs for that processor can be 
written in assembly language. We also describe the 
graphics system and the input/output system on the 
Dragon and, finally, we provide bits and pieces of 
technical information which may be valuable to the 
assembly code programmer. 

It is impossible for us to be comprehensive in our 
discussions of assembly code programming, graphics,or 
whatever. Rather, we provide Dragon-specific details 
rather than an extensive discussion of general 
techniques. We hope to encourage the reader to delve 
further into these application areas and we provide a 
reading list which will help you get more information 
about specific techniques. 

Printing programs in a book like this can sometimes 
be very untidy. Accordingly, we have taken some 
liberties with program commenting and have used lower 
case letters for commenting in all of our programs. We 
may also have made some other minor changes to the 
program layouts so that they are easier to read but the 
actual program code has not been changed. 

There are many people who have contributed in one 
way or another to the ideas and techniques presented in 
this book anongst them our colleagues at the Department 
of Computer Science, University of Strathclyde. We 
would also like to express our gratitude to those at 
Dragon Data Ltd., in particular to Tony Clarke, Richard 
Wadman and Derek Williams. Permission to use the 
Dragon logo in our examples was kindly granted by 
Dragon Data Ltd. 

Finally, special thanks must go to our families 
especially our wives Pauline Smeed and Anne Sommerville 
for their support, encouragement and tolerance of lost 
evenings and weekends throughout the writing of this 
book. 

Ian Sommerville 
Duncan Smeed 
August 1983 



Chapter 1 

Introducing the Dragon 

Every computer, be it mainframe, minicomputer or 
microcomputer, is made up of a very large number of 
electronic components which can be viewed at greater or 
lesser levels of detail. At the highest level, the 
computer can be considered as an organised collection 
of devices namely: 

(1) A processor. 
This is the device which actually carries out the 
computations (add, multiply, compare etc.) on 
elements of data. 

(2) A store. 
This is the device which is used to store infor
mation so that it may be readily accessed by the 
processor. This information can be transferred 
to and from other system devices. 

(3) One or more peripheral controllers. 
Every computer needs some way of getting informa
tion from and passing information to the outside 
world. This is accomplished through peripheral 
devices such as floppy disks, printers, key
boards, video displays, etc. Each of these dev
ices needs a controller built into the computer 
system to ensure that information is properly 
transferred to and from the processor and memory. 

(4) A clock. 
This is not a clock to tell the time but is real
ly a pulse generator which ensures that the 
operation of all the other devices making up the 
system is synchronised. 

There are various different ways of connecting these 
devices together so that they operate as a computer. 
One of the most common interconnection techniques, 
particularly in minicomputer and microcomputer systems, 
is to connect all the system devices to a common data 
highway. This connection is sometimes called a bus. A 
diagram of such an interconnection is shown in Figure 
1.1 where P1, P2 , and P3 are peripheral controllers. 
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Fig. 1.1 Microcomputer organisation 

Notice that the clock has a separate connection to 
the other system components and that some of the 
peripheral devices are 'one-way' devices. For example, 
a printer is a write-only device - you can only 
transfer information to it, and a keyboard is a read-
only device - you can only transfer information from 
it. 

On microcomputer systems (like the Dragon), the 
processor is built onto a single microchip as are each 
of the peripheral controllers. The memory is normally 
built as a number of connected microchips. 

These chips are bonded into holders which have a 
number of pins sticking out of each edge. Some of 
these pins are connections to the data highway and 
others are connections to control lines (like the clock 
connection). The number of pins on a chip depends on 
the type of information which must be transferred and 
the number of control signals input and output. 
Normally, more complex chips, like microprocessor 
chips, have more pins than (relatively) simple 
peripheral controller chips. 

The next level down from the computer organisation 
is sometimes called the computer architecture. In the 
same way as a building has an architecture which is an 
overall structure tailored to the building's users, so 
too does a computer. In the case of a computer, 
however, the architecture is the structure as seen by 
computer programs running on the machine. Just as 
building architecture is seen as an organisation of 
rooms, corridors, walls, etc. rather than an 
organisation of elementary components such as bricks, 
floorboards and pipes, computer architecture is not 
concerned with basic electronic logic components. 
Rather, it is the collection of these components into 
larger functional units. 

The computer architect is mostly concerned with the 
design of the processor and how it can be set up to 
transfer information to and from other system 
components. The most important of these is the store. 
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Therefore, a major part of the architect's job is to 
design the processor so that it makes optimum use of 
the system's memory. 

In this chapter, we introduce basic ideas of how 
information is represented in a computer and we 
describe, in general terms, the principles of computer 
architecture. We then go on to describe the Dragon's 
hardware organisation and the chapter concludes with a 
description of how the Dragon's memory is used. 

1.1 INFORMATION REPRESENTATION 

At their most fundamental level, all the components of 
a computer are fabricated out of electronic switches 
which can only be in one of two states - they can be on 
or off. This means that the ideal way to represent 
information in a computer is as a binary pattern, a 
pattern of 1s and 0s. These patterns can represent 
numbers, characters, states of a device, colours, etc. 
As long as the interpretation of a pattern is known in 
advance, any information can be encoded in binary form. 

The most common use of binary patterns in a computer 
is to represent numbers. Binary numbers are numbers 
whose base is 2 and digits in a binary number represent 
powers of 2. For example, the binary number 

10010111 

can be converted to our more familiar decimal notation 
by considering it to be: 

l(27)+0(26)+0(25)+l(24)+0(23)+l(22)+l(21)+l(20) 

If we carry out these multiplications and additions, we 
find that the above binary number represents the 
decimal number 151. Starting from the right, each 
place in a binary number represents an increasing power 
of 2. This is a familiar idea which is the basis of 
all modern number systems. Decimal numbers, numbers 
whose base is 10, are organised so that each place 
represents a power of 10. Therefore, the number 3506 
can be considered as: 

3(103) + 5(102) + 0(101) + 6(10°) 

The number of distinct numerals needed to represent any 
number depends on the base of that number system. In 
general, if the number system base is m, m-1 distinct 
numerals plus zero are needed. Therefore, for the 
decimal system we need the numerals 1, 2, 3, 4, 5, 6, 
7, 8, 9, 0. For a hexadecimal system, whose base is 
16, these must be extended with extra symbols 
representing 10, 11, 12, 13, 14, 15 and the numeral set 
is 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 0. The 
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binary system has a base of 2 so only a single digit, 
1, plus 0 is needed in the representation of any binary 
number. 

Normal arithmetic operations such as subtraction, 
addition, multiplication, and division can be carried 
out on binary numbers in exactly the same way as on 
decimal numbers. The following sums show examples of 
binary arithmetic. 

11001101 10011001 
+01101101 -00010111 

100111010 10000010 

The rules to remember are that 1 + 1 is 0 carry 1 and 
that 0 - 1 is 1 borrow 1. 

The other computations ( 0 + 0 = 0 , 1 + 0 = 1 , 1 - 1 = 
0, 1 - 0 = 1) are as you would expect and have no 
associated carry or borrow. 

Binary arithmetic is tedious and error prone for 
humans but, fortunately, is very straightforward for 
computers. It is relatively easy to build logic 
circuits which add binary numbers and, as we shall see 
later in this section, these are all that are required 
to implement all the arithmetic operations of add, 
subtract, multiply, and divide. 

Normally, when we write down numbers their length is 
unbounded. That is, each number can have as many 
digits as we like. The designer of a computer memory, 
however, doesn't have this flexibility. Computer memory 
is made up of many distinct cells each of which can 
store a fixed number of binary digits or bits. 
Normally, each cell stores 8 bits (a byte) and the 
number of bits used to represent a number must be a 
multiple of 8. Combinations of 2 or more bytes used to 
store numbers are usually called a machine word. 

The bytes in the computer's memory each have a 
unique address which distinguishes that byte from all 
others. Addresses are simply numbers which start at 
zero and increase by 1 for each byte. On a 
microcomputer like the Dragon there are 32768 bytes in 
user memory so addresses range from 0 to 32767. For 
convenience, memory bytes are divided into blocks of 
1024 (called 1K) so we say that the Dragon has 32K or 
64K bytes of store. 

An analogy can be drawn between a computer's memory 
and the lockers in a sports stadium. Each locker has a 
number (its address) which distinguishes it from all 
other lockers and items can be stored in the locker. 
The locker number doesn't affect what's stored in it 
nor does the memory address in a computer. The byte 
with address number 23456 can have any number in it. 
Just as the lockers in a stadium can have names 
associated with them as well as numbers (John Brown's 
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locker, Mary Jones's locker etc.) so too can memory 
bytes. Names are often more convenient than numbers 
when referring to memory bytes and we shall see in a 
later chapter how this facility can be used. 

On most microcomputers, the number of bits used to 
represent an integer (a number without a fraction) is 
16, with 32 bits used to represent real 
numbers (numbers with fractions). This means that 
integers occupy 2 memory bytes and real numbers occupy 
4 memory bytes. This size limitation restricts the 
magnitude of numbers which can be directly stored and 
manipulated by the computer and it is very important 
that the computer user bears this in mind when using 
his machine for numeric computations. 

However, the restriction on the number of digits in 
a number has a hidden advantage. It allows us to 
represent negative numbers in such a way that the 
operation of subtraction can be carried out by adding 
the numbers concerned. This representation of negative 
numbers is called two's complement representation. 

Complement arithmetic, which depends on numbers 
having a fixed, maximum number of digits, works with 
numbers of any base. The numbers involved, however, 
must have a special binary tag, called a sign bit, 
which indicates whether the number is positive or 
negative. Negative numbers have a sign bit of 1, 
positive numbers a sign bit of 0. 

We illustrate the principles of complement 
arithmetic using decimal numbers rather than clumsy 
binary numbers but we assume that the maximum length of 
a number is 3 digits. That is, we place the 
restriction on our number system that only numbers from 
0 to 999 may be represented. Say we want to carry out 
the subtractions 327 - 104 and 96 - 297. These are, of 
course, equivalent to the additions 327 + (-104) and 96 
+ (-297). The results of these additions are, in the 
first case, 223 and in the second -201. 

Positive numbers in complement notation are 
represented by the number itself with an associated 
sign bit of 0. Therefore, 327 is 0327 and 96 is 0096. 
The value of negative numbers in complement notation is 
formed according to the following formula: 

(maximum possible number)+l-(absolute number value) 

Therefore, where 999 is the maximum possible number, 
-104 and -297 have the following complement 
representations: 

(999 + 1 - 104) = 1896 
(999 + 1 - 297) = 1703 

Notice that we have added a sign bit (=1) to the left 
of the number to indicate that it is a negative number. 
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The subtractions above can now be carried out by adding 
the numbers in complement form. In the first case, 
0327 + 1896 = 2223. However, because the sign bit is 
always binary, 2 is actually '10' so we get an answer 
of '10'223. Because the length of the number is 
restricted, we throw away the 1 in the leftmost 
position to get the correct answer 0223. 

Similarly, 96 - 297 is 0096 + 1703 = 1799. This is 
a negative number (sign bit = 1 ) , so we must convert it 
back to our more conventional representation using the 
same formula as was used to convert to complement form. 
The conversion therefore is: 

-(999 + 1 -799) = -201 

This whole business might seem to be a bit of a fiddle 
with digits being discarded in an apparently arbitrary 
fashion and with binary and decimal numbers being mixed 
up in the sign bit and the number itself. However, it 
can be mathematically proven that complement arithmetic 
always works. The proof isn't relevant here - what is 
relevant is that two's complement works very well on 
computers and that it is very easy to form the two's 
complement of any binary number. 

To form the two's complement of a binary number, all 
the 1 bits are changed to 0 and all the 0 bits to 1. 
This operation is called complementing. One is then 
added to the number to get the two's complement 
representation. For example, the binary numbers 
01101100 and 00101101 have two's complements 10010100 
and 11010011 respectively. The leftmost bit is the 
sign bit and operations on it fit in naturally with 
other binary arithmetic. 

Notice, however, that the need for a sign bit 
reduces the maximum and minimum numbers that can be 
represented on a computer. On a machine which uses 16 
bits to represent integers, the leftmost bit must be 
the sign bit so only 15 bits are used for the number 
representation. This means that the largest positive 
integer on such a machine is 32767 and the largest 
negative integer is -32768. It is left as an exercise 
for the reader to work out why there is one extra 
negative number. 

Normally, microprocessors are only equipped with 
hardware units which allow them to add numbers 
together. Subtraction is implemented as described 
above and multiplication and division are implemented 
in software as sequences of repeated additions for 
multiplications and subtractions for division. 

So far, we have concentrated on the representation 
of numbers in a computer but character processing is at 
least as important as numeric computation for most 
microcomputer users. As we said at the beginning of 
this section, anything can be represented as a binary 
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pattern as long as we know how to interpret it so 
characters are normally held in a memory byte as an 8-
bit binary pattern. 

There exist a number of different conventions 
governing which patterns represent which characters but 
the most commonly used representation on microcomputers 
is the ASCII (standing for American Standard Characters 
for Information Interchange) representation. Under 
this system, 7 bits are used for character 
representation and the 8th (leftmost) bit is always 
zero. As well as codes for the upper and lower case 
letters, 'A'-'Z', 'a'-'z', the digits, '0'-'9', and 
punctuation characters the ASCII system also defines 
special unprintable characters meaning 'end of 
transmission', 'ring a bell', 'please acknowledge', 
etc. A table of characters and their associated ASCII 
values is provided in Appendix 6. 

1.1.1 Hexadecimal notation 
The sequences of 1s and 0s which make up binary numbers 
are very awkward for people to use. Because the 
numbers are so long, it is very easy to miss out a 
digit or to interchange a 1 and a 0. Naturally, this 
changes the value of the number and this can completely 
change the meaning of a computation. 

Ideally, it is best to work in terms of decimal 
numbers and names because these are the types of symbol 
that we learn to manipulate at an early age. However, 
it is, unfortunately, sometimes necessary to talk in 
the computer's terms, that is, in binary. A shorthand 
notation for binary numbers allowing us to write down 
binary equivalents in as few digits as possible reduces 
the number of errors which we make. Hexadecimal 
notation is one possible shorthand for binary numbers. 

Hexadecimal numbers are numbers whose base is 16. 
This means that the rightmost hexadecimal (hex for 
short) digit represents 0-15, the next digit represents 
the number of 16s to the power 1, the next the number 
of 16s to the power 2 and so on. As discussed earlier, 
we need 15 digits plus zero for a number system whose 
base is 16. The hexadecimal digits are: 

0 1 2 3 4 5 6 7 9 A B C D E F 

The number 10 is represented by A, 11 by B, 12 by C, 13 
by D, 14 by E and 15 by F. Some examples of 
hexadecimal numbers and their associated decimal values 
are: 

9 9 
1F 31 (16 + 15) 
23 35 (2(16) + 3) 
C7 199 (12(16) + 7) 
FF 255 (15(16) + 15) 
5BE 1470 (5(256) + 11(16) + 14) 
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It is very easy to convert from binary numbers to 
hexadecimal numbers and vice versa. Hexadecimal 
numbers represent values from 0 to 15 and this is 
exactly 2 to 2 - 1. We need 4 binary digits to make 
a hexadecimal digit so converting from binary to 
hexadecimal involves chopping the binary number into 
groups of 4 bits and then writing down the associated 
hexadecimal digit. For example: 

10110111010110111 16EB7 
1110011011011100 E6DC 

Conversion from hexadecimal to binary is equally easy 
as long as you memorise the binary patterns for the 
digits from 0 to F. These are: 

0 0000 8 1000 
1 0001 9 1001 
2 0010 10 1010 
3 0011 11 1011 
4 0100 12 1100 
5 0101 13 1101 
6 0110 14 1110 
7 0111 15 1111 

These patterns can be calculated very easily but after 
using binary and hexadecimal numbers for a while, you 
will find that you have, in fact, memorised them. Some 
examples of hexadecimal binary translations are: 

A1C4 1010000111000100 
4FFF 010011111111 
5670 0101011001110000 

As you read through the book, you will see lots more 
examples of hexadecimal numbers as we always use them 
in preference to binary when discussing particular 
representations. In particular, we always use 
hexadecimal numbers to refer to memory addresses so 
when you see an address of 433, say, this is 
hexadecimal 433 which is decimal 1075. 

1.1.2 Decimal arithmetic 
One of the problems which arise when binary arithmetic 
is used in a computer, where 16-bit words are used to 
store integer numbers, is that the maximum integer 
which can be represented is 32767 and the minimum 
integer is -32768. One way round this is to use so-
called 'decimal notation' where numbers are represented 
as a sequence of digits rather than in absolute binary 
form. 

From the table above, it is clear that the 
representation of the digits 0-9 requires that 4 bits 
be set aside for each digit. Therefore, each memory 
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cell can hold 2 digits. The table below shows examples 
of numbers represented in both decimal and binary form. 

Number Binary representation Decimal representation 
2 00000010 00000010 
55 00110111 01010101 
438 000110110110 010000111000 
2583 101000010111 0010010110000011 

There is a marked difference between the decimal and 
the binary representation of a number so special 
routines are required to perform decimal arithmetic. 
Although decimal numbers take up more space than their 
binary equivalents, they have the advantage that it is 
easier to write special routines to perform arithmetic 
on large decimal numbers than it is to write such 
routines for binary numbers whose representation 
requires more than 16 bits. The Dragon has an in-built 
instruction, called Decimal Adjust, to help the 
programmer in writing such routines. 

Although decimal arithmetic is very important for 
commercial applications programs, the hobbyist and 
scientific computer user has no real need of it. We 
have introduced it here for completeness but we do not 
use it in this book. Rather, we assume that all 
numbers may be represented as integers in the range 
-32768 to 32767. 

1.2 PROCESSOR ARCHITECTURE 

The central device in a microcomputer system like the 
Dragon is the microprocessor chip. The processor is 
that device which carries out all data transformations. 
That is, given input information, the processor can 
manipulate this and transform it to the output required 
by the programmer. The function of a computer program, 
be it in BASIC or some other programming language, is 
to define how the processor should transform its input 
into the appropriate output. 

The processor has an internal structure, its 
architecture, which consists of lower level components 
and their interconnections. As far as the programmer 
who wants to get the most out of his machine is 
concerned, the most important of these components are 
the processor registers. 

A register is simply an electronic device which can 
be used to store information. Usually, its width (the 
number of bits it can hold) is equal to or some 
multiple of the basic memory cell size. In the 
Dragon's processor, register widths are either 8 or 16 
bits and they can therefore hold 1 or 2 memory bytes. 

There are two important distinctions between a 
register and an ordinary memory byte or word: 
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(1) The processor can access information in a regis
ter more quickly than it can access information 
in a memory cell. The reason for this is partly 
due to the way in which registers are constructed 
and partly due to the fact that a bus transfer 
between processor and memory is not required. 

(2) Registers may be connected, via an internal pro
cessor bus, to other processor components which 
can transform information held in registers or 
which can recognise particular data patterns in 
the register. These patterns can be used to 
trigger corresponding actions by other processor 
components. The most important of these com
ponents, which are present in every processor, 
are the arithmetic and logic unit (ALU) and the 
control unit. These are discussed later in this 
chapter. 

Registers in a processor may be classified as either 
general-purpose registers or as special-purpose 
registers. General-purpose registers may simply be 
thought of as extensions of the computer's memory. 
Normally, information which is accessed very frequently 
is held in such registers. It is up to the programmer 
to transfer frequently accessed information to 
general-purpose registers before it is accessed and to 
save it in memory when the register is needed for other 
purposes. 

Special-purpose registers may also be used to store 
frequently accessed information. However, instead of 
general information, that is, anything the programmer 
wants, being stored in such registers particular items 
of information are always held there. Other types of 
special-purpose register are accumulator registers and 
condition-code registers which are used as ALU input 
and output registers. 

The notion of an arithmetic and logic unit has 
already been introduced. This is a component whose 
function is to carry out arithmetic operations such as 
add, negate, etc. and logical operations such as 
compare, complement, etc. The particular operations 
available on the Dragon are described in a later 
chapter - you don't need to know these details to 
understand the general purpose of an ALU. 

Accumulator registers are those registers which may 
act as ALU inputs and outputs. It is not usual to 
connect all registers to the ALU. Rather, only one or 
two accumulator registers are directly connected to 
this unit and all traffic to and from the ALU must pass 
through these accumulators. 

When some arithmetic and logical operations take 
place, particular conditions resulting from these 
operations must be 'remembered' for subsequent 
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operations. For example, if two values are compared 
for equality, it must be remembered whether they are 
equal or not. Similarly, if an addition produces a 
carry, this must be remembered. It is the function of 
the condition-code register (CCR) to hold this kind of 
information for subsequent use by the programmer. The 
exact conditions noted in this register differ from 
machine to machine - the details of the Dragon's CCR 
are described in the following chapter. 

Although general arithmetic operations must all take 
place through the accumulator registers in a processor, 
it is sometimes possible to perform very limited 
addition and subtraction operations in other special-
purpose registers. These operations can take place 
automatically before or after the contents of a 
register are accessed. Typically, this auto 
increment/decrement facility allows 1 or 2 to be added 
or subtracted from the value in the register. This is 
particularly useful when using so called index 
addressing where a register contains the address of a 
memory location. Indexed addressing is fully described 
in the next chapter of this book. 

We have already introduced the idea that a computer 
program specifies how program input is transformed to 
the appropriate output. Writing a program in BASIC, 
say, is a convenient way for the user to specify this 
transformation but, at the processor level, a BASIC 
program can't be directly executed. 

Rather, a translation process must take place where 
the BASIC program is converted to a sequence of 
primitive machine instructions. This sequence 
specifies the information transfers between the 
computer's memory and the processor and the 
operations (add, compare, etc.) to be carried out on 
this information. 

Within the processor, the machine instructions 
always make use of the processor's registers. Some 
instructions are dedicated to data movement to and from 
memory, some to arithmetic and logical operations, and 
some to controlling the order of execution of the 
instruction sequence. 

Each instruction has a unique operation code (op
code) which distinguishes that instruction from all 
others. This op-code is simply a binary number which 
is used by the control unit in the processor to 
determine which operation to carry out. As binary 
numbers (or even hexadecimal numbers) are alien to 
humans, we normally refer to instructions by means of a 
mnemonic related to the function of the instruction. 
Typical instruction mnemonics are: 

LD Transfer (LoaD) information into a register 
CLR Set a register to zero (CLeaR) 
INC Add 1 (INCrement) the contents of a register. 
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As well as an op-code, each instruction may have one or 
more address fields which specify the registers and/or 
memory locations used by the instruction. These address 
fields specify where the instruction can find the data 
on which it operates (its operands). They can be 
specified in a number of different ways (addressing 
modes) and an understanding of these addressing modes 
is vital for the programmer who wishes to write his own 
machine language programs. Because, they vary so much 
from machine to machine, addressing modes are not 
discussed further here but those of the Dragon's 
processor are covered in the following chapter. 

The machine instructions making up a program are 
themselves stored in the computer's memory and are 
fetched, one by one, from the memory to the processor. 
Each instruction may occupy one or more memory cells -
in the Dragon, for example, instructions may take up 1, 
2, 3, 4 or 5 bytes. 

The processor control unit fetches instructions from 
memory, identifies each instruction and initiates those 
components which actually carry out the specified 
operations. In every processor there is a special-
purpose register called the program counter (PC) which 
holds the memory address of the next instruction to be 
executed by the processor. 

There is no direct way for the programmer to affect 
the operation of the processor's control unit in its 
fetching and decoding of the machine instructions. 
However, the address in the PC register can be changed 
by the programmer thus allowing him to modify the order 
in which instructions are executed. This facility means 
that it is possible to repeat groups of instructions 
(loops) and to skip over one or more instructions if 
some particular condition holds (conditions). To the 
BASIC programmer, the familiar forms of these are FOR 
statements and IF statements. 

1.2.1 Stacks 
The machine instructions for a particular program are 
normally held in a linear sequence of cells in the 
computer's memory. This sequence may be accessed in any 
order by modifying the value of PC so that the 
instruction to be executed is the next one fetched by 
the processor's control unit. 

Sometimes it is also convenient to store and access 
data in the same way. You may normally access the data 
sequentially using a register to hold the address of 
the next data item to be selected. By modifying the 
value in this register, you can change this sequential 
data access pattern and get to any item of data which 
you need. 

On other occasions, however, it is convenient to 
restrict the way in which data is accessed. 
Restrictions of this sort are not arbitrary but are a 
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safety feature which reduces the chance of the 
programmer making mistakes. There are various 
different ways in which restrictions can be applied and 
the particular technique chosen must depend on the 
application being programmed. For a full discussion of 
these data structures the reader must look at the 
specialised texts on this topic such as those suggested 
in the reading list. However, one of these data 
structures is so important that you must understand it 
if you are to understand the rest of the book. This 
structure is the stack. 

Arranging data in a stack is a technique of limiting 
data storage and access so that the last data item 
placed on the stack is the only item which may be 
removed from the stack. Once this item has been 
removed, we can then get to the item below it, remove 
it, and so on. 

This can be imagined by comparing the data on the 
stack to a pile of plates in a restaurant kitchen. 
Assume that a dishwasher is adding plates to this pile 
after cleaning them and that a waiter is removing 
plates for serving food. The plate which the waiter 
takes from the pile is always the last plate put on the 
pile by the dishwasher. Like a data stack, the pile of 
plates is a last-in, first-out (LIFO) structure. Items 
are removed in the inverse order to that in which they 
are placed on the stack. 

Stacks are easily implemented in a computer system 
by reserving an area of memory for the stack and by 
associating a special-purpose register called a stack 
pointer (SP) with this memory area. The stack pointer 
always holds the address of the last item placed on the 
stack, that is, the top of the stack. When an item is 
added to the stack, the SP register is incremented and 
the item placed at this address. When an item is 
removed from the stack, the item pointed to by SP is 
first copied to a register and SP is then decremented 
to point at the new top stack element. 

In the traditional stack model, the base of the 
stack is at a low memory address and the stack grows 
upwards so that elements placed on the stack have 
increasing memory addresses. However, this is an 
arbitrary convention and it is equally straightforward 
to implement a stack which grows downwards in memory. 
This means that push in element on the stack involves 
decrementing the stack pointer and popping an element 
from the stack involves incrementing the stack pointer. 

Stacks in the Dragon are implemented in this way so 
that the base of the stack is at a high memory address 
with stack elements in successively lower addresses. 

We shall see in later chapters how stacks can be 
extremely useful to the programmer. They are so 
important that many processors (including the one built 
into the Dragon) provide special instructions to add 
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information to and remove information from the stack. 
These instructions are: 

PUSH This instruction copies one or more 
registers onto the stack and moves 
the stack pointer 'up' by the 
number of register bytes copied. 

PULL (or POP) This instruction copies one or more 
items from the stack into registers 
and moves the stack pointer 'down' 
by the number of bytes copied. 

The provision of instructions like these is one of the 
features of the Dragon which makes it such a powerful 
computer. 

1.3 THE ORGANISATION OF THE DRAGON 

We now move on from generalities and general principles 
of computer organisation to details of the organisation 
of the Dragon itself. Every microcomputer is inherently 
complex and the Dragon's hardware is made up of about 
20 microchips and their interconnections plus a power 
supply, peripheral device connectors, etc. The usual 
way of describing system hardware is by means of a 
block diagram showing the various hardware components 
and their interconnections. Figure 1.2 is such a block 
diagram of the Dragon's hardware organisation. 

As we suggested above, the hardware on a 
microcomputer system can be considered as being 
composed of three interacting subsystems. These are: 

(1) The processor 

(2) The memory 

(3) The input/output system 

The processor built into the Dragon is a single 
microchip which is designated the M6809E or, simply, 
the M6809. This is an advanced 8-bit processor which 
means that its data highways are 8-bits wide but it 
also makes provision for operations on 16-bit data 
elements. We shall not discuss any details of this 
system here as both Chapter 2 and Chapter 3 are devoted 
to the architecture of the M6809 processor. 

There is no explicit clock component shown in the 
block diagram although we explained in the previous 
section that the clock was an inherent part of every 
computer system. In fact, the box labelled 
'Synchronous address multiplexor' is a multi-function 
chip which includes a clock and which acts as the 
interface between the processor and the random-access 
memory. 
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The M6809 processor is designed to operate with data 
addresses of 16 bits so the maximum memory size which 
can be built into the Dragon is made up of 2 1 6 or 65536 
bytes. The term 1K is used to mean 1024 bytes so the 
maximum memory size on the Dragon is 64K bytes. The 
Dragon 32 actually has 48K of inbuilt memory with the 
capability to expand this to 64K using the cartridge 
slot. The Dragon 64 has 80K of in-built memory but 
only 64K may be in use at any one time. 

In the block diagram of the hardware, the units 
marked '32K Dynamic RAM' and '8K ROM' make up the 
memory of the Dragon. The two ROM (read-only memory) 
units hold the BASIC system and, because this memory is 
read-only, it is impossible to change any information 
stored in these units. However, you can read 
information stored there and we shall describe later 
how to make use of some of the BASIC system facilities 
by calling them directly from assembly code. 

The dynamic RAM on the Dragon 32 is the user's 
memory area which is used for the storage of BASIC and 
machine code programs, user data, etc. As the name 
implies, the Dragon 32 has 32K bytes available for this 
purpose whereas the Dragon 64 has twice as much 
available to the user. For many applications, 32K 
bytes is a perfectly adequate amount of memory but when 
complex disk operating systems are used, you really 
need 64K to get the most out of your machine. The way 
in which the use of memory is organised is very 
important and we describe the logical memory 
organisation of the Dragon 32 in a separate section 
below. 

The Dragon's input/output system controllers are the 
units labelled PIA0, PIA1, and VDG. These have 
associated peripheral interfaces to the keyboard, 
display, cassette, etc. The complexity of the I/O 
system is such that we cannot describe it adequately 
here so we have devoted a complete chapter to the I/O 
system (Chapter 8) later in the book. 

1.3.1 Memory organisation 
In a system like the Dragon, the memory is not simply 
considered as a single homogenous chunk to be used in 
some arbitrary way by the user or the BASIC system. 
Rather, decisions have to be made about which areas of 
memory are to be dedicated to which function and these 
decisions have to be clearly communicated to the 
system's programmers so that they know how to organise 
their own programs and data. 

The usual way to communicate this information is by 
means of a memory map which is simply a schematic 
diagram of how the system's memory is used. Like any 
map, this can be presented at greater or lesser levels 
of detail and the overall memory map of the Dragon 32 
is shown as Figure 1.3. 
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The 64K bytes of memory which is potentially available 
on the Dragon 32 can be looked at as being partitioned 
into eight distinct areas. 

(1) System variables 
This is the area of 1K bytes in RAM from address 
0000 to address 3FF. It holds various data values 
and I/O buffers used by the BASIC system. As 
these are in RAM, you may modify variables in 
this area but this must be done with care as in
cautious modification can cause the BASIC system 
to fail and require that the machine be reset. 

(2) Text screen 
This is the 512 byte area from address 400 to ad
dress 5FF whose contents are reflected on the 
user's display when graphics are not being used. 
The use of this area is described in Chapter 7. 

(3) Graphics screens 
The area of memory from address 600 to address 
3600 is used by the BASIC graphics system to im
plement its graphics commands. Again, we 
describe the use of this area in Chapter 7. If 
graphics are not used or, if only limited graph
ics are used, all or part of this area may be 
used for the storage of the user's BASIC program 
and its variables. 

(4) Program and variable store 
The area of memory from address 3600 to address 
7F36 is used for the storage of the user's BASIC 
program and its variables. 

(5) BASIC string store 
When character strings are used in a BASIC pro
gram, the string characters are held in a 
separate storage area. This area extends from 
address 7F36 to the top address in the dynamic 
RAM, 7FFF. 

(6) The BASIC interpreter 
The 16K of memory required by the BASIC inter
preter is provided as ROM on the Dragon 32 and is 
addressed from 8000 to BFFF. 

(7) Cartridge memory 
Memory addresses from C000 to FEFF are allocated 
to the cartridge slot on the Dragon 32. When you 
plug in a cartridge, this contains its own read-
only memory and this is addressed via these ad
dresses . 
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(8) Input/output area 
The Dragon's I/O system is a 'memory-mapped' sys-
tem where reference to specific memory locations 
cause I/O operations to take place. Therefore, 
it is necessary to dedicate some memory locations 
to input/output and, in the Dragon 32, this I/O 
area is a 256 byte area at the very top of memory 
from address FF00 to address FFFF. Broadly, this 
area is partitioned into three separate parts. 
Addresses FF00 to FF5F are reserved for the use 
of peripheral controllers, addresses FFC0 to FFDF 
are used to control the synchronous address mul-
tiplexor and addresses FFF2 to FFFF are reserved 
for interrupt vectors. The other addresses in I/O 
area are unused and reserved for future system 
expansion. More details of the function of these 
I/O-dedicated addresses are provided in Chapter 
8. 



Chapter 2 

The architecture of the M6809 

The microprocessor used in the Dragon has been given 
the code number M6809 by its designers at Motorola 
Semiconductors. The M6809 processor developed from an 
earlier Motorola microprocessor, the M6800, and it 
shares some of the features of this earlier system. In 
fact, one of the design criteria for the M6809 was that 
it should be possible to run programs written for the 
M6800 on the M6809 processor. 

The M6809 is called an 8-bit processor, indicating 
that its data highways are 8 bits wide. This means 
that a simultaneous transfer of 8 bits of information 
can be made from the processor to and from memory and 
peripheral controllers. However, the M6809 also 
includes a number of instructions which operate on 16 
bits rather than 8 bits of data and this considerably 
increases the power of the processor. 

Such 16-bit instructions provide extra power because 
8-bit data manipulation is inadequate in many cases. 
For example, consider integer arithmetic. If only 8-bit 
representation is allowed this limits the range of 
integers to 0-255. This is clearly unacceptable in 
most cases so 16-bit arithmetic operations have to be 
simulated on an 8-bit machine by using combinations of 
8-bit instructions. Naturally, this slows down the 
execution of programs. 

The provision of many 16-bit operations of the M6809 
means that programs can be written using fewer 
instructions. Therefore, these programs execute more 
quickly. Because of these extra instructions and 
because of the variety of ways in which memory can be 
accessed, the M6809 is sometimes called a second-
generation microprocessor or, more extravagantly, the 
'programmer's dream machine'. 

In this chapter and in the following chapter we 
describe those aspects of the M6809 machine 
architecture which are of importance to the programmer 
who wishes to write machine language programs for his 
Dragon. This chapter covers the register organisation 
of the M6809, the multitude of ways in which machine 
memory may be addressed (addressing modes), and 
introduces some of the machine instructions available 
to the M6809 programmer. A description of all the M6809 
machine instructions is provided in Chapter 3. 

20 
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2.1 THE M6809 REGISTER SET 

In the previous chapter we introduced the idea of a 
register as a fast storage element built into the 
processor. The M6809 has nine such registers, all of 
which may be considered as special-purpose registers 
rather than general-purpose registers. Figure 2.1 is 
the so-called 'programming model' of the M6809. It 
shows, diagrammatically, the M6809's registers and 
their comparative sizes. 

Fig. 2.1 The programming model of the M6809 

The names of the M6809 registers, their width in 
bits, and a very brief description of their functions 
are listed below: 

(1) A register (8 bits) - accumulator register 

(2) B register (8 bits) - accumulator register 

(3) X register (16 bits) - index register 

(4) Y register (16 bits) - index register 

(5) U register (16 bits) - stack pointer register 
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(6) S register (16 bits) - stack pointer register 

(7) DP register (8 bits) - direct page register 

(8) PC register (16 bits) - program counter register 

(9) CC register (8 bits) - condition code register 

The bits in an M6809 register are numbered from right 
to left starting at 0. This means that bit 0 is the 
rightmost bit and, for 16-bit registers, bit 15 is the 
leftmost bit. Different machines have different 
conventions in this respect. Some processors number 
bits from left to right others, like the M6809, from 
right to left. 

2.1.1 The A and B registers 
The A and B registers are accumulator registers which 
are used to hold the operands and results of arithmetic 
operations. There are a variety of machine 
instructions which make use of these registers and 
examples of these are given below. 

The instruction examples in this chapter are set out 
according to the following general format: 

<machine code> (mnemonic) <operand> (comment) 

We use diamond brackets <> to mean 'an instance of' so 
(mnemonic) means any instruction mnemonic may replace 
the character string (mnemonic). We also use the 
notation MEM((address)) when referring to particular 
addresses in memory so MEM(A0E4) means the memory 
location whose address, in hexadecimal, is A0E4 and 
MEM(FRED) means the memory location whose symbolic 
address is FRED. All memory addresses are given in 
hexadecimal or are symbolic addresses unless explicitly 
stated otherwise. 

The machine code, in hexadecimal, is provided for 
each instruction example in this chapter. This is the 
actual code loaded into the M6809 memory whereas the 
instruction mnemonic and operand is a form of the 
instruction which is more understandable to the 
programmer. Most examples also have a brief 
descriptive comment explaining the function of that 
instruction. 

Examples of instructions which use the A and B 
registers are: 

860A LDA #10 ; A = 10 

1E89 EXG A,B ; Tmp = A: A = B: B = Tmp 

F7F1C5 STB $F1C5 ; MEM(F1C5) = B 
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5F CLRB ; B = 0 

8B02 ADDA #2 ; A « A + 2 

F0F1C5 SUBB $F1C5 ; B = B - MEM(F1C5) 

The A and B registers are both 8-bit registers which 
means that only a limited range of values, from 0 to 
255, may be stored in them. For many arithmetic 
operations we need to operate on larger or smaller 
values than can be represented in 8 bits so the 
designers of the M6809 have provided instructions which 
allow the register pair A:B to be considered as a 
single register. When the registers are catenated in 
this way, they are called the D register. 

Effectively, the A register makes up the leftmost 8 
bits of the D register (bits 8-15). This is sometimes 
called the hi-byte. The B register forms the rightmost 
8 bits of D (bits 0-7). This is called the lo-byte. 

Many of the machine instructions which operate on 
the A and B registers have counterparts which operate 
on the D register. However, rather than 8-bit 
operations which take place automatically when A and B 
are used, the use of the D register or, indeed, any 
16-bit register automatically results in 16-bit 
operations taking place. The address in the instruction 
refers to the leftmost (most significant) byte when 
16-bit operations are specified. For example: 

CC1000 LDD #4096 ; D = 4096 

F31E62 ADDD $1E62 ; D = D + MEM(1E62) 

FD0056 STD $56 ; MEM(56) = D 
* MEM(56) = hi-byte of D 
* MEM(57) = lo-byte of D 

We shall look at more instructions which operate on the 
A, B, and D registers when we describe the M6809 
instruction set in detail in Chapter 3. 

2.1.2 The X and Y index registers 
The X and Y registers in the M6809 may be used as 
general-purpose registers to store data but, more 
commonly, they act as special-purpose registers called 
index registers. 

The information which is normally held in an index 
register is the address in memory of some other data 
item which may represent anything at all, even another 
memory address. The M6809 has several ways of 
accessing memory which makes use of these index 
registers to determine the address in memory which is 
being used. 

Index registers are a particularly efficient way of 
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determining data addresses when data items stored in 
consecutive locations are to be accessed and processed 
in turn. The X and Y registers in the M6809 each have 
an associated auto-increment/decrement facility which 
means that a memory location can be accessed and, 
without additional instructions, the index registers 
can be updated to refer to the next item to be 
processed. 

This means that the most important use of the X and 
Y index registers is for array processing. The index 
register is set up to refer to the first item of the 
array and the auto increment/decrement facility used to 
select succeeding items in turn. 

The index registers may also be used as stack 
pointer registers if the user needs more than two 
stacks. The U and S registers are provided as stack 
pointer registers but the auto increment/decrement 
facilities of the X and Y registers means that they can 
also function efficiently in this role. 

Examples of instructions which use these index 
registers are: 

A684 LDA ,X ; A = MEM(X) 

A680 LDA ,X+ ; A - MEM(X): X = X + 1 

A682 LDA ,-X ; X = X - 1: A = MEM(X) 

ECA012C LDD 300,Y ; D = MEM(300 + Y) 

E7A6 STB A,Y ; MEM(A + Y) = B 

There are a number of other variants of index 
addressing available on the M6809. These will be 
discussed later in section 2.2.6. 

2.1.3 The U and S stack pointer registers 
The U and S registers are 16-bit registers which may 
act as index registers in exactly the same way as the X 
and Y registers described above. However, in many 
applications, these registers are best used as 
special-purpose stack pointer registers. Push and pull 
instructions are available to the programmer which 
assume that these registers are being used for this 
purpose. 

In practical use, the S register is almost always 
used as a stack pointer register referring to the so-
called S-stack or hardware stack. The hardware stack 
is used when calling subroutines and when swapping 
control from program to program. The state of the 
program which is interrupted is saved on this stack and 
restored when that program is restarted. This use of 
the hardware stack is described later in the book when 
interrupt-driven programming is described. 
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The U register may be used as a stack pointer to the 
so-called U-stack or user stack. However, the 
programmer may not need this facility in which case the 
U register may be used as an index register in exactly 
the same way as the X and Y registers. 

The M6809 stack convention is that stacks grow 
downwards in memory. That is, when an element is pushed 
onto the stack, the stack pointer is decremented before 
the push operation so that that element has a lower 
memory address than the previous top stack element. The 
stack pointer registers S and U always point at the top 
byte on the stack. In this respect, the M6809 is 
different from some other stack-based systems where the 
stack pointer refers to the next available location on 
the stack. 

Some examples of how the U and S registers may be 
used are: 

3602 PSHU A ; U = U - 1: MEM(U) = A 

3436 PSHS A,B,X,Y ; S=S-1: MEM(S)=Y: S = S-2 
* MEM(S)=X: S=S-2: MEM(S)=B 
* S=S-1: MEM(S)=A 

3536 PULS A,B,X,Y ; A=MEM(S) : S=S+1 : B=MEM(S) 
* S=S+2: X=MEM(S): S=S+2 
* Y=MEM(S): S=S+1 

3704 PULU B ; B=MEM(U): U=U+1 

The push and pull instructions for stack manipulation 
are described in more detail in Chapter 3. 

2.1.4 The DP register 
The M6809's DP (Direct Page) register is an 8-bit 
register which always contains the address of the start 
of a 256 byte chunk (page) of memory. This register is 
used exclusively in the so-called direct addressing 
mode. In this mode, the contents of the register are 
added to an 8-bit value specified by the user as part 
of the machine instruction to form the effective memory 
address. For example: 

96E9 LDA $E9 ; A = MEM(DP + E9) 

D710 STB $10 ; MEM(DP+10) = B 

2.1.5 The PC register 
The PC register is the M6809's program counter. It a 
16-bit register which always contains the address in 
memory of the next machine instruction to be executed 
by the M6809. 
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2.1.6 The CC register 
The CC register is an 8-bit condition code register 
where individual bits mark the occurrence of particular 
conditions. The bits in the register have the 
following functions: 

Bit 0 carry bit, set in arithmetic operations 
Bit 1 two's complement overflow bit 
Bit 2 zero bit, set when result of an operation or 

data transfer is zero 
Bit 3 negative flag, set when result of an 

operation or data transfer is less than zero 
Bit 4 normal interrupt mask, used by M6809 

interrupts 
Bit 5 half-carry flag, used to indicate a carry 

from bit 3 to 4 
Bit 6 fast interrupt mask, used by M6809 interrupts 
Bit 7 entire state saved flag, used by M6809 

interrupts 

The above descriptions of the flags in the CC register 
are very sketchy indeed but it is not appropriate to go 
into more detail here of what each flag means. Rather, 
we describe the role of individual condition code flags 
along with those machine instructions which set and 
test these flags. 

2.2 ADDRESSING MODES ON THE M6809 

One of the features of the M6809 architecture which 
distinguishes that microprocessor from earlier 
microprocessors is the variety of ways in which the 
address of a data item may be computed. In all, there 
are 19 distinct ways of representing an 
address (addressing modes) and the flexibility and 
power of these modes means that some applications may 
be coded very efficiently indeed on the M6809. 

The use of the various addressing modes is 
illustrated in Chapters 4 and 5. In this section we 
confine ourselves to a description of those modes and 
present examples of instructions which use these 
various modes. 

Before going on to look at addressing modes in 
detail, however, we must look at the structure of a 
machine instruction and examine how operand addresses 
are represented within instructions. Instructions in 
the M6809 may be 1, 2, 3, 4, or 5 bytes long depending 
on the particular instruction and on the addressing 
mode which is being used. Each instruction has two 
fields: 

(1) The op-code (1 or 2 bytes) 

(2) The operand address specifier (0, 1, 2 or 3 
bytes) 
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Notice that, in some cases, the operand address 
specifier may be empty, that is, it doesn't explicitly 
exist. For example, the instruction CLRA clears the A 
register - the inherent operand address in this case is 
the A register and may never be anything else. 

Most instructions, however, do have an address field 
which has the following general structure: 

(1) Postbyte (0 or 1 byte) 

(2) Value field (0, 1 or 2 bytes) 

The address field, called the 'postbyte', is not needed 
by all the M6809 addressing modes and it will be 
described along with those addressing modes which make 
use of it. Simpler addressing modes only need the 
'value' field to construct an operand address and some 
modes only require the postbyte field. 

2.2.1 Immediate addressing 
The simplest addressing mode on the M6809 is the 
immediate addressing mode where the instruction operand 
is a constant whose value is 'built in' to the machine 
instruction. When programming, immediate addressing is 
specified by preceding the constant to be included in 
the instruction with the symbol #. Some examples of 
immediate addressing are: 

C680 LDB #128 ; B = 128 (decimal) 

CC0400 LDD #1024 ; D = 1024 (decimal) 

108EFF00 LDY #$FF00 ; Y = FF00 (hex) 

Notice that a hexadecimal value is specified by 
preceding the immediate value with a $ sign. The # 
symbol must also be included to specify immediate 
addressing as a $ on its own has a completely different 
meaning. 

Although the instruction operand in immediate 
addressing mode must be an absolute hexadecimal 
constant, this can be generated by the assembler. Most 
assemblers allow the association of symbolic names with 
constants and also allow symbolic labels representing 
addresses. These may be used as immediate operands. 

2.2.2 Extended addressing 
In the extended addressing mode, the contents of the 2 
bytes following the instruction op-code are taken as 
the absolute address in memory of the instruction 
operand. Extended addressing is specified by preceding 
a numeric address (usually in hex) with the symbol $ 
or, alternatively, by writing the symbolic address of 
the operand being accessed. 

A symbolic address is simply a name given to a 
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particular address location. This idea was introduced 
in section 1.1.2 and it is by far the most convenient 
way to refer to actual addresses in the Dragon's 
memory. When a symbolic address is encountered in an 
instruction, the assembler replaces it with its actual 
numeric memory address. The assembler also handles the 
conversion of mnemonics to machine code, the conversion 
of decimal and hexadecimal numbers to binary, etc. 

Examples of the M6809 extended addressing code are 
given below along with their corresponding machine code 
representations. Assume that the symbolic names CHAR1 
and PNTR have addresses A000 and A008 respectively. 

B7A000 STA CHAR1 ; MEM(CHAR1) = A 

BEA008 LDX PNTR ; X = MEM(PNTR) 

BB03A2 ADDA $03A2 ; A = A + MEM(03A2) 

2.2.3 Direct addressing 
Recall from our description of the M6809 registers that 
the processor has an 8-bit register called the Direct 
Page or DP register which always contains the address 
of the start of a 256 byte chunk (page) of memory. This 
register is used in the direct addressing mode. 

In this mode, the address of an operand is computed 
by taking the value contained in the instruction 
itself (00-FF) and using this as the lo-byte of the 
operand address. The hi-byte is taken as the value of 
the DP register. Direct addressing is used whenever the 
address lies in the range 00 to FF since the DP 
register normally contains 00. Direct addressing can 
be forced by preceding the address with a '<' symbol in 
which case it it is essential that the DP register is 
set up with the address of the starting byte of the 
memory 'page' being accessed. 

Registers are normally assigned values using load 
instructions but there is no load instruction which 
assigns a value to the DP register. Rather, some other 
8-bit register must be assigned a value and its 
contents then to the DP register using a TFR 
instruction. For example: 

8610 LDA #$10 ; A = 10 (hex) 

1F8B TFR A,DP ; DP = A 

Examples of the use of direct addressing are: 

DD20 STD $20 ; MEM(1020) = D 

9000 SUBA $00 ; A = A - MEM(1000) 

The use of direct addressing means that instructions 
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are short (mostly 2 bytes) and this means that programs 
are efficient in both execution speed and in the 
storage required for the program. There are also 
advantages in using this mode of addressing when 
implementing programming languages like Pascal where 
global variables may be stored in a page by themselves 
and accessed via the DP register. 

2.2.4 Register addressing 
Register addressing is an addressing mode where the 
instruction operands are always in registers with a 
postbyte used to identify the registers involved. There 
are only two instructions which make use of this 
addressing mode. These are the transfer register 
instruction (TFR) and the exchange register instruction 
(EXG) . The address field is simply a postbyte which is 
split into two parts. Bits 0-3 of the postbyte 
identify the destination register and bits 4-7 identify 
the source register. The identification value, in 
hexadecimal, for each register is: 

0 D register 5 PC register 
1 X register 8 A register 
2 Y register 9 B register 
3 U register A CC register 
4 S register B DP register 

Using the TFR and EXG instructions, it is only possible 
to transfer and exchange registers of like size (8 or 
16 bits). Examples of instructions using the register 
addressing mode are: 

1F12 TFR X,Y 

1E89 EXG A,B ; Tmp = B: B = A: A = Tmp 
* where Tmp is some temporary register 
* hidden from the M6809 user 

2.2.5 Indirect addressing 
Some kinds of programming are made easier if you can 
refer indirectly to information which you want to 
manipulate. That is, you don't include the address of 
the instruction operands in the instruction but the 
address reference in the instruction is to a location 
which holds the actual operand address. 

Normally, the address part of a machine instruction 
directly refers to its operand. For example: 

LDD MAXVAL 

loads the data stored at symbolic address MAXVAL into 
register D. With indirect addressing, however, the 
address part of the machine instruction holds the 
address of the address of the instruction operand. 
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Address computation is therefore a two-stage process. 
First, compute the address as specified in the machine 
instruction. Secondly, use this to locate the operand 
address then use this address to fetch the operand 
itself. 

This is illustrated in Figure 2.2. 

Fig. 2.2 Indirect addressing 

It is important to remember that the use of indirect 
addressing means that the two-stage process described 
above always takes place. The effect of an instruction 
using indirect addressing is exactly the same as the 
same instruction using direct addressing inasmuch as 
the operand value, not its address, is manipulated by 
that instruction. 

Indirect addressing can be used with a number of the 
M6809 addressing modes but, of the modes which we have 
described so far, it is only possible with extended 
addressing. In this case, and in all other cases where 
indirect addressing is allowed, indirect addressing is 
specified by surrounding the address part of the 
instruction with square brackets. For example, say a 
value 00E4 is stored at address 32F0. Furthermore, 
assume the symbolic address MAXADD has a value of 10A4 
and is set up to refer to the value 00E4. The 
instruction 

CC9F10A4 LDD [MAXADD] 

specifies that the value in MAXADD is actually the 
address of the value to be loaded into the D register. 
Therefore, the effect of LDD [MAXADD] would be to copy 
00E4 into register D. The actual address reference in 
the instruction is to address 10A4 which holds the 
value 32F0 - the location where 00E4 is stored. 

This has illustrated how indirect addressing is used 
in conjunction with the extended addressing mode but it 
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may also be used with indexed addressing which is 
described below. In indexed addressing, where a 
postbyte is an inherent part of the address, bit 4 of 
the postbyte is used to indicate whether the address 
reference is direct or indirect. If bit 4 is set, the 
address is taken as in indirect reference to the 
instruction operand. 

2.2.6 Indexed addressing 
We have already described how some of the registers in 
the M6809 may be used as index registers where the 
address is computed by adding or subtracting some value 
from the value in the index register. There are a 
variety of different types of indexed addressing 
available to the M6809 programmer and these are all 
described in this section. 

The format of an address in an instruction using 
indexed addressing is: 

(1) Postbyte (1 byte) 

(2) Offset (0, 1 or 2 bytes) 

The postbyte is set up to indicate which register is 
the index register, whether that register is to be 
automatically incremented or decremented and to specify 
the form of the offset to be added to the value in the 
index register. 

The forms of indexed addressing which we shall 
describe here are: 

(1) Zero offset indexed addressing 

(2) Constant offset indexed addressing 

(3) Accumulator offset indexed addressing 

(4) Auto increment/decrement indexed addressing 

Before describing these addressing modes in detail, 
however, let us look at the structure of the postbyte 
which determines the actual addressing mode used and, 
in some cases, holds the offset which modifies the 
index register value. 

Bit 7 (the leftmost bit) of the postbyte specifies 
whether an offset is stored as part of the postbyte. 
If this bit is unset, bits 0-4 are taken as a 5-bit 
signed offset in two's complement form. This means 
that values between -16 and 15 may be held as part of 
the postbyte and automatically added to the index 
register. 

If bit 7 of the postbyte is set, this means that a 
5-bit offset is not part of the postbyte and that bits 
0-4 have a completely different meaning. In this case, 
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bits 0-3 are used to specify which type of indexed 
addressing is to be used and bit 4 is used to select 
direct or indirect indexed addressing. The 
correspondance between addressing modes and associated 
values of bits 0-3 is set out in the table below. 

Bit 4 is the indirect select bit. If it is unset, 
this indicates that the computed address is the address 
of the instruction operand. If it is set, this means 
that the computed address is to be taken as the address 
of the address of the instruction operand. 

In all types of indexed addressing, bits 5 and 6 of 
the postbyte are used to specify which index register 
is being used. Each value of this bit pair specifies a 
different index register as follows: 

X Bit 6 = 0 , Bit 5 = 0 
Y Bit 6 = 0 , Bit 5 = 1 
U Bit 6 - 1 , Bit 5 = 0 
S Bit 6 = 1 , Bit 5 = 1 

When bit 7 is 1, bits 0-3 of the postbyte select the 
addressing mode to be used. The values of these 
bits (in hexadecimal) and their corresponding 
addressing modes are shown in the table below: 

0 

1 

2 

3 

4 

5 

6 

7 

Auto increment (+1) 

Auto increment (+2) 

Auto decrement (-1) 

Auto decrement (-2) 

Zero offset 

ACCB offset 

ACCA offset 

Not used 

The index register is 
incremented by 1 after 
the address is computed. 

As above, increment is 2. 

The index register is 
decremented by 1 before 
the address is computed. 

As above, decrement is 2. 

The address in the index 
register is the operand 
address. 

The address is computed 
by adding the contents of 
register B to the index 
register contents. 

As above, but the 
contents of register A 
are added to the index 
register. 
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9 

A 

B 

C 

D 

E 

F 

8-bit signed offset 

16-bit signed offset 

Not used 

ACCD offset 

PC relative, 

PC relative, 

Not used 

Extended indirect 

The value of the byte 
following the postbyte is 
added to the index 
register to compute the 
address. 

As above, but the 
following 2 bytes are 
added to the index 
register. 

The value of accumulator 
D (A:B) is added to the 
index register. 

The PC acts as an index 
register, with the 
address computed by 
adding an 8-bit offset to 
its value. 

As above with 16-bit 
offset. 

The following 2 bytes are 
the address of the ad
dress of the instruction 
operand. 
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We have already covered extended indirect addressing 
and addressing using the program counter PC will be 
discussed in section 2.2.7. Now let us look in more 
detail at the possible indexed addressing modes. 

Auto increment/decrement indexed addressing 
This addressing mode allows 1 or 2 to be automatically 
added or subtracted from the index register value. No 
additional add or subtract instruction is necessary to 
accomplish this. When using auto increment addressing, 
the value is added to the index register after the 
effective address has been computed. In auto decrement 
mode, the value is subtracted from the index register 
and the effective address then computed. 

Examples of instructions using this addressing mode 
are: 

A7C0 STA ,U+ ; MEM(U) = A: U = U + 1 

ECA1 LDD ,Y++ ; D=MEM(Y): Y = Y + 2 
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AB82 ADDA ,-X ; X = X - 1 : A = A + MEM(X) 

A3E3 SUBD ,--S ; S = S - 2 : D = D - MEM(S) 

Auto increment/decrement indexed addressing is 
particularly efficient when a number of data elements 
have to be processed in sequence. The index register 
is set up to point at the beginning or the end of the 
sequence in memory and, after each element is fetched, 
the register is incremented or decremented so that it 
points at the next element in the sequence. 

Zero offset indexed addressing 
Using this addressing mode, the value in the index 
register is taken to be the address of the instruction 
operand. Nothing is added to or subtracted from it. 
For example: 

A684 LDA ,X ; A=MEM(X) 
EDF4 STD [,S] ; MEM(MEM(D)) = D 
* Note [] meaning indirect addressing 

Constant offset indexed addressing 
In this case, a positive or negative constant is added 
to the value in the specified index register to compute 
the address of the instruction operand. The range of 
possible offsets is from -32768 to 32767 (decimal) and 
the assembler works out whether the offset is to be 
stored as part of the postbyte (-16->15), as an 8-bit 
quantity (-128->127) or as a 16-bit quantity (-32768-
>32767). If the offset is not stored in the postbyte, 
it immediately follows the instruction postbyte in 
memory. 

Although a constant value is added to the index 
register value to compute the operand address, this 
modified value is not stored in the index register. 
The addition is purely temporary and the index register 
value is not changed by the use of constant offset 
addressing. Examples of instructions using this 
addressing mode are: 

EC7A LDD -6,S ; D = MEM(S-6). 
* Note offset stored in postbyte 
* in two's complement form 

AB8816 ADDA 22,X ; A = A + MEM(X + 22) 
* Offset stored as a 1 byte value 

AB89012C ADDA 300,X ; A = A + MEM(X + 300) 
* Offset stored as a 2 byte value 

Accumulator offset indexed addressing 
This addressing mode is similar to constant offset 
indexed addressing but, rather than the offset being a 



35 

constant, the value of an accumulator register is added 
to the index register to compute the address. The 
advantage of this is that the offset can be calculated 
and loaded into the accumulator just before it is 
required. The programmer need not know the offset in 
advance as in constant offset indexed addressing. 

Examples of this addressing mode are: 

E7A6 STB A,Y MEM(A + Y) = B 

ECB8 LDD D,X D = MEM(D + X) 

2.2.7 Relative addressing 
Another mode of address computation in the M6809 is 
relative addressing where the address of an operand or 
of another instruction is computed by adding an offset 
to the program counter register. This offset may be a 
positive or negative, 8-bit or 16-bit value. We shall 
look first at how instruction operands are accessed 
using this addressing mode and then at the relative 
addressing of instructions themselves. 

Relative addressing of instruction operands makes 
use of the postbyte in the same way as does indexed 
addressing. If bits 0-3 of the postbyte are C or D 
while bit 7 is set this specifies that the addressing 
is PC relative. For example: 

AE8C08 LDX 8,PCR ; X = MEM(PCR + 8) 

DD8D0400 STD 1024,PCR ; MEM(PCR + 1024) - D 

A very important advantage of using PC relative 
addressing is that it simplifies the writing of 
position independent code. Position independent code 
is code which works in exactly the same way 
irrespective of where that code is placed in memory. 
Such code must make extensive use of relative and 
indexed addressing because extended addressing means 
that the instruction operands must always be at the 
address 'built in' to the code. 

With position dependent code, you must always load 
the program into exactly the same memory locations as 
were used previously. This is not necessarily 
convenient or even possible so it is good programming 
practice to write all programs in a position-
independent way. 

Relative addressing of the instructions in a program 
is accomplished by means of so-called 'branch 
instructions'. The effect of these branch instructions 
is to modify the program counter register. Thus the 
next instruction executed is not necessarily the 
instruction following the branch instruction but some 
other instruction whose address is computed by adding 
the specified offset to the value of PC. The relative 



36 

addressing of instructions is different from the 
relative addressing of operands inasmuch as the value 
stored in PC is modified whereas in operand addressing 
the value of PC is used but is unchanged by the address 
computation. 

The computation of relative instruction offsets is a 
tedious and error-prone task. Usually, it is left to 
the assembler to work out the appropriate value to be 
added to PC. You may mark instructions with a name (a 
label) and use this name as part of the branch 
instruction. The assembler knows the number of bytes 
occupied by each instruction so it can work out the 
appropriate offset to allow a transfer of control to 
the labelled instruction. 

This can be illustrated by a short assembly code 
sequence which is equivalent to the following BASIC 
statement: 

IF VL > MAX THEN MAX = VL 

Assume that VL and MAX are 16-bit quantities held at 
addresses A000 and A002 respectively. The assembly 
code equivalent to the above BASIC conditional is: 

FCA000 LDD VL ; D = MEM(VL) 
10B3A002 CMPD MAX ; Compare D with MEM(MAX) 
2F03 BLE NEXT ; If VL<=MAX goto NEXT 
FDA002 STD MAX ; MEM(MAX) = D 
NEXT .... 

The branch instruction in the above sequence, BLE, 
modifies the value of PC if and only if VL is less than 
or equal to MAX. Notice that the value in the PC 
modification field is 3, the number of bytes in the STD 
instruction. It is not the number of bytes in the BLE 
instruction plus the number of bytes in the STD 
instruction. The reason for this is the PC always 
points to the next instruction in the instruction 
sequence rather than the instruction which is being 
executed. 

There are many branch instructions available to the 
M6809 programmer. They are discussed in detail in 
section 3.5 of the following chapter. 

2.3 MEMORY-MAPPED INPUT/OUTPUT 

We have seen, in Chapter 1, that a computer 
organisation includes a number of units which are set 
up as peripheral control devices to allow information 
to be transferred to and from the processor and memory 
units. Obviously, the processor must have access to 
these controllers in order to initiate data transfers 
to and from the outside world. In this section we 
describe, in very general terms how this is done. 
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However, as it is such an important topic we devote a 
complete chapter to details of input and output later 
in the book. 

Recall, from Figure 1.2, that the M6809 processor, 
memory and peripheral controllers all have access to a 
common data highway or bus. On M6809-based systems 
such as the Dragon, this bus is 24 bits wide. This 
means 24 bits of information can be simultaneously 
transferred from device to device. Of these 24 bits, 
16 bits are reserved for the data address and 8 bits 
are used to transfer the data itself. 

In the same way as all memory locations have a 
unique address, so too must input/output (I/O) devices 
connected to this shared bus. On some systems, the bus 
has an extra line indicating that the address on the 
bus is a peripheral rather than a memory address but 
this is not the case on M6809 systems. Rather, the 
addresses of I/O devices have exactly the same form as 
memory addresses with specific addresses reserved for 
these I/O devices. These memory addresses may not be 
used for straightforward data storage as they are 
allocated to particular I/O devices. 

This is not a severe handicap as there are usually 
only a few I/O devices on any system. On the Dragon, 
there are 256 memory bytes reserved for use by the I/O 
system. These are at the top end of memory between 
FF00 and FFFF. If we access one of these addresses 
which is allocated to an I/O device, the effect of the 
access is to initiate a data transfer to or from that 
peripheral unit. The synchronous address multiplexor 
examines addresses on the bus and detects those which 
refer to I/O controllers. The data is then routed to 
these devices for input or output. 

This type of I/O organisation where peripherals are 
associated with specific memory addresses is called, 
for obvious reasons, memory-mapped I/O. It is a 
conceptually elegant way of carrying out input and 
output as there is no need for specific instructions to 
initiate peripherals and all instructions which 
reference memory may be used to access the system's I/O 
devices. Full details of the Dragon's I/O system are 
provided in Chapter 8 and in the appendices. 



Chapter 3 

The M6809 instruction set 

In Chapter 2 we described the general features of the 
M6809 architecture and introduced, without a great deal 
of explanation, some of its machine instructions. A 
thorough knowledge of the machine instruction set is 
vital for the machine code programmer so this chapter 
is completely dedicated to a description of the M6809 
instruction set. 

At this point, we must emphasise the distinction 
between machine instructions and assembly language 
mnemonics. Machine instructions are the actual binary 
op-codes executed by the processor as it runs a 
program. Assembly language instructions are the 
mnemonics and names used by the programmer to symbolise 
these machine instructions because It is much easier 
for us to think in symbols and names rather than 
numbers. 

There is not necessarily a one-to-one correspondence 
between machine instructions and assembly language 
instructions. For example, on the M6809 there are 
over 1400 distinct machine instructions when we take 
into account all the different combinations of op-code 
and postbyte that are permitted. Fortunately, however, 
there are only 59 distinct instruction mnemonics which 
must be remembered by the assembly language programmer 
along with the register names and the symbolism 
associated with the different M6809 addressing modes. 
Combinations of these allow all possible machine 
instructions to be represented. 

The reason for the enormous discrepancy between the 
numbers of assembly language and machine code 
instructions is that many assembly language 
instructions have variants for each of the machine 
registers and for each addressing mode allowed with 
that instruction. For example, the instruction 
specifying that a register is to be loaded with an 
immediate value has the form: 

LD<register> <value> 

This is all that need be remembered by the assembly 
language programmer. However, there are seven distinct 
machine language op-codes associated with this 
instruction, one for each register that may be directly 
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loaded. The assembly code mnemonics for these are LDA, 
LDB, LDD, LDX, LDY, LDU, and LDS. These have 
associated op-codes of 86, C6, CC, 8E, 108E, CE, and 
10CE. 

All of these load instruction mnemonics have a 
different op-code associated with each permitted 
addressing mode. For example, if immediate addressing 
is used with an LDA instruction the op-code is 86. If 
direct addressing is used, the op-code is 96, for 
indexed addressing the op-code is A6 and for extended 
addressing B6. Instructions which load the other 
registers also have distinct op-codes for each 
addressing mode so, in all, the LD instruction mnemonic 
has 28 distinct machine instructions which may be 
derived from it. If we consider postbytes to be part of 
the instruction, this gives many more machine language 
derivations from an assembly language load instruction. 

It is practically impossible to program directly in 
machine language because of the enormous number of op
codes that must be remembered by the programmer. 
Normally, an assembler is used to carry out the 
tedious task of translating mnemonics to op-codes, 
working out relative offsets and constructing 
postbytes. At worst, if an assembler is not available, 
the programmer should write his program in assembly 
code as if an assembler is at hand and then translate 
manually to machine code. Attempting to program 
directly in machine code inevitably leads to 
frustration, boredom and many errors. 

A complete table of assembly language mnemonics and 
their associated machine op-codes is provided in 
Appendix 1. It must be emphasised, however, that hand 
translation from assembly code to machine code is not 
recommended for anything apart from very short 
programs. 

The instructions available to the M6809 programmer 
can be considered under seven distinct headings. These 
are: 

(1) Data movement instructions 
Instructions which transfer information to and 
from registers and memory. 

(2) Arithmetic instructions 
Instructions used to implement arithmetic opera
tions such as add and subtract. 

(3) Logic instructions 
Instructions used to execute logic operations 
such as or and shift. 

(4) Test instructions 
Instructions which set flags in the condition 
code register depending on operand values. 
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(5) Branch instructions 
Instructions which affect the normal sequential 
flow of control in a program by modifying the 
value of PC. 

(6) Interrupt handling instructions 
Instructions used to handle so-called interrupts 
which usually arise from peripheral devices in 
the system. Interrupts are described in Chapter 
8. 

(7) Miscellaneous instructions 
Any other instructions which don't fit under the 
above headings. 

Many data movement, arithmetic, logic and test 
instructions have the effect of setting or unsetting 
particular bits in the condition code (CC) register. In 
particular, if the result of executing an instruction 
is zero, the zero (Z) flag in CC is always set. If the 
result is negative, the negative (N) flag in CC is 
always set. 

Arithmetic, logic and test instructions may also 
change the value of the carry (C) flag, the half-
carry (H) flag and the overflow (V) flag in the 
condition code register. Some of these are described 
later in this chapter under the appropriate headings. 
This description is not complete - full details of how 
instructions affect CC flags are provided in Appendix 
1. 

In the following description of the M6809 assembly 
code instructions, it is sometimes necessary to refer 
to particular CC flags. We use a dot notation, 
CC.<flag letter>, to make these references. Thus CC.N 
is the negative flag, CC.V is the overflow flag, etc. 
When we say a flag is set this means that its value is 
1, when unset the flag value is zero. 

In the remainder of this section and in subsequent 
chapters, we sometimes use BASIC statements to explain 
the meaning of assembly language instructions. We have 
done this informally until now but, from now on, we 
will use the following conventions. 

(1) Registers are indicated by BASIC variables with 
the same name as the register. Therefore, the 
names of the registers are A, B, D, X, Y, U, S, 
DP, CC, and PC. 

(2) The use of some other BASIC name refers to the 
location in memory which has that symbolic name. 
Therefore an assembly code instruction, LDD XVAL, 
might be commented with the BASIC statement, D = 
XVAL. 
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(3) When an absolute address in memory is referenced, 
we consider memory as a one-dimensional array 
called MEM and use the absolute address as an ar
ray index. Therefore, MEM(A034) refers to the 
memory location whose address, in hexadecimal, is 
A034. We also use the same notation when refer
ring to an indexed address. The register name 
plus or minus any offset is stated as an index 
into MEM. Thus, MEM(X +10) means the memory lo
cation whose address is computed by adding 10 to 
the contents of register X. In all cases, con
stant values used as indices to MEM are hexade
cimal constants. 

Operations using a 16-bit register result in 2 bytes 
being loaded or stored from memory whereas 8-bit 
register operations result in a single byte being 
loaded or stored. We do not explicitly distinguish 
between 1 and 2 byte memory operations in the comments 
accompanying the assembly code examples. 

The examples provided are intended to illustrate the 
assembly code instructions so no machine code 
equivalents are given in this chapter. 

3.1 DATA MOVEMENT INSTRUCTIONS 

The function of data movement instructions in the M6809 
is to transfer information, without change, from 
register to register, from register to memory, and from 
memory to register. In all cases, apart from the EXG, 
register exchange instruction, and some instances of 
the LEA, load effective address instruction, the data 
movement is implemented as a copy operation. That is, 
immediately after the data movement instruction has 
been executed, the source operand and the destination 
operand as specified in the instruction have the same 
value. The value of the source operand is not destroyed 
by the execution of the instruction. 

Data movement instructions have the following form: 

<op-code mnemonic><register specifier> <parameter> 

The instruction parameter may take different forms 
depending on the particular data movement instruction. 
These will be described along with the individual 
instructions. 

There are a total of 7 types of data movement 
instructions: 

(1) Load instructions 
Instructions which move data from memory to a 
register. 
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(2) Store instructions 
Instructions which move data from a register to 
memory. 

(3) Transfer instructions 
Instructions which move data from one register to 
another. 

(4) Exchange instructions 
Instructions which exchange the contents of one 
register with another. 

(5) Load effective address instructions 
Instructions which compute an operand address and 
load it into an index register. 

(6) Push instructions 
Instructions which push register values onto a 
stack. 

(7) Pull instructions 
Instructions which pull values stored on a stack 
into registers. 

3.1.1 Load instructions 
Load instructions in the M6809 are used to load data 
values into a register from memory or as immediate 
operands from the instruction itself. The general form 
of these instructions is: 

LD<register> <address or immediate operand> 

Registers A, B, D, S, U, X, and Y may be used in load 
instructions. If the instruction specifies a 16-bit 
register (D, U, S, X, T) , the effect of the load 
instruction is to move the addressed memory byte into 
the hi-byte of the register and to load the following 
memory byte (address + 1) into the lo-byte. That is, 2 
memory bytes or a 16-bit immediate operand is moved 
into the register. If an 8-bit register is specified, 
the addressed byte or 8-bit immediate operand is moved 
into the register. 

Four classes of addressing mode are allowed with 
load instructions. These are immediate addressing, 
direct addressing, indexed addressing and extended 
addressing. Depending on the addressing mode used and 
on the particular instruction op-code, load 
instructions are 2, 3, 4, or 5 bytes in length. 

Some examples of load instructions, in assembly 
code, are: 

LDA #10 ; A = 10 
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LDD MAXVAL ; D = MAXVAL 

LDS 10,X ; S = MEM(X + 10) 

LDB $50 ; B = MEM(DPR + 50) 

3.1.2 Store instructions 
Store instructions are the converse of load 
instructions. They are used to transfer information 
from the machine registers to memory. The general form 
of store instructions is: 

ST<register> <address> 

As with load instructions, the allowed registers are A, 
B, D, X, Y, U and S. The use of a 16-bit register name 
results in 2 bytes being moved from the register to 
memory, an 8-bit name results in a single byte being 
moved. 

Allowed addressing modes are direct addressing, 
indexed addressing, and extended addressing. For 
obvious reasons, immediate addressing is not meaningful 
in store instructions. 

Some assembly code examples of store instructions 
are: 

STA I ; MEM(I) = A 

STX ,Y ; MEM(Y) = X 

STD $30 ; MEM(DP + 30) = D 

Like load instructions, store instructions can have 
lengths between 2 and 5 bytes depending on the op-code 
and addressing mode used. 

3.1.3 Transfer instructions 
Transfer instructions move the contents of one register 
to another. Any registers may be specified as long as 
they are of like size, that is, both operands must be 
either 16-bit registers or 8-bit registers. The 
mnemonic for a transfer instruction is TFR and the only 
permitted addressing mode is register addressing. 
Transfer instructions are always 2 bytes in length. 

Examples of transfer instructions are: 

TFR A,DPR ; DPR = A 

TFR X,Y ; Y = X 

3.1.4 Exchange instructions 
The exchange instruction, whose mnemonic is EXG, is 
similar to the transfer instruction described above. 
However, rather than the value of the source register 
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being copied to the destination register, the values of 
the source and destination register are swapped. 

Again, register addressing is the only addressing 
mode which may be used with exchange instructions. For 
example: 

EXG A,DPR ; Temp = A: A = DPR: DPR = Temp 

EXG S,U ; Temp = U: U = S: S = Temp 

3.1.5 Load effective address instructions 
The purpose of the load effective address instructions 
is to set up one of the index registers (S, U, X, Y) to 
hold the absolute address of an operand in memory. 
Because address computations in the M6809 can be fairly 
complex, and hence time consuming, it is sometimes 
useful to carry out this computation once only and then 
use this computed value in subsequent instructions. 

Load effective address instructions have the form: 

LEA<index register> <address> 

The specified address must be an indexed address. LEA 
instructions are either 2, 3, or 4 bytes long depending 
on the particular type of indexed addressing which is 
used. Examples of these instructions are: 

LEAS 10,X ; S = X + 10 

LEAX D,X ; X = D + X 

It is clear from the BASIC representations of the 
instruction functions that, in many cases, the LEA 
operation involves an addition to an index register. 
This means that a subsidiary use of this operation is 
to allow addition and subtraction operations on the 
index registers without requiring that their contents 
be transferred to the accumulator register. For 
example: 

LEAS 10,S ; S = S + 10 

LEAX -20,X ; X = X - 20 

The above operations can, of course, be accomplished 
using the accumulator registers: 

TFR S,D ; D = S 
ADDD 10 ; D = D + 10 
TFR D,S ; S = D 

However, the single LEA instruction executes more 
quickly and takes up fewer memory bytes than these 
instruction sequences. 
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3.1.6 Push instructions 
The function of push instructions is to copy the 
contents of one or more registers onto a stack in 
memory whose top is addressed by the U or the S 
register. Push instructions have the form: 

PSH<U or S> <register list> 

The PSH can move the contents of up to 8 registers (CC, 
A, B, DPR, X, Y, S or U, PC) onto the memory stack. 

Push instructions have a postbyte indicating which 
registers have actually to be pushed onto the stack. 
Individual registers are indicated by bits in the 
postbyte as follows: 

Bit 0 CC 
Bit 1 A 
Bit 2 B 
Bit 3 DPR 
Bit 4 X 
Bit 5 Y 
Bit 6 S or U 
Bit 7 PC 

Push instructions are always 2 bytes in length. Some 
examples are: 

PSHS A,B ; Push A and B onto the S-stack 

PSHU A,B,Y,X,PC,CC,DPR ; Push all registers apart 
* from U onto the user stack 

The order in which the user specifies the registers in 
the push instruction is not necessarily the order in 
which they are pushed onto the stack. Registers are 
always pushed onto the stack in the following order: 

PC, U/S, Y, X, DPR, B, A, CC 

If all registers are pushed, CC is on top of the stack, 
A is the second top location, B is the third top 
location and so on. If only a subset of the registers 
are pushed onto the stack, the order above is 
maintained although, obviously, only the specified 
registers are actually stacked. 

For example, after executing the instruction PSHU 
A,X,B, the top of the stack is a copy of register A, 
the second top is a copy of register B and the third 
top is a copy of register X although this was not the 
order specified in the instruction. In general, this 
automatic ordering of stacked registers saves the user 
having to care about stacking order. If, however, a 
particular stacking order is required this must be 
achieved by using separate push instructions for each 
register. 
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3.1.7 Pull instructions 
Pull instructions are the converse of push 
instructions. They move information from stacks in 
memory to specified registers. The form of pull 
instructions is: 

PUL<S or U> <register list> 

Pull instructions, like push instructions, use a 
postbyte to specify which registers are to be pulled 
from the stack. Some examples of pull instructions, 
which are always 2 bytes long, are: 

PULS A,B ; Copy the top 2 locations of the 
* hardware(S) stack to A and B. 
* Adjust the stack pointer accordingly 

PULU A,B,DPR,PC,X,Y,S,CC ; Copy values of all 
* registers from the 
* user stack 

The order in which register values are pulled from the 
stack is again independent of the order in which they 
are specified in the instruction. Therefore, CC is the 
first register pulled, A the next register, B the third 
register and so on. 

3.2 ARITHMETIC INSTRUCTIONS 

The arithmetic instructions available on the M6809 
operate on the accumulator registers and, in some 
cases, directly on memory locations. In all cases when 
an instruction operates on a register one of its 
operands is the value of that register and the result 
of the operation is placed in that register. Therefore, 
after an arithmetic operation on a register the 
previous contents of that register are destroyed. 

There are twelve arithmetic operations available to 
the M6809 programmer which we shall consider in seven 
groups: 

(1) Add instructions 

(2) Subtract instructions 

(3) Clear instructions 

(4) The multiply instruction 

(5) Negate instructions 

(6) The sign extend instruction 

(7) The decimal adjust instruction 
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As a side effect of executing most of these arithmetic 
instructions, flags in the condition code register are 
set. Particular settings are described under the 
appropriate heading below. 

3.2.1 Add instructions 
There are four kinds of add instruction provided on the 
M6809. These have the forms: 

ABX X = X + B 

ADC<A or B> Add memory to A or B with CC.C 

ADD<A, B, or D> Add memory location to accumulator 

INC<A or B> Add 1 to register or memory location 

The ABX instruction is the simplest add instruction. 
This instruction takes the contents of B to be an 
unsigned 8-bit value (0-255) and adds it to X leaving 
the result in X. The condition code flags are not 
affected. This instruction is similar in effect to the 
instruction LEAX B,X but there are important 
distinctions. Firstly, the value of B in an LEA 
instruction is taken as an 8-bit two's complement 
number so may take a value between -128 and 127. The 
value of B in an ABX instruction can range between 0 
and 255. Secondly, ABX is a 1-byte inherent 
address (this means that the instruction operands are 
always the same) so it is shorter than the 
corresponding LEA instruction. The provision of this 
instruction allows certain kinds of indexed addressing 
to be implemented in a very efficient way. 

The add with carry or ADC instruction operates on 
either accumulator A (ADCA) or accumulator B (ADCB). 
This instruction adds the contents of the register plus 
the carry bit CC.C to the specified memory location 
leaving the result in the register. The memory 
location may be addressed using direct, indexed or 
extended addressing or may be an immediate value. 

ADC instructions are used when multiple-byte 
arithmetic is implemented where it is necessary to take 
a carry from a previous arithmetic operation into 
account. The ADC instruction affects the C, N, V, Z, 
and H bits of CC. 

Examples of ADC instructions are: 

ADCA #35 ; A = A + CC.C + 35 

ADCB ,X ; B = B + CC.C + MEM(X) 

Add instructions operate on registers A, B, and D and 
their function is to add an immediate operand or a 
memory location to one of these registers. Like ADC 
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instructions, the C, N, V, Z, and H bits in the 
condition code register are affected by an ADD 
instruction. 

Examples of add instructions are: 

ADDA SVAL ; A = A + MEM(SVAL) 

ADDB #5 ; B = B + 5 

ADDD ,--Y ; Y = Y - 2 : D = D + MEM(Y) 

The INC instructions are special purpose add 
instructions which are used to add one to the single 
byte accumulators A and B or to a specified memory 
location. Although this operation can be implemented 
in other ways, the 'add 1 to something' operation is so 
common that it is worth providing it as a separate 
machine instruction. 

The instructions INCA and INCB are 1-byte 
instructions with no address field whereas the memory 
increment instruction INC may use direct, indexed or 
extended addressing. For example: 

INCA ; A = A + 1 

INCB ; B = B + 1 

INC FRED ; MEM(FRED) = MEM(FRED) + 1 

The INC operation affects the N, Z and V bits of the 
condition code register. 

3.2.2 Subtract instructions 
There are three types of subtract instruction available 
to the M6809 programmer which are the converse of ADC, 
ADD and INC. These are the instructions SBC (subtract 
with carry), SUB (subtract), and DEC (decrement by 1). 

The function of these instructions is to subtract an 
immediate operand or the value of a memory location 
from a register, leaving the result in that register. 
The operands for this operation must be in two's 
complement form. 

All the subtract operations set the overflow flag 
CC.V if the result is too small to be held in the 
specified register or memory location. They also 
affect the N and Z flags in CC and the instructions SUB 
and SUBC set the carry flag in the event of a borrow 
occurring in the last place of a subtraction. 

The SBC instructions operate on registers A and B 
and subtract CC.C as well as an immediate value or a 
memory location value from the specified register. For 
example: 

SBCA J ; A = A - MEM(J) - CC.C 
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SBCB 4,Y ; B = B - MEM(4 + Y) - CC.C 

The subtract instruction SUB operates on registers A, 
B, or D. For example: 

SUBA #4 ; A = A - 4 

SUBB $30 ; B = B - MEM( 30) 

SUBD POINTER ; D = D - MEM(POINTER) 

The decrement instruction, DEC, subtracts 1 from an 8-
bit value held in either A, B or a memory location. 
For example: 

DECA ; A = A - 1 

DECB ; B = B - 1 

DEC CVAL ; MEM(CVAL) = MEM(CVAL) - 1 

3.2.3 Clear instructions 
The function of clear instructions (CLR) is to set 
register A or B or a 1-byte memory location to zero, 
that is, to clear it of its previous value. The CLRA 
and the CLRB instructions are 1-byte instructions with 
no address field whereas the CLR instruction may use 
direct, indexed or extended addressing. 

Examples of clear instructions are: 

CLRA ; A = 0 

CLRB ; B = 0 

CLR A,X ; MEM(A + X) = 0 

3.2.4 The multiply instruction 
On most 8-bit microprocessors multiply instructions do 
not exist. Multiplication is implemented by a software 
routine which performs a sequence of repeated additions 
to multiply two numbers. The reason for this is that 
multiplication is a relatively complex operation whose 
result is always twice as long as its operands. To 
include this in an 8-bit architecture increases the 
complexity of that architecture as provision must be 
made for a 16-bit result. 

The implementation of multiplication by repeated 
addition obviously makes it a relatively slow process 
compared to addition and subtraction. Furthermore, it 
is a fairly common operation when accessing elements of 
two-dimensional arrays or matrices. As the M6809 is a 
hybrid microprocessor whose architecture includes 8-bit 
and 16-bit features, the designers of that chip have 
included a limited form of multiply instruction. The 
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multiply instruction, which has the op-code MUL, is a 
1-byte instruction which takes the contents of 
accumulators A and B as its operands and leaves the 
result of the multiplication in accumulator D. As D is 
a catenation of A and B, the original operands are 
destroyed. 

The MUL instruction takes the values in A and B to 
be unsigned 8-bit values rather than two's complement 
numbers. The reason for this is that the use of 
unsigned multiplication makes it easier for the 
programmer to write multi-byte multiplication routines 
for multiplication and that the array element 
computation referred to above generally uses only 
positive array indexes. 

An example of a multiply instruction is: 

MUL ; D = A * B 

3.2.5 Negate instructions 
Negate instructions operate on 8-bit two's complement 
values held in register A, register B or in memory. 
They are written as NEGA, NEGB, or NEG <address>. NEGA 
and NEGB negate the contents of registers A and B 
respectively whereas NEG may use direct, extended or 
indexed addressing. 

Examples of negate instructions are: 

NEGA ; A = -A 

NEGB ; B = -B 

NEG SVAL ; MEM(SVAL) = -MEM(SVAL) 

3.2.6 The sign extend instruction 
The sign extend instruction, SEX, is a 1-byte 
instruction whose function is to convert an 8-bit two's 
complement number held in accumulator B into a 16-bit 
two's complement number in accumulator D. In essence, 
it takes the sign bit of B and extends it so that it 
becomes the sign bit of D. The value of the hi-byte 
of D is set up to be the same as the sign bit of B. 
This means that if the number is positive, sign bit = 
0, accumulator A is cleared. If the number in B is 
negative, accumulator A is filled with 1s. 

3.2.7 The decimal adjust instruction 
The decimal adjust instruction is used when decimal 
arithmetic, described in section 1.1.4, is used on the 
M6809. The use of decimal arithmetic entails holding 
two 4-bit digits in an 8-bit register rather than an 
8-bit binary number. 

When an add operation is performed on such a value, 
a binary addition takes place so that the numbers held 
in each of the 4-bit register fields need not 
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necessarily be correct. For example, say the numbers 
27 and 53 are added. When represented in 4-bit decimal 
notation these have binary values 00100111 and 01010011 
respectively. When a binary addition is performed, the 
result is 01111010 which cannot be represented as 
decimal as the first digit is 7 and the second is 
hexadecimal A. Clearly, the result of the addition 
should be 80 which in binary form is 10000000. 

The decimal adjust instruction examines register P. 
and also the carry bits CC.H and CC.C. It checks to 
see if an incorrect decimal value is stored in that 
register. If so, it adjusts the decimal digits so that 
the correct value is restored. In the above example, 
it would check bits 0-3 of the number, see that they 
were an impossible decimal number and would convert 
this to the correct number by adding 6 to it. This 
results in a carry into bits 4-7 thus increasing the 
decimal value stored there to 8. The correct number is 
then represented in the register. 

The need for the half-carry bit CC.H now becomes 
clear. If bits 0-3 of the decimal numbers are such 
that an addition generates a value which cannot be 
stored in 4-bits, the half-carry bit is set. The 
decimal adjust instruction recognises this and adjusts 
the decimal digits accordingly. 

3.3 LOGIC INSTRUCTIONS 

Like the M6809's arithmetic instructions, the logic 
instructions are almost exclusively concerned with 
operations on the A and B registers and with individual 
memory bytes. The two exceptions to this art 
instructions which operate on the condition code 
register and which provide a generalised mechanism for 
setting and unsetting individual flag bits in that 
register. 

Logic operations manipulate the individual bits in 
their operands and look upon these operands as simple 
groups of bits (bitstrings) rather than as numeric 
values. For the reader who is unfamiliar with logic 
operations we describe the actual operation as well a: 
the instruction format along with each class of logic 
instruction. 

Logic instructions may be looked upon as falling 
into one of five classes: 

(1) And instructions 

(2) Or instructions 

(3) Complement (not) instructions 

(4) Shift instructions 
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(5) Rotate instructions 

Individual instructions are described under the 
appropriate heading below. 

3.3.1 And instructions 
The logical and operation takes 2 bits as its operands 
and returns a value of 1 if, and only if, both of its 
operands are 1. All possible operands and results for 
this operation are therefore: 

0 AND 0 -> 0 
1 AND 0 -> 0 
0 AND 1 -> 0 
1 AND 1 -> 1 

The M6809's and instructions operate on 8-bit data so 
therefore repeat the above operation for all 8-bits in 
the operand register. The registers A, B, and CC may 
take part in and operations. 

The instructions ANDA and ANDB perform a logical and 
on the contents of the named register and a byte in 
memory or an immediate operand. Direct, indexed or 
extended addressing may be used to reference a memory 
byte. 

The ANDCC operation, on the other hand, may only use 
immediate addressing. Its function is to and the CC 
register with the immediate byte provided leaving the 
result in CC. 

Examples of and instructions are: 

ANDA #$F0 ; Ands A with (hex) F0. 
* Note that the effect of this is 
* to clear bits 0-3 in A 
* and to leave bits 4-7 unchanged 

ANDB MASK ; Ands B with MEM(MASK) 

ANDCC #$00 ; Ands CC with (hex) 00 
* This clears CC 

The reader will have gathered from these examples that 
one of the most important functions of the and 
operations is to clear specific bits in a register 
whilst leaving the other bits unchanged. Anding a 0 
with a 1 bit always clears it whereas anding a 1 with 
either a 1 or a 0 always leaves that value unchanged. 

3.3.2 Or instructions 
There are two types of or instructions provided on the 
M6809. These are so-called inclusive or and exclusive 
or which have mnemonics OR and EOR respectively. 

These operations can be defined by their effect on 
bit values: 
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0 OR 0 -> 0 0 EOR 0 -> 0 
1 OR 0 -> 1 1 EOR 0 -> 1 
0 OR 1 -> 1 0 EOR 1 -> 1 
1 OR 1 -> 1 1 EOR 1 -> 0 

Like the and instructions, or instructions are provided 
which operate on registers A, B, and CC. However, 
there is no EORCC instruction - only EORA and EORB are 
available to the programmer. 

Examples of OR and EOR instructions are: 

ORA #$0F ; Or (hex) OF with register A 
* Note the effect of this is to 
* set bits 0-3 of A whilst leaving 
* bits 4-7 unchanged 

EORB ,X ; Exclusive or B with MEM(X) 

ORCC #$03 ; Or (hex) 03 with CC thus setting 
* bits 0 and 1 in that register 

Just as and instructions can be used to clear specific 
bits in a register, or instructions may be used to set 
specific bits. Oring with a 1 bit always sets the 
corresponding register bit whereas oring with a 0 
always leaves that bit unchanged. 

3.3.3 Complement instructions 
Complement instructions simply switch the bits in a 
register or memory byte. That is, all 1 bits are set to 
0 and all 0 bits are set to 1. For example, if B holds 
the bitstring 10010011, executing a COMB instruction 
results in the bitstring 01101100 being stored in B. 

Single byte instructions are available to complement 
registers A and B as is a memory complement instruction 
which may use direct, indexed or extended addressing. 
An alternative name which is sometimes used for the 
complement operation is the 'not' operation. 

Examples of complement instructions are: 

COMA ; Complement register A 

COM B,X ; Complement MEM(B + X) 

The complement operation is not the same as the NEG 
arithmetic operation. The NEG operation forms the two's 
complement of a number whereas the COM operation forms 
the so-called one's complement value. 

3.3.4 Shift instructions 
The purpose of shift instructions is to move all the 
bits in a register along one place to the left or to 
the right with the leftmost or rightmost bit 'falling 
off the end' and being discarded. For example, if a 
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register holds the binary value 10110001 and is shifted 
left, the resultant value is 01100010. If a right 
shift is executed, the resultant value is 01011000. 
Notice that 0s are filled in on the left when a right 
shift is executed and on the right when a left shift 
takes place. The M6809's shift instructions fall into 
two classes: 

(1) A r i t h m e t i c s h i f t i n s t r u c t i o n s 
Arithmetic shift instructions consider bit 7 of 
the register being shifted to be the sign bit. 
This bit does not take part in arithmetic shift 
right instructions and its value is preserved. 
The bit is shifted during arithmetic shift 
left (ASL) instructions. For example, if a re
gister value is 10010011 and an ASL instruction 
using that register is executed, the resultant 
value is 00100110. However, with ASR bits 0-6 are 
shifted with the sign bit propagated into the 
lower bits. The resulting value is 11001001. 

(2) Logical shift instructions 
Logical shift instructions do not recognise the 
sign bit and their operands are shifted to the 
left or to the right as described in the intro
duction to this section. Logical shifts have 
mnemonics LSL (logical shift left) and 
LSR (logical shift right). Notice that the LSL 
and the ASL instructions are equivalent. 

The arithmetic and logical shift instructions operate 
on the A and B registers and on memory bytes accessed 
using direct, indexed or extended addressing. Shift 
instructions always affect the carry bit CC.C whose 
value becomes that of the bit which is shifted out of 
the register. 

Examples of shift instructions are: 

ASLA ; Shift A left by 1 bit with 
* CC.C set to the value of bit 7 
* of A before the shift 

ASRB ; Shift B right by 1 bit with 
* CC.C set to the value of bit 0 
* of B before the shift 

LSL SVAL ; MEM(SVAL) is shifted left by 
* 1 bit with CC.C set accordingly 

LSR -16,U ; MEM(U-16) is shifted right by 1 bit 
* with CC.C set accordingly 

3.3.5 Rotate instructions 
Rotate instructions are similar to logical shift 
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instructions. The only difference is that the value of 
the carry bit CC.C rather than a 0 is moved to the 
leftmost or rightmost place of the register, depending 
on whether a rotate right or rotate left instruction is 
executed. 

The mnemonics for rotate right and rotate left 
instructions are ROR and ROL respectively and they 
operate on the A or B registers or on a memory byte. As 
usual, direct, indexed or extended addressing may be 
used to refer to this byte in memory. 

Examples of rotate instructions are: 

RORA ; A is shifted right by 1 bit with 
* bit 7 becoming CC.C and CC.C taking 
* the value of bit 0 before the shift 

ROL SVAL ; MEM(SVAL) is shifted left by 1 bit 
* with bit 0 becoming CC.C and CC.C set 
* to the original value of bit 7. 

3.4 TEST INSTRUCTIONS 

The M6809's test instructions allow the programmer to 
determine if certain conditions are true or false. The 
execution of a test instruction always causes one or 
more bits in the CC register to be set or unset 
depending on the result of the test. Thus CC bit 
settings are the means by which test results are 
'remembered' for use by following instructions. 

There are three kinds of test instructions: 

(1) Bit test instructions 

(2) Byte test instructions 

(3) Compare instructions 

Bit test instructions only operate on registers A and B 
and byte test instructions on A, B and memory bytes. 
Compare instructions, however, are available for all 
index and accumulator registers. 

3.4.1 Bit test instructions 
The bit test instructions BITA and BITB are used to 
test if particular bits (0-7) in register A or B are 1 
or 0. The operand of the bit test instruction is a 
single byte called a mask whose value determines which 
bits in the specified register are to be tested. 

In order to test bit n in the register, the mask is 
set up so that only its nth bit is 1 with all other 
mask bits set to 0. Therefore, to test bit 4, the mask 
value should be 10 (hex) and to test bit 6, it should 
be 40 (hex). 

If the bits being tested are set, the effect of the 
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bit test instruction is to unset the zero flag (Z-flag) 
in the CC register. Recall that this flag is always 
set when the result of an operation is zero and unset 
when the result is non-zero. Bit test is implemented 
as an and operation but without the anded value being 
stored in the specified register. Therefore, if a 
tested bit is 1, CC.Z is 0 and if a tested bit is 0, 
CC.Z is 1. 

Examples of bit test instructions are: 

BITA #$80 ; Tests bit 7 of A 
* CC.Z = not A.7 

BITB MASK ; Tests the bits of register B 
* according to MEM(MASK) 

3.4.2 Byte test instructions 
Byte test instructions are used to test if a byte in 
memory, register A or register B is positive, negative 
or zero. The mnemonic for these instructions is TST 
with, as usual, A or B appended to it if registers are 
tested. If a memory byte is being tested it may be 
addressed using direct, indexed or extended addressing. 

Byte test instructions are implemented by 
subtracting 0 from the contents of the byte being 
tested. The result of this subtraction causes the 
negative flag and the zero flag in the CC register to 
be set or unset. We have already discussed how the Z-
flag is set if the result of the previous operation is 
zero so, if the tested byte is zero, CC.Z is set and 
CC.N is unset. 

If the byte tested is positive, both CC.Z and CC.N 
are unset, whereas if it is negative CC.Z is 0 and CC.N 
is 1. In all cases the byte test instruction causes 
the overflow bit CC.V to be unset. 

Examples of byte test instructions are: 

TSTA ; Test register A 

TST 16,X ; Test MEM(16 + X) 

3.4.3 Compare instructions 
Compare instructions allow registers A, B, D, X, Y, S, 
and U to be compared with one or two bytes in memory or 
with an immediate operand. Allowed addressing modes 
are direct, indexed and extended addressing. The 
mnemonic for compare instructions is CMP followed by 
the name of the particular register used in the 
comparison. 

Like byte test instructions, compare instructions 
are implemented as a subtraction with no permanent 
effect on the instruction operands. The addressed 8-
bit or 16-bit quantity is subtracted from the register 
contents and the carry, overflow, zero and negative 
bits in the condition code are set accordingly. 



57 

If the value in memory is less than the register 
value, the result of the comparison is positive so CC.N 
is unset. If it is greater than the negative value, 
the result is negative so CC.N is set, and if the 
values are equal, the result of the subtraction is zero 
so CC.Z is set. 

Examples of compare instructions are: 

CMPX [MAXADD] ; Compare X with MEM(MEM(MAXADD)) 

CMPB #10 ; Compare B with (decimal) 10 

CMPD 16,U ; Compare D with MEM(16 + U) 

Compare instructions are mostly used immediately before 
branch instructions to implement loops, conditions, 
etc. The programmer need not explicitly be aware of 
which bits in CC are set or unset by the compare 
instruction when they are used in this way. 

3.5 BRANCH INSTRUCTIONS 

The M6809's branch instructions are provided to give 
the programmer control over the flow of execution of 
his program. They allow single bits or combinations of 
bits in the condition code register to be tested and, 
on the basis of these tests, add or subtract some value 
from the PC register. This PC modification results in 
a break in the normal sequential execution of machine 
instructions and transfers control to some other 
instruction. 

Branch instructions may be considered under four 
headings: 

(1) Unconditional branch instructions 
These always cause a transfer of control ir
respective of the bit settings in the CC regis
ter. 

(2) Simple conditional branch instructions 
These test a single bit in the CC register with a 
control transfer dependent on its value. 

(3) Signed conditional branch instructions 
These are used if, in the previous test, signed 
register contents were compared with signed con
tents of memory. They test one or more bits in 
CC with control transfers dependent on their 
values. 

(4) Unsigned conditional branch instructions 
These are similar to signed conditional branch 
instructions but are used when unsigned values 
were compared in a previous operation. 
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All branch instructions use PC relative addressing with 
the value to be added to PC held as an 8-bit or 16-bit 
instruction operand. Because the operand may be 1 or 
two bytes, there are 2 forms of every branch 
instruction, a short form and a long form. Short 
branch instructions have the form: 

B<condition> <1 byte 2's complement displacement> 

Long branch instructions have the form: 

LB<condition> <two byte 2's complement displacement> 

In the description and examples below, it is convenient 
for us to show only the short form of the branch 
instructions. However, the reader should bear in mind 
that long branch forms are also allowed. The actual 
machine code value for the long branch form of a branch 
instruction is usually made up by prefixing the 
corresponding short branch op-code with 
10 (hexadecimal). Long branch instructions are used 
when the displacement in the branch instruction is less 
than -128 or greater than 127. 

3.5.1 Unconditional branch instructions 
There are three distinct unconditional branch 
instructions available to the M6809 programmer. These 
are: 

BRA Branch always 
BRN Branch never 
BSR Branch to subroutine 

The BRA instruction is equivalent to a BASIC GOTO 
statement and the BSR instruction to a BASIC GOSUB 
statement. These instructions always add their 
displacement to PC irrespective of the settings of CC 
flags. In addition, the BSR instruction, before 
modifying PC, stacks that register on the hardware 
stack referenced by the S register. This means that, 
on return from the subroutine, execution can be resumed 
at the instruction which follows the BSR instruction. 

The BRN instruction is a so-called no-op 
instruction. In short it does nothing at all except 
take up 2 or 4 bytes of space. When this instruction 
is executed, control immediately moves on to the 
following instruction. This may, therefore, appear to 
be a useless instruction. However, it has its uses 
when the programmer wishes to cheat a little and hide a 
1 or 2 byte instruction in the operand field of the BRN 
instruction. After the first execution of BRN when 
this instruction is ignored, it is possible to branch 
back to the hidden instruction and execute it. This, 
however, is poor programming practice and is not a 
recommended technique. 
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3.5.2 Simple conditional branch instructions 
Simple conditional branch instructions examine a single 
bit in the M6809's condition code register. 
Instructions exist which branch on the setting of the 
carry flag, the overflow flag, the negative flag, and 
the zero flag. There are two instructions which test 
each flag. One of these instructions branches if the 
flag is set, the other branches if the flag is unset. 

The table below lists the simple conditional branch 
instructions and shows their association with condition 
code flags. 

As with all other branch instructions, these may take 
an 8-bit or 16-bit signed two's complement offset thus 
allowing forward or backward branching. If a 16-bit 
offset is used, the mnemonics above must be prefixed 
with an L to indicate long branching. 

3.5.3 Signed conditional branch instructions 
Signed conditional branch instructions are used when a 
preceding operation has compared the values of signed, 
numeric operands. These branch instructions examine 
combinations of condition code flags to determine if 
the specified condition is true or false and if 
branching should occur. 

The table below shows the four distinct signed 
conditional branch instructions available to the M6809 
programmer. In addition to these, the simple 
conditional branch instructions BEQ and BNE may also be 
used as signed conditional branches, where the branch 
takes place if the operands in the preceding comparison 
were equal or not equal. 

Flag 
C 

V 

Z 

N 

Mnemonic 
ECS 
BCC 

BVS 
BVC 

BNE 

BEQ 

BMI 
BPL 

Function 
Branch if carry bit is set 
Branch if carry bit is unset (clear) 

Branch if overflow bit is set 
Branch if overflow bit is clear 

Branch if zero bit is unset 
that is, when comparison operands 
are not equal 
Branch is zero bit is set 
that is, when comparison operands 
are equal 

Branch is negative bit is set 
Branch if negative bit is unset 

Flag combination 
NOT(Z OR (N XOR V)) 

NOT(N XOR V) 

Mnemonic 
BGT 

BGE 

Function 
Branch if greater than 

Branch if greater than 
or equal 



Notice that the pairs of conditions above are 
complementary with the greater than conditions the 
inverse of the less than conditions. BLE is the 
complement of BGT and BGE is the complement of BLT. We 
therefore only explain the flag combinations for a 
single pair of instructions BLE and BLT. 

The BLE instruction branches if, in the preceding 
comparison, the register operand was less than or equal 
to the memory operand. If register A was tested 
against MEM(VAL) say, we might write this as A <= VAL. 
If the operands are equal, the Z-flag in CC is set. 
This flag is examined by BLE and branching occurs if it 
is set. 

If A and MEM(VAL) have the same sign, the 
subtraction operation entailed in the comparison can 
never result in overflow so CC.V is always cleared. If 
A is indeed less than MEM(VAL), the subtraction will 
result in a negative value so CC.N will be set. 
Therefore, if CC.N is set and CC.V unset, this 
indicates that A is less than MEM(VAL) and branching 
will occur. If CC.V is unset and CC.N is unset, A is 
not less than MEM(VAL). 

In the case where A and MEM(VAL) have different 
signs, the comparison may result in an overflow 
occurring. Thus the sign bit will have an incorrect 
value. If CC.V is set, indicating overflow, and CC.N is 
unset, indicating a non-negative value, this actually 
means that the result is negative. On the other hand, 
if both CC.N and CC.V are set, the result is positive. 

Because of the meanings of these bit combinations, 
the exclusive or operation performed on CC.N and CC.V 
always gives the correct sign bit for the number. 
Therefore, if this operation returns 1, the result of 
the comparison is negative and branching should take 
place. 

The BLT instruction can be considered as a less 
general form of the BLE instruction which only branches 
when the register operand is less than the memory 
operand. The above argument holds for this instruction 
also. The BGT and the BGE instructions are simply the 
complements of these so a not operation performed on 
the corresponding 'less than' condition bits allows 
these instructions to determine if branching should 
take place. 

3.5.4 Unsigned conditional branch instructions 
Unsigned conditional branch instructions are used when 
the preceding operation compares the values of unsigned 
operands. Again, these instructions test condition 

Z OR (N XOR V) 

(N XOR V) 

BLE 

BLT 

Branch if less than 

Branch if less than 
or equal 
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code register flag combinations to determine if 
branching should take place. 

The table below shows the four unsigned conditional 
branch instructions and the flags tested in the CC 
register. Again, the BEQ and BNE instructions may be 
used under this category. 

Again the instruction pairs BLO/BHS and BLS/BHI are 
complementary so we shall only discuss the operations 
BLO and BLS. As these operations assume that the 
previous comparison tested unsigned operands, the 
negative flag CC.N is not tested by these instructions. 
As always, if the result of the comparison is zero, 
CC.Z is set so the BLS instruction branches if this 
flag is 1. 

As the comparison operands are unsigned, the 
subtraction entailed in the comparison is essentially a 
subtraction of positive values. If the second operand 
is greater than the first, the subtraction will result 
in a borrow. Thus, the carry bit in CC will be set. 
If the second operand (the memory operand) is smaller 
than the first, no borrow will result so the carry bit 
will be unset. Therefore, the BLO and BLS instructions 
examine the carry bit and branch if it is set. 

So far, we have not provided any explicit examples 
of branch instructions as, unlike other instructions 
considered so far, examples of these instructions are 
meaningless in isolation. To illustrate some of the 
branch instructions in use we show below the assembly 
code equivalent to a number of BASIC statements 
involving loops and conditional operations. 

100 IF V1 > V2 THEN GOTO 500 
200 IF V1 = V2 THEN GOTO 700 
300 V1 = V1 + 2 
400 GOTO 200 
500 M = V1 
600 GOTO 800 
650 REM ASSUME A SUBROUTINE EXISTS AT 2000 
700 GOSUB 2000 
800 ... 

Assuming V1, V2 and M are represented as 16-bit signed 

Flag combination 
C 

C OR Z 

NOT(C) 

NOT(C OR Z) 

Mnemonic 
BLO 

BLS 

BHS 

BHI 

Function 
Branch if lower 

Branch if lower or 
the same 

Branch if higher or 
the same 

Branch if higher 
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quantities and that the subroutine at 2000 has the 
symbolic name V1EQ, an assembly code sequence which 
would carry out the same function is: 

LDD V1 ; D = V1 
CMPLAB CMPD V2 ; Compare this with V2 

BGT GTLAB ; If greater than branch 
BEQ EQLAB ; If equal branch. 

* Notice there is no need for 
* another load or comparison 

ADDD #2 ; Add 2 to D 
STD V1 ; and put result back into V1 
BRA CMPLAB ; Branch back to comparison 

GTLAB STD M ; V1 > V2 so M = V1 
BRA NXTLAB ; continue 

EQLAB BSR V1EQ ; Values equal, call routine 
NXTLAB 

Notice how the assembly code version of the sequence is 
only slightly longer than the BASIC. Whilst, in 
general, BASIC statements expand into multiple assembly 
code instructions it is often possible to eliminate 
much of the redundancy inherent in high level language 
programming and hence produce compact code. 

3.6 INTERRUPT HANDLING INSTRUCTIONS 

An interrupt is a means by which a program, executing 
on a processor, can be temporarily suspended whilst 
some other program executes. They are of vital 
importance in I/O programming where interrupts are used 
by peripheral devices to inform the processor that data 
are available. The processor must stop what it is 
doing, collect the data from the peripheral then 
restart its original activity. 

The interrupt handling instructions available to the 
M6809 programmer are described in full in Chapter 8 
which covers I/O programming. Here, we simply list the 
interrupt handling instructions which are available and 
summarise their functions. 

(1) The wait instruction 
This instruction, mnemonic CWAI, takes a single 
byte operand which is anded with the contents of 
CC when the instruction is executed. The E flag 
in the condition code register is then set, indi-
cating that all registers should be stacked on 
the hardware stack. The instruction then waits 
(does nothing) until a hardware interrupt occurs. 
Interrupt processing, as detailed in Chapter 8, 
then commences. 

(2) The return from interrupt instruction 
The return from interrupt instruction, RTI, is 
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executed after interrupt processing is complete. 
It unstacks the register values pertaining when 
the interrupt occurred thus returning control to 
the interrupted process. 

(3) The software interrupt instruction 
This instruction, which has mnemonic SWI, causes 
a so-called software interrupt. A software in
terrupt causes the processor to jump to an asso
ciated interrupt service routine which may, for 
example, transfer control to some other process. 
Thus the execution of programs in different parts 
of the M6809's memory may be coordinated and syn
chronised . 

(4) The synchronise instruction 
This instruction, SYNC, is used to synchronise an 
executing program with some external hardware 
event. 

Interrupt handling instructions are special purpose 
instructions and are unnecessary for most applications 
programmed in assembly code. 

3.7 MISCELLANEOUS INSTRUCTIONS 

In this section, we describe the remaining M6809 
machine instructions which don't fit neatly into any of 
the above classifications. There are only four 
instructions in this category. These are: 

(1) The jump instruction 

(2) The jump to subroutine instruction 

(3) The return from subroutine instruction 

(4) The no operation instruction 

We shall start with the 'no operation' instruction 
which has mnemonic NOP. Its function is very easy to 
describe - it does nothing. A NOP instruction is 1 
byte long and all it does is take up memory space. This 
can be useful if it is necessary to force other 
instructions to occupy particular memory locations. 

3.7.1 Jump instructions 
The jump instructions available to the M6809 programmer 
are similar to the branch instructions discussed 
earlier in this chapter. The function of these 
instructions is to evaluate their operand and load its 
value into the program counter register. Therefore, if 
addresses of other instructions are saved as data, you 
can transfer control to these instructions using a jump 
instruction. 
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The addressing modes allowed with jump instructions 
are direct, indexed and extended addressing. There are 
two jump instructions JMP, which is an unconditional 
jump, and JSR, which is a jump to subroutine 
instruction. The only difference is that JSR stacks the 
program counter PC on the hardware stack before 
assigning its operand to the PC register. 

Examples of jump instructions are: 

JMP B,U ; PC = MEM(B + U) 

JSR ,U ; S = S - 2: MEM(S) = PC: PC = MEM(U) 

3.7.2 The return instruction 
The return from subroutine instruction, whose mnemonic 
is RTS, is executed as the last instruction in a 
subroutine. It unstacks the top two bytes from the 
hardware stack and assigns them to PC. This 
effectively transfers control to the instruction 
following the BSR or JSR instruction which initiated 
the subroutine. 



Chapter 4 

Introducing assembly 
language 
Assembly language programming is a form of computer 
programming where the programmer writes his program as 
a sequence of absolute directives to the processor. 
That is, he states exactly which machine instructions 
are to be used in the exemption of his program. 

This type of programming is sometimes called low-
level programming because it is a notation which is 
very close indeed to machine language. By contrast, 
programming in a language such as BASIC is called 
high-level language programming. The programmer writes 
his program at a much higher level where the details of 
the machine architecture are irrelevant. 

High-level programming is much easier than low-level 
programming because machine architectures are 
inherently complex. The low-level programmer must 
master all the details of this complexity if he is to 
avoid making programming errors. The high-level 
programmer, on the other hand, has many fewer details 
to remember and can concentrate on getting the logic of 
his program correct - a difficult enough task in 
itself. 

The majority of computer applications can be 
programmed perfectly adequately in a high-level 
language and there is no point in programming in 
assembly language when BASIC will do. However, in 
personal computers, like the Dragon, there are some 
tasks which are easier to program in assembly language 
rather than BASIC because they require access to 
hardware features of the machine. Although this is 
possible from BASIC, it is clumsy and inconvenient as 
it requires the use of many POKE and PEEK instructions. 

There are also some types of program which, if 
programmed in BASIC, are too slow. This slowness 
results from the way in which BASIC is implemented. 
Every BASIC statement must be translated to machine 
code just before it is executed and this takes a 
significant amount of time. As this translation is 
absolutely essential, the only way to speed these 
programs up is to program them or, at least those 
time-critical parts of them, in assembly code. 

As we have already suggested, the real difference 
between programming in assembly language and 
programming in BASIC is one of detail. In BASIC, 
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decisions about where the program and its data are to 
be located in memory, how real numbers are to be 
provided, how character strings are manipulated, etc. 
are all made for the programmer by the BASIC system. 
As well as this, BASIC programs are expressed in such a 
way that they are readily understood by people whereas 
the notation used for assembly code bears little 
relation to the logical processes involved in solving 
the problem at hand. 

However, in spite of these difficulties, there are 
three fundamental advantages in programming in assembly 
language rather than BASIC: 

(1) The programmer has complete control over the 
machine. If he wishes to use his own particular 
way of manipulating characters or to access 
hardware features in some non-standard way, this 
is possible in assembly language but impossible 
in BASIC. 

(2) Assembly language programs are very much faster 
than equivalent BASIC programs. Because the 
translation phase from BASIC to machine code is 
avoided, assembly language programs typically ex
ecute at least 100 times faster and sometimes as 
much as 1000 times faster than corresponding 
BASIC programs. This means that they are suit
able for programs, like some arcade-type games, 
which must react very quickly to input from the 
user. 

(3) Assembly language programs are more compact, that 
is, occupy less memory, than their BASIC 
equivalents. This is particularly important when 
large programs are written which may require al
most all of the memory available on the machine. 

Of course, there are also disadvantages associated with 
programming in assembly language apart from the obvious 
one that the programmer must remember many low-level 
details of the machine. These disadvantages are: 

(1) Because the programmer has complete control over 
the machine, it is more difficult to detect mis
takes in assembly code programs. As long as a 
valid instruction is written, something will hap
pen even although the instruction does not do 
what the programmer really wants. Whereas the 
BASIC system has many built-in checks which 
detect errors like dividing by zero, no built-in 
error detection is available to the assembly 
language programmer. 

(2) Because of the low-level nature of assembly 
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language programs and because the programmer must 
explicitly include his own error checking facili
ties, assembly language programs are usually a 
good deal longer than their BASIC equivalents. 
This means that they take longer to write, are 
more difficult to understand, and are likely to 
contain more mistakes than high-level language 
programs. 

Because of the complexity of assembly language 
programming, it is best to adopt a multi-stage approach 
when developing a program which is ultimately written 
in assembly code. 

The first stage is to work out the solution to your 
problem in very general terms and to write down this 
solution in some stylised way. This is a very high-
level expression of what your program ought to do. For 
example, say you are developing a game where the player 
must shoot down alien spacecraft. Part of the general 
high-level expression of this might be: 

if firing button pressed then 
launch missile 

if alien detects missile launch then 
drop anti-missile bomb 

if dodge key pressed then 
move missile to avoid bomb 

else 
missile destroyed 

In fact, this approach is always how we work out the 
logic of programs although, sometimes, we do it in our 
heads rather than explicitly on paper. Writing down 
the solution is much better because when we hold 
detailed information mentally it is very easy to forget 
bits of the problem solution or to make mistakes when 
mentally translating to a programming language. 

The second stage, which is particularly important 
for inexperienced assembly language programmers is to 
translate the general, abstract problem solution into a 
high-level programming language like BASIC. Here, you 
must decide how logical operations such as 'firing 
button pressed' are actually to be implemented. For 
example, in the above program, missile dodge keys might 
be '4' to move left and '6' to move right. We might 
code that part of the solution as: 

KEY$ = INKEY$ 
IF KEY$ = "4" THEN MISX = MISX - 1 
IF KEY$ = "6" THEN MISX = MISX + 1 

where MISX represents the x-coordinate of the missile. 
An advantage of this intermediate stage between 

problem solution and assembly code program is that the 
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BASIC program can sometimes act as a prototype for the 
final program. This lets you try out ideas and debug 
the logic of the solution before becoming involved with 
the details of assembly language. 

The third stage in the development of an assembly 
language program is to take the high-level language 
program and to translate it, by hand, to assembly code. 
This is a straightforward process and the assembly 
language equivalents for BASIC statements are described 
later in this chapter. 

Sometimes it isn't necessary to translate the 
complete program into assembly code. Typically, most 
programs have relatively small sections, such as a 
display subroutine, where they spend most of their 
time. It is possible to code these time-consuming 
subroutines in assembly language and to link them into 
a BASIC program. This often gives the speed-up effect 
desired by the programmer and the chore of translating 
the whole program into assembly code can be avoided. 
We explain how assembly code subroutines can be linked 
with BASIC programs in Chapter 6. 

In any direct translation of a BASIC program to 
assembly language, there is bound to be redundancy. 
For example, say we have two BASIC statements: 

M = M + 1 
V = V + M 

A direct translation of these into assembly code, 
assuming that both M and V can be held as 8-bit 
integers, is: 

LDA M ; A = MEM(M) 
ADDA 1 ; A = A + 1 
STA M ; MEM(M) = A 
LDA V ; A = MEM(V) 
ADDA M ; A = A + MEM(M) 
STA V ; MEM(V) = A 

However, this can be optimised by using the INC 
instruction to add 1 to A. An optimised version of 
this instruction sequence is therefore: 

INC M ; MEM(M) = MEM(M) + 1 
LDA V ; A = MEM(V) 
ADDA M ; A = A + MEM(M) 
STA V ; MEM(V) = A 

The final stage in developing an assembly code program, 
therefore, is to take the BASIC equivalent program and 
to eliminate redundant steps in order to optimise the 
program. Some obvious elimination of redundancy can be 
done during stage three but program rearrangement, the 
use of different addressing modes, etc. should be left 
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until this final stage. In the examples in the 
following chapters we show how optimisation can make a 
considerable difference to the size of a program. 

This chapter and the following two chapters are 
devoted to assembly language programming. In the 
remainder of this chapter, we describe a class of 
program called assemblers. An assembler translates 
instruction mnemonics, symbolic names, etc. used by the 
programmer to machine code. It is a vital tool for the 
serious assembly language programmer. 

The following chapter, Chapter 5, shows how commonly 
used programming constructs such as assignments, loops 
and conditional statements may be programmed in 
assembly language. The approach which we use here is to 
take BASIC statements implementing these constructs and 
show how assembly language equivalents to these can be 
built up. We also show how these 'BASIC-equivalent' 
programs can usually be optimised to produce a program 
which has improved space and time efficiency. 

Chapter 6 looks at more advanced aspects of assembly 
language programming. In that chapter, we describe a 
general-purpose technique for implementing subroutines 
and we show how character strings may be represented 
and manipulated. We also describe how to link assembly 
language subroutines with BASIC programs and how to 
write assembly code which is position independent. 

It is beyond the scope of this book to discuss 
assembly language programming in great detail. This 
requires a book in itself and, to supplement the 
material here, the reader may find it useful to refer 
to some of the textbooks on M6809 assembly language 
programming which are listed in the reading list. 

4.1 THE ASSEMBLER PROGRAM 

We have already introduced, in earlier chapters, the 
idea of an assembler as a program which translates 
assembly language statements to machine code. This 
translation is not a difficult process as it simply 
requires the program to look up tables of names and 
associated hexadecimal values. However, for humans this 
is a slow, tiresome, error-prone task. In fact, it is 
the kind of job that computers excel at and we 
recommend that you should try to avoid the hand 
translation of assembly code. 

For each machine, there are usually several 
different assemblers available from different 
suppliers. Some of these might have more sophisticated 
features than others but all will provide at least the 
following facilities. 

(1) The translation of mnemonic instructions to their 
equivalent hexadecimal op-codes. 
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(2) The ability to associate labels with assembly 
language statements. Reference to these labels 
within the program will result in the address of 
the labelled statement being substituted for the 
label. 

(3) The association of names with specific memory lo
cations. When these variable names are used by 
the programmer, the assembler substitutes the ac
tual memory address of the variable. 

(4) The translation of decimal numbers to their hexa
decimal equivalent. 

(5) The translation of symbolised address references 
such as [ ,X ] for indirect indexed addressing to 
the appropriate postbyte, offset, etc. 

(6) Limited error checking indicating if an invalid 
mnemonic has been used, if a label referenced in 
an instruction is not declared, if a short branch 
is used where a long branch is required, etc. 

The particular assembler whose facilities we shall 
describe in this chapter is the DREAM assembler, 
available from the manufacturers of the Dragon. This is 
a typical assembler which uses fairly standard Motorola 
M6809 notation, as set out in Appendix 1, for assembly 
language instructions. There may be slight differences 
in detail if you use a different assembler but, in 
general, the description of facilities below applies to 
all assemblers which are available for the Dragon. 

The single exception to the standard notation is 
when indirect addressing is used. As the symbols '[' 
and ' ] ' are not Dragon keyboard characters, the DREAM 
assembler uses round brackets ' ( ' and ' ) ' to indicate 
indirect addressing. We shall follow this convention 
from now on but the reader who is using some other 
assembler should read (<address>) as [<address>]. 

As well as being an assembler, DREAM is also an 
editor. It provides facilities for inputting, 
modifying, duplicating and saving text on a cassette. 
This text need not be assembly code but may be anything 
at all. However, as the editing and assembling 
facilities are combined, the implementors of DREAM 
clearly see the creation and editing of assembly 
language instructions as its major task. As assembly 
language instructions do not have explicit line 
numbers, it is not possible to use the BASIC editor to 
create and edit assembly language programs. 

The standard format for an assembler source line as 
input to DREAM or any other assembler based on the 
standard Motorola notation is: 
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<label> <mnemonic> <operand> <comments> 

The different fields in the source line must be 
separated by one or more spaces. The <label> and 
<comments> fields are optional, the <mnemonic> field 
must be present as must the <operand> field except for 
those instructions which use inherent addressing and do 
not require explicit operands. 

4.1.1 The label field 
The label field, if present, must start in the first 
column of the source line. Anything that starts in 
column 1 is therefore taken, by the assembler, to be a 
label. If you make a mistake and put a mnemonic in 
column 1 or a label starting in some other column the 
assembler will get very confused indeed. 

Labels must start with a letter and may only contain 
alphanumeric characters, that is, letters and numbers. 
Most assemblers impose a limit on the length of a label 
- the DREAM assembler, for example, insists that labels 
be no more than 6 characters long. 

The table below shows examples of valid and invalid 
statement labels. 

Valid Labels Invalid Labels 

A372 372A (label must start with a letter) 
NEXTCH NEXTCHAR (label too long) 
OUT IN-OUT (label may not contain '-') 

There is a single exception to the rule in the DREAM 
assembler that labels may contain only alphanumeric 
characters. One label, and one label only, in the 
program may have a '@' as its first character. For 
example, @START or ©BEGIN are valid labels although 
both may not be used in the same program. The label 
whose first character is '@' is one way of indicating 
to the assembler where to start program execution when 
the assembled machine code program is run on the 
Dragon. 

Although the labels A, B, X, Y, U, S, CC, PC, and DP 
are not invalid, you should avoid using them because of 
potential confusion with the M6809 register names. 
Similarly, you should not use labels which are 
identical to assembly language mnemonics. 

4.1.2 The mnemonic field 
The mnemonic field of an assembler input line must 
contain one of the instruction mnemonics that we 
covered in the previous chapter. It must be separated 
from the label field by at least one space. If no 
label is present, the mnemonic field must still be 
preceded by one or more spaces otherwise it will be 
taken as a label. 
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4.1.3 The operand field 
The operand field in an assembly language instruction 
must be present except for those instructions like 
INCA, ABX, MUL, etc. which have no operands. It must be 
separated from the mnemonic field by at least one 
space. The operand field specifies the operand address 
and the following conventions are used when using the 
DREAM assembler to indicate which addressing mode is 
being used. 

Register addressing 
The names of the source and destination registers are 
separated by a comma. For example: 

TFR X,Y 
EXG A,DP 

Immediate addressing 
The immediate value is preceded by a '#' symbol. By 
default, immediate values are decimal but hexadecimal 
values may be input by preceding the value with a '$' 
symbol and character values by preceding them with a 
quote "'" symbol. It is also possible to associate 
symbolic names with constants and these may also be 
input as immediate values. For example: 

LDA #10 
LDB #$10 
LDA #' + 
LDA #MAXINT 
LDA #LAB1 

If the immediate operand in an instruction is a program 
label, the value substituted for the symbolic label is 
the address of the labelled statement. 

Direct and extended addressing 
In general, the assembler will decide for the 
programmer whether it is best to use direct or extended 
operand addressing. DREAM works out if the addressed 
operand is within a page of the current DP register 
setting and, if so, it generates a direct address. 
Otherwise, an extended address is generated. 

A symbolic name on its own indicates either direct 
or extended addressing as decided by the assembler. 
The programmer may force extended addressing by 
preceding the name with a '>' character or may force 
direct addressing by preceding it with a '<' character. 
For example: 

LDX VNAME Direct or extended 
LDX >TNM Force extended addressing 
LDX <COUNT Force direct addressing 
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Indexed addressing 
The general form of an indexed address is: 

<offset>,<index register> 

The offset may be a register name, a symbolic name, a 
constant value or may be left out altogether. The 
register name must be X, Y, U or S and, if no offset is 
present, auto increment or decrement may be specified. 

The following examples all show generalised indexed 
addressing. 

LDA BASE,PCR PC relative 
STX OFFST,Y Symbolic constant offset 
STD -16,X Constant offset 
LDA ,X Zero offset 
LDB A,U Register offset 

Auto increment and decrement may only be used with zero 
offset addressing. They are indicated by prefixing the 
index register name with '-' or '--' or by suffixing it 
with '+' or '++'. For example: 

STX ,Y++ Auto increment by 2 
STA ,S+ Auto increment by 1 
LDB ,-Y Auto decrement by 1 
LDD ,--S Auto decrement by 2 

In all cases, the assembler works out whether the 
specified offset should be represented as a 5-bit, an 
8-bit or a 16-bit offset. The programmer may force an 
8-bit offset by preceding the offset with a '<' 
character and may force a 16-bit offset by using a '>' 
symbol. It is not possible to force the assembler to 
generate a 5-bit offset. For example: 

LDD <4,X Forces 8-bit rather than 5-bit offset. 
STX >32,Y Forces 16-bit rather than 8-bit offset 

Indirect addressing 
Indirect addressing is indicated by surrounding the 
operand field with round brackets. For example: 

LDA (VALADD) Indirect extended 
STX (A,Y) Indirect indexed 

When using constant values within the operand field, 
the DREAM assembler allows a limited form of arithmetic 
to be used. If constant expressions using '+' and '-' 
are specified, DREAM will carry out the necessary 
arithmetic as it assembles the program. For example: 

LEAS BASE+8,U 
LDD #START - 10 



74 

BRA * + 12 

An asterisk (*) means the value of the program counter 
at the start of the current statement. Notice that 
this is not the same as the actual PC value which 
refers to the next instruction to be executed. 

4.1.4 The comments field 
The comments field is used to provide descriptive 
comment about the associated assembly code instruction. 
It must be separated by at least one space from the 
operand field but the convention when using the DREAM 
assembler is to separate the comments field from the 
remainder of the instruction by two or more spaces and 
to make the first symbol a semi-colon. For example: 

LDA T ; put top value in A 

Comments taking up an entire line may also be 
introduced by placing a '*' in column 1. Most M6809 
assemblers will recognise this as a comment and ignore 
the remainder of the line. For example: 

* An asterisk indicates a comment 

In order to make assembly language statements as 
readable as possible, it is best to adopt a fairly 
rigid, fixed format layout for instructions. The 
following layout is suggested: 

Columns 1-6 Label or blank if statement 
is unlabelled 

Columns 8-11 Mnemonic 
Columns 13-19 Operand 
Columns 22- Comment 

If the operand is more than eight characters long, it 
will obviously overflow into the comments field. 
Depending on the length of the comment, you may either 
continue it on the same line or start a new line with 
'*' and include the comment field on that line. In 
general, when all of a comment cannot fit on the 
instruction line, the continuation on succeeding lines 
should be aligned. 

Examples of this layout are: 

BEGIN LDD MAX ; Start with max 
SUBD #1 ; Take 1 off it 
CMPD MINVAL ; Compare with min. 
BEQ VALSEQ 

As with all layout conventions, there are many special 
cases which do not fit well with the convention. 
Slight changes may avoid taking a new line for a short 



75 

comment continuation or may make the program more 
readable. The programmer must use his common sense in 
this respect and modify the above rules accordingly. 

The output from the DREAM assembler consists of a 
listing of the source lines with each line preceded by 
the address of the corresponding machine instruction 
and the hexadecimal representation of the instruction 
itself. For example, assuming the instruction address 
was 4E40, this might appear: 

4E40 4C INCA ; increment pointer 
4E41 1F8B TFR A,DP ; and load DP 

Notice that the address is incremented according to the 
number of bytes in the instruction. We shall describe 
how the initial assembler address is set up in a later 
section (4.2.5) of this chapter. 

4.1.5 Assembling without an assembler 
If you don't have an assembler program but want to run 
machine code programs, you have to translate the 
assembly language statements to hexadecimal machine 
code by hand. This is only realistic if you have only 
a few statements to translate and you only do such 
translations fairly occasionally. 

There is enough information in Chapters 2 and 3 and 
in the appendices to allow you to translate from 
assembly language to machine code. You must keep 
careful track of the number of bytes taken up by each 
instruction so that your relative addresses are 
correct. It is best to make a table for yourself of 
the symbolic names which you use and the memory 
addresses which you have assigned to them. 

Once you have completed the translation from 
assembly code to machine code, you then load the 
hexadecimal representations of your machine 
instructions into memory and start executing them. 
This can be accomplished using another program called a 
loader. In the final section of this chapter, we 
provide a listing of a loader, written in BASIC, which 
POKES hexadecimal codes into memory. You may either 
then execute the machine code program with an EXEC 
command or you may include such a command in the loader 
so that the machine code is immediately executed. 

4.2 ASSEMBLER DIRECTIVES 

Assembler directives are instructions used by the 
programmer to give commands to the assembler. They do 
not cause machine instructions to be generated but they 
may alter internal assembler variables. Assembler 
directives are the means by which symbolic names are 
associated with addresses and they also allow the 
programmer to specify the initial values which memory 
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bytes should take before his program is executed. 
The operation of assembler directives can only be 

understood in the context of the general memory 
organisation which is assumed by the assembler. Figure 
4.1 shows this organisation for that part of memory 
used by the assembler. 

Fig. 4.1 Assembler memory map 

There is a large area of RAM which is reserved by 
the assembler as its work space. This workspace 
immediately follows the machine code of the assembler 
program in the Dragon's memory. 

At the top of this work space, the assembler creates 
its own internal tables which it uses in the 
translation of the programmer's assembly code to 
machine code. As the number of entries in these tables 
depends on the size of the program being assembled, the 
tables are variable in size. As new elements are added 
to the table, they are allocated lower memory 
addresses. Dynamically allocated areas of this sort are 
shown on memory maps as wavy lines with an arrow 
indicating the direction of growth. 

As an illustration of how this table is set up, say 
the top address in the assembler's work space is 6AFF. 
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The first table entry, which might be 8 bytes long, is 
allocated address GAFF. The following table entry has 
address 6AF8, the one after that 6AF0, and so on. The 
table grows downwards in memory as each succeeding 
element is allocated. 

As the assembly language program is translated, the 
generated machine code must be stored somewhere in 
memory. The area chosen by the assembler for the 
generated machine code is at the bottom of its work 
space and the generated machine code grows upwards in 
memory. 

The assembler uses an internal variable called the 
assembler program counter (APC) to keep track of where 
the next generated machine instruction is to be placed 
in its work space. As instructions are generated, APC 
is incremented by the length of the instruction in 
bytes. Some assembler directives also affect the value 
of APC and their effects are discussed along with the 
description of the directives in question. 

4.2.1 The EQU directive 
The equate directive is the directive which is used to 
associate a symbolic name with a constant decimal or 
hexadecimal value. It has the general form: 

<label> EQU <value> 

It is good programming practice to make extensive use 
of equate directives to name constants used in your 
program. If you chose a name related to the constant's 
function, this makes the program easier to understand. 
Furthermore, if you need to change the value of a 
constant, you merely need to change the equate 
directive rather than search through your program 
changing the absolute value every time it is used in an 
instruction. 

Examples of equates defining absolute constant 
values are: 

MAXINT EQU 32767 ; maximum allowed integer 
TABSIZ EQU 100 ; some table size 
OFF EQU $00 ; define a value meaning off 
ON EQU $FF ; a value meaning on 

The constant value in the equate directive may include 
other symbolic constants defined by an equate and may 
also include the symbols ' + ' and '-'. The assembler 
carries out the necessary arithmetic to compute the 
equated value. For example: 

TRUE EQU ON ; TRUE has value $FF 
FALSE EQU OFF ; FALSE = $00 
UTABSZ EQU TABSIZ - 15 ; UTABSIZ = 85 
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As well as being used to associate names with program 
constants, the EQU directive may also be used to name 
locations in a memory page when direct addressing is to 
be used. 

Recall that the direct addressing mode uses the DP 
register to hold the hi-byte of the memory address with 
the lo-byte of the address obtained from the 
instruction itself. Not only is this form of 
addressing space efficient as addresses only take up a 
single byte, it also means that memory locations can be 
reserved for variables in a position independent way. 

The programmer need not decide the absolute address 
in memory which is to be allocated to particular 
variables. Rather, he may set up their addresses as a 
displacement from the start of a page. Where that page 
actually resides in memory when the program is executed 
is governed by the setting of the DP register which may 
be assigned immediately before execution. We shall say 
more about position independence in Chapter 6. 

The equate directive is used to associate page 
addresses with symbolic names. For example: 

DELAY EQU $00 ; first byte in page 
CURPOS EQU $01 ; CURPOS takes up bytes 1 and 2 
INCH EQU $03 ; byte 3 

The names used in an equate directive must obey the 
normal rules for assembler labels. That is, they must 
start with a letter, contain only alphanumeric 
characters and may be no more than six characters long. 

The equate directive does not affect the assembler's 
program counter. Names and associated values are 
stored in an internal assembler table and, when the 
name is used in a program, its value is substituted for 
it. 

4.2.2 The FCB/FCC directive 
The FCB/FCC directive is used to format data bytes. 
That is, the programmer uses this directive to allocate 
store and to associate a particular value with each 
byte of that allocated memory. The general form of 
this directive is: 

[<label>] FCB <value list> 

The label is optional and must obey the usual rules for 
assembler labels. If a label is used, its value is 
deemed to be the address of the allocated data byte. 
The value list is a list of one or more initial values 
expressed as decimal numbers, hexadecimal numbers or 
character constants. 

In some assemblers, the directives FCB and FCC have 
different meanings with FCB used to format single bytes 
and FCC used to format ASCII character strings. In the 
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DREAM assembler, however, they are equivalent and are 
handled in exactly the same way. Therefore, the 
directive FCB may be replaced by FCC anywhere that it 
is used. 

Examples of FCB directives are: 

* Set up the name of a data area for an error message 
* The first byte holds the length of the message 
* The following characters hold the ASCII characters 
* of the message itself 
* 
ERR1 FCB 13,/NO INPUT CHAR/ 
* 
* Notice how strings are delimited by the / character 
* Set up a byte with value 1F (hex) 
* 

FCB $1F 

* Set up a 5 byte memory area with bytes initialised 
* to the hex values 8E, 8F, 90,91, and 92 

TAB1 FCB $8E,$8F,$90,$91,$92 

The FCB/FCC directive affects the assembler program 
counter. If APC has the value 5000 say when the FBC 
labelled ERR1 above is processed, its value after 
processing is 5000 + 14 (decimal), that is 500D. Note 
that if a value greater than FF (hex) is used with an 
FCB directive only the lo-byte of that value is used in 
the initialisation. 

4.2.3 The FDB directive 
The FDB directive is similar to the FCB directive. 
However, rather than formatting single data bytes, it 
formats 16-bit values taking up 2 bytes (1 word). It 
general form is: 

[<label>] FDB <value list> 

Examples of FDB directives are: 

DIGITS FDB 1,2,3,4,5,6,7,8,9,0 
MAXVAL FDB 1024 
INSUB FDB GETNUM 

The first two FDB examples above format data words to 
the specified values. In the third example, the 
constant filled in and named INSUB may be the value 
associated with the name GETNUM if GETNUM is defined 
via an EQU directive. Alternatively, if GETNUM is an 
instruction label, the location named INSUB is filled 
in with the address of the labelled instruction. 

This facility allows you to create tables of 
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addresses and then use indirect addressing to access 
the instructions or data whose addresses are kept in 
the table. For example: 

SUBTAB FDB INCHAR,OUTCH,INWRD, 
OUTWRD,RESET,CLOSE 

This directive might be used to create a table of 
subroutine addresses with the subroutine names given on 
the right hand side of the directive. 

Like FCB, FDB affects the assembler program counter, 
incrementing it by two for every word formatted. 

4.2.4 The RMB directive 
The RMB directive is used to reserve one or more memory 
bytes. It does not set them up to any specific value, 
it merely increments APC by the value specified in the 
directive. The general form of an RMB directive is: 

[<label>] RMB <value> 

The value may be either a symbolic, hexadecimal or 
decimal constant. For example: 

INCHAR RMB 1 ; reserves a single byte 
OUTBUF RMB 256 ; reserves a 256 byte buffer 

Typically, RMB is used to reserve space which will 
subsequently be allocated values in I/O operations. 

4.2.5 The ORG directive 
The ORG directive is used to assign a value to APC and, 
hence, sets up the logical origin of the generated 
machine code which follows that directive. It is not 
obligatory to include an ORG directive in a program. 
If there is no ORG directive, the DREAM assembler sets 
up its program counter to have an initial value equal 
to the bottom of its work space. 

The general form of an ORG directive is: 

[<label>] ORG <address> 

Examples of this directive are: 

ORG $5000 ; APC = 5000 (hex) 
NEWSEG ORG * + 128 ; * means current value of APC 
* This directive is equivalent 
* to RMB 128 

All the examples in this book have been tested with a 
code origin at memory address 4E21 (20001 decimal). 
This is set up with an ORG $4E21 statement as shown in 
the example in section 4.3 below. 
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4.2.6 The PUT directive 
The PUT directive is used to tell the assembler where, 
in RAM, the generated object code should be placed. It 
is a means of overriding the assembler's normal placing 
of generated code at successive addresses starting at 
address 4E21 which is the bottom of its work space. 

The general form of a PUT directive is: 

PUT <address> 

Normally, a PUT directive is preceded by an ORG 
directive to set the APC to the address where the 
generated code is to be placed. This is not 
obligatory, however, if you are going to move the code 
before executing it or if the code is completely 
position independent. 

4.2.7 The SETDP directive 
The SETDP directive is used to tell the assembler the 
current value of the direct page register DP. Remember 
that the assembler decides whether to use direct or 
extended addressing when a symbolic name is used in the 
address field of an instruction. To make this 
decision, it must know the value of DP at that point 
and SETDP is used to provide that information. The 
general form of the directive is: 

SETDP <hex value) 

The operand must be a hexadecimal value in the range 00 
to FF. The SETDP directive only provides information to 
the assembler; it does not cause instructions to be 
generated to assign a value to the direct page 
register. It is the programmer's responsibility to 
ensure that the actual run time value of DP is 
consistent with the value used in a SETDP directive. 

4.3 EXAMPLE PROGRAMS 

In this section we present two complete, working 
programs which the user may type into his machine and 
execute. The first of these programs is a loader 
program, written in BASIC, which allows the user to 
POKE machine code into particular locations in the 
Dragon's memory. This code may then be executed. 

The other example program is presented in both BASIC 
and assembler. This is a simple program designed to 
illustrate just how much faster machine code programs 
can be. The program fills the display screen with every 
character, one after the other. When the BASIC version 
of the program executes, you will see that this 
operation takes about 2 seconds per screenful. The 
assembly language version fills the screen with each 
character in a fraction of a second. The machine code 



82 

for the assembly language version of the screen filler 
is included, in hexadecimal, as the DATA statements in 
the BASIC loader. 

Both of these examples are commented and should need 
no further explanation. 

10 ' Machine code loader 
11 ' Machine codes in hex are poked into memory 
12 ' locations starting at 20001 then execed 
20 READ LA ' LA = load address (start of program) 
30 READ EA ' EA = address of first instruction 
40 PA = EA 'to be executed 
50 READ HB$ ' Hex constants 
60 IF HB$="END" THEN 100 
70 POKE PA,VAL("&H"+HB$) ' Poke value into memory 
80 PA = PA + 1 ' Increment address 
90 GOTO 50 
100 PRINT "MACHINE CODE LOADED" 
110 PRINT "LOAD ADDRESS IS ";LA;"(DEC)"; 
111 PRINT HEX$(LA);"(HEX)" 
120 PRINT "END ADDRESS IS "; PA-1;"(DEC)"; 
121 PRINT HEX$(PA-1);"(HEX)" 
130 PRINT "EXEC ADDRESS IS";EA;"(DEC)"; 
131 PRINT HEX$(EA);"(HEX)" 
140 PRINT "YOU ARE ADVISED TO SAVE LOADER " 
141 PRINT "BEFORE RUNNING M/C CODE" 
142 'If you want to execute the loaded code 
143 'immediately, you should put an 
144 'EXEC EA statement here. If you do this 
145 'for this program, you lose BASIC print 
146 'information 
150 DATA 20001 'Load address here 
160 DATA 20001 'Execute address here 
165 ' You put your own machine code in hex 
166 ' here to load your hand translated 
167 ' programs 
170 DATA 34,12 ' Machine code for the 
180 DATA 86,00 ' Screen filler program 
190 DATA 8E,04,00 ' given below 
200 DATA A7,80 
210 DATA 8C,06,00 
220 DATA 25,F9 
230 DATA 4C 
240 DATA 81,80 
250 DATA 25,Fl 
260 DATA 35,92 
270 DATA END 

Program 4.1 BASIC machine code loader 

10 ' Fills screen with characters with codes 
20 ' 0 to 127 in turn 
30 FOR CH = 0 TO 127 
35 ' Screen RAM addresses are from &H400-&H5FF 
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40 FOR SC = &H400 TO &H5FF 
50 POKE SC,CH 
60 NEXT SC 
70 NEXT CH 

Program 4.2 BASIC screen filler 

* SCRFL - fill screen with characters 

* Register inputs NONE 
* 

ORG $4E21 
SCRFL PSHS A,X ; Save registers 

LDA #0 ; First character 
NXTSC LDX #$400 ; Screen base address 
PRCH STA ,X+ ; Store character 

CMPX #$600 ; At end of screen? 
BLO PRCH ; No, next character 
INCA ; Go on to next character 
CMPA #128 
BLO NXTSC ; Do another screenful 
PULS A,X,PC ; Restore and return 

Program 4.3 Assembly language screen filler 



Chapter 5 

From BASIC to assembly code 

In this chapter we describe the assembly language 
equivalents of the most commonly used BASIC statements. 
As well as the literal translations of BASIC to 
assembly language, we show how these constructs can 
often be implemented in a more efficient way by 
removing some of the redundancy inherent in BASIC. 

The assembly language programmer must obviously know 
the mnemonics for the M6809, the register names and the 
symbolism for the M6809 addressing modes. It may seem a 
daunting task to memorise all this information, 
although it is less so than memorising about 1400 
machine instructions! However, the consistent and 
orthogonal nature of the M6809's instruction set makes 
the task less difficult than might at first be supposed 
and, after a little practice, the programmer will 
easily remember all the mnemonics which he needs. 

The basic building blocks of programs are assignment 
statements, conditional statements, loops and 
statements for input and output of data. We describe, 
in some detail, how each of these may be implemented in 
assembly language. We also cover the declaration and 
calling of BASIC-like subroutines and the 
representation and manipulation of arrays. The 
notation which we use is similar to that used in 
previous chapters. However, if a symbolic name is used 
for a memory location, we use it in comments here as if 
it was a BASIC name - we do not precede it with MEM. 

5.1 ASSIGNMENT STATEMENTS 

Assignment statements in BASIC are used to assign a 
constant, the result of an arithmetic expression or the 
value of a memory location to some other memory 
location. For ease of reference, we may give symbolic 
names to the memory locations involved although, if the 
memory access routines PEEK and POKE are used, we 
actually signify the absolute memory locations to be 
accessed. We describe PEEK and POKE later and 
concentrate here on assignments which have the general 
form: 

<name> = <expression> 

84 
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The <name> on the left side of the = sign may be either 
a variable name or may be a reference to an element of 
an array. The <expression> on the right side of the 
equals sign may be a constant, a variable name, an 
array element reference or an arithmetic expression 
consisting of two or more operands separated by 
arithmetic operators such as + and *. 

Reference to array elements will be dealt with later 
so, in this section, we only describe assignments where 
numeric constants and variables are used. We shall 
make the further simplification that these constants 
and variables may only take 8-bit or 16-bit integral 
values represented as unsigned numbers or in two's 
complement notation. 

This is not too great a limitation as many practical 
applications of computers don't need real numbers. The 
provision of real number arithmetic in most 
microcomputers is made using software routines which 
manipulate pairs of 16-bit quantities representing the 
real number. This is a fairly complex process, and if 
the reader is interested in how it's done he should 
refer to one of the computer science textbooks 
suggested in the reading list. 

In general, assignment statements on the M6809 are 
implemented using the accumulator registers A, B and 
their catenation D when 16-bit numbers are involved. 
Although it is possible to make use of the index 
registers X, Y, S, and U, these are usually reserved 
for the storage of addresses. 

The basic outline of an assignment statement in 
assembly language is: 

Evaluate RH expression into an accumulator register. 
Store accumulator in memory. 

For example, the assembly language equivalent of the 
simple BASIC statement M = 7 is: 

LDA #7 ; A = 7 
STA M ; M = A 

Notice how immediate addressing is used to specify that 
a constant value is to be loaded into a register. A 
very common mistake made by novice assembly language 
programmers is to forget the # symbol indicating 
immediate addressing. 

LDA 7 ; A = PEEK(7) 
STA M ; M = A 

The BASIC code documenting the assembly language 
instructions shows how this gives a completely 
different result. Rather than a constant value 7 
being loaded into A, the contents of memory byte 



86 

7 (which may be any value between -128 and 127) are 
loaded into the A register. 

If a constant value between -128 and 127 is being 
assigned, we may use either the A or the B register as 
the accumulator. If the value lies outside this range, 
we must use the D register for the assignment. For 
example, the BASIC statement T = -3842 has the assembly 
language equivalent: 

LDD #-3842 ; D = -3842 
STD T ; T = D 

As D is a 16-bit register, the STD operation results in 
information being stored in two consecutive memory 
bytes. If the address of T is 4E22, say, the 
assignment results in the hi-byte of D being assigned 
to 4E22 and the lo-byte being assigned to 4E23. 

Assignments of the form M = N are implemented in 
assembly language in a comparable way: 

LDA N ; A = N 
STA M ; M = A 

If the operands in the assignment T = R are 16-bit 
quantities, the D register must be used: 

LDD R ; D = R 
STD T ; T = D 

When the right side of the assignment is an arithmetic 
expression consisting, in general terms, of constants, 
variables and arithmetic operators, the assembly 
language programmer must arrange the evaluation of this 
expression in an accumulator. The evaluated value is 
then stored. For example, the assignment statement M = 
N + P has the assembly language equivalent: 

LDA N ; A = N 
ADDA P ; A = A + P 
STA M ; M = A 

Notice that we are ignoring the possibility of overflow 
and carry here. In some arithmetic evaluations, this 
must be taken into account but, as we are simply 
illustrating concepts, we will not introduce this 
unnecessary complication. 

If the assignment uses a mixture of 8-bit and 16-bit 
values, the D register must be used and, in some cases, 
8-bit values will automatically be extended to 16 bits. 
For example, assuming T and R are 16-bit variables, the 
assignment R = T - 10 may be implemented as follows: 

LDD T ; D = T 
SUBD 10 ; D = D - 10 
STD R ; R = D 
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A 16-bit subtraction is automatically carried out in 
this case. However, if mixed 8-bit and 16-bit 
variables rather than constants are used in arithmetic 
expressions, the programmer must be careful not to use 
a D register operation on an 8-bit variable. If such 
an operation is specified, the addressed variable and 
the following memory byte (which is not wanted) will be 
used in the operation. 

For example, say T and R are 16-bit signed 
quantities and M is an 8-bit signed quantity. A 
careless assembly language programmer might translate 
the assignment T = M + R as follows: 

LDD M ; D.hi = MEM(M): D.lo = MEM(M + 1) 
ADDD R ; D = D + R 
STD T ; T = D 

A completely incorrect value for the addition will 
result because of the LDD operation which does not load 
the 8-bit value of M into D. 

A correct assembly code sequence for this mixed-
length arithmetic takes into account the fact that the 
lo-byte of D is the B register. The sign extend 
instruction is also used to make sure that the signs of 
the 16-bit and the 8-bit values are the same. 

LDB M ; B = M 
SEX ; Extend sign bit of B to A 
ADDD R ; D = D + R 
STD T ; T = D 

This mixed-length arithmetic becomes more complex when 
a subtraction is involved and the order in which 
operands are loaded into D is significant. Assuming T, 
R, and M have the same values as before, the assignment 
T = R - M cannot be implemented using the same sequence 
as above because the SUBD instruction has no facilities 
for sign extension. 

There are various different ways of implementing 
this type of assignment in assembly language. The 
simplest is to convert the 8-bit value to a 16-bit 
value, store it in some temporary location and then 
perform the subtraction using 16-bit operations only. 
For example: 

LDB M ; B - M 
SEX ; D = B (propagate sign) 
STD ,--S ; Store M on hardware stack 

* Auto decrement S so that it points to 
* free location on stack 

LDD R ; D = R 
SUBD ,S++ ; D = R - M 

* Note how auto increment used to reset 
* stack pointer 

STD T ; T = D 
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There are no problems in implementing addition and 
subtraction operations in assembly language but 
generalised multiplication and division have no 
corresponding machine instructions. These operations 
must be implemented by calling machine language 
routines and it is beyond the scope of this section to 
explain how these routines may be programmed. 

However, multiplication and division of 8-bit 
unsigned quantities by numbers which are powers of 2 
may be implemented very simply by using the arithmetic 
shift instructions ASR and ASL. Shifting a number left 
n times is equivalent to multiplying it by 2n and 
shifting it right n times is equivalent to dividing 
that number by 2n. Naturally, the division is an 
integer division operation with the remainder 
discarded. 

For example, if I and J are unsigned 8-bit integers, 
the assignment I = J * 4 might be implemented in 
assembly language as follows: 

LDA J ; A = J 
ASLA ; A = A * 2 
ASLA ; A = A * 2 
STA I ; I = A 

Similarly, J = I/8 might be implemented: 

LDA I ; A = I 
ASRA ; A = A/2 
ASRA ; A = A/2 
ASRA ; A = A/2 
STA J ; J = A 

Using shifts to multiply and divide signed quantities 
is more complex because of the need to ensure that the 
sign of the result is correct. We leave it as an 
exercise to the reader to work out how to implement 
signed multiplication and division by powers of 2. 

The PEEK and POKE functions 
The BASIC functions PEEK and POKE allow direct 
reference to individual memory bytes. Whereas PEEK is 
always used as the right hand side of a normal BASIC 
assignment, POKE is a specialised kind of assignment. 
Therefore, T = PEEK(&H0406) assigns the byte value at 
memory address 0406 (hex) to T and POKE ASC("*"),&H0500 
assigns the code for '*' to the byte in memory at 
address 0500. 

PEEK and POKE are very easily implemented in 
assembly language using load and store instructions. 
The assembly language equivalent of the above PEEK 
instruction is: 

LDA $0406 ; A = MEM(0406) 
STA T ; T = A 
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The POKE operation has the equivalent assembly code: 

LDA #'* ; A = '*' 
STA $0500 ; T = A 

The only difference between straightforward assignments 
and PEEK and POKE is that. rather than symbolic 
addresses, absolute memory addresses are used. 

5.2 CONDITIONAL CONSTRUCTS 

Conditional constructs are fundamental program building 
blocks which allow other statements to be selected for 
execution depending on the truth of some condition. In 
BASIC, conditional execution of statements or groups of 
statements is implemented using IF-THEN statements in 
combination with GOTO statements. 

More generally, conditional constructs can be 
partitioned into three classes: 

(1) Single armed conditionals 
These may be expressed: 

if <condition> then <action> 

If the specified condition is true, the <action> 
is executed otherwise it is skipped. 

(2) Two armed conditionals 
These have the form: 

if <condition> then <actionl> else <action2> 

If the given condition is true, <actionl> is exe
cuted and <action2> is skipped. If the condition 
is false, <actionl> is skipped and <action2> is 
executed. 

(3) Multi-armed conditionals 
These are really conjunctions of single armed 
conditionals: 

if 
<conditionl> then <actionl> 
<condition2> then <action2> 
<condition3> then <action3> 

<conditionN> then <actionN> 

The conditions are evaluated in turn. If the 
evaluated condition is false, the associated ac
tion is skipped and the following condition is 
evaluated. If the condition is true, the associ
ated action is executed and the remainder of the 
condition/action pairs are skipped. In BASIC, 
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multi-armed conditionals are usually implemented 
as a sequence of IF-THEN statements. 

We shall consider each of these in turn and show how 
they may be implemented in assembly language. The 
approach which we use is to show first how the 
conditional is implemented in BASIC. We then describe 
how this may be literally translated into assembly 
language and finally optimised to remove redundancy. 

5.2.1 Single armed conditionals 
In BASIC, single armed conditionals are expressed as an 
IF-THEN statement if only a single statement is to be 
conditionally executed. If a number of statements are 
to be executed if the condition is true, a goto is used 
to skip over these statements if the given condition is 
false rather than true. 

For example, if we want to swap the values of I and 
J if J is greater than I, we might write the following 
code: 

100 ' Swap if J > I. So skip if J <= I 
110 IF J <= I THEN 200 
120 T = J 
130 J = I 
140 I = T 
200 . . . 

In assembly language programming, we use exactly the 
same technique of reversing the sense of the comparison 
and skipping if this (reversed) condition is true. The 
outline for this is: 

Make comparison setting CC bits 
Branch if NOT desired condition to L 

Code to be executed if original condition true 

L 

Assuming that I and J are unsigned 8-bit values, the 
above BASIC sequence may be translated to assembly 
language as follows: 

LDB J ; B = J 
CMPB I ; compare B with I 
BLS L200 ; if J <= I goto L200 
LDB J ; B = J 
STB T ; T = B 
LDB I ; B = I 
STB J ; J = B 
LDB T ; B = T 
STB I ; I = B 

L200 
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This literal translation may be optimised by noting 
that the first instruction loads the value of J into B 
and the same instruction is repeated after the 
comparison. As comparison does not affect register 
values, the second load is unnecessary. Furthermore, 
we are obliged in BASIC to use an intermediate variable 
T in the swap sequence but in assembly code this is 
unnecessary. We may simply use another register. An 
optimised version of the swap sequence is: 

LDA J ; A = J 
CMPA I ; compare A with I 
BLS L200 ; if A <= J then goto L200 
LDB I ; B = I 
STB J ; J = B, ie J takes original value of I 
STA I ; I = A, ie original value of J 

Simple BASIC IF-THEN statements of the form IF P = Q 
THEN P = P + 1 may be directly translated to assembly 
language as follows: 

LDA P 
CMPA Q ; Compare A and Q 
BNE L1 ; if A <> Q then goto L1 
LDA P ; A = P 
ADDA #1 ; A = A + 1 
STA P ; P = A 

Again, this may be optimised by using the fact that P 
is loaded into a register to evaluate the condition and 
then immediately reloaded after this comparison. This 
second load can be eliminated. We may also use the INC 
instruction to add 1 to a value rather than the add 
instruction. The advantage of this is that INC 
occupies less space and executes more quickly than ADD. 

An optimised form of the above sequence is: 

LDA P ; A = P 
CMPA Q ; Compare A and Q 
BNE L1 ; if A <> Q then goto L1 
INCA ; A = A + 1 
STA P ; P = A 

L1 .... 

In fact, we can reduce the number of instructions still 
further by using the ability of INC to operate on a 
memory location: 

LDA P 
CMPA Q 
BNE L1 
INC P 

L1 .... 



92 

Assuming direct addressing of both P and Q, the 4 
instruction sequence takes up 8 memory bytes, the 5 
instruction sequence occupies 9 memory bytes and the 
literal translation of the BASIC code takes up 12 
memory bytes. 

5.2.2 Two armed conditionals 
Two armed conditionals are implemented in BASIC by 
using a combination of IF-THEN statements and GOTO 
statements. For example, the condition if <condition> 
then <action1> else <action2> is written: 

100 IF <condition> THEN 200 
110 <action2> 
120 GOTO 300 
200 <action1> 
300 . . . 

Notice how we reverse the order of the actions and skip 
over the second action if the condition is true. 
Exactly the same outline structure is used when 
implementing two armed conditionals in assembly 
language. 

Evaluate condition 
Branch if true to L1 
Action2 
Branch unconditionally to L2 
L1 Action1 
L2 • • • • 

For example, if we wish to assign the higher of two 
numbers to some other variable, we might write in 
BASIC: 

100 IF P > Q THEN 200 
110 ' P <= Q here 
120 MAX = Q 
130 GOTO 300 
200 MAX = P 
300 ... 

Given that P, Q and MAX are unsigned values, direct 
translation of this BASIC sequence to assembly language 
gives: 

LDA P ; A = P 
CMPA Q ; Compare A and Q 
BHI L200 ; if A > Q then goto L200 
LDA Q ; A = Q 
STA MAX ; MAX = A 
BRA L300 ; goto L300 

L200 LDA P ; A = P 
STA MAX ; MAX = A 

L300 
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Again, optimisation of this sequence is possible. The 
statement labelled L200 is a redundant load as A 
already contains the value of P at that point. 
Furthermore, both actions end with an identical store 
operation so it may be factored out and executed after 
one or the other action is complete. An optimised 
version is: 

LDA P 
CMPA Q 
BHI L200 ;if P > Q goto L200 
LDA Q ; A = Q 

L200 STA MAX ; MAX = A 

A sequence of 8 assembly language instructions has been 
optimised to 5 instructions which do exactly the same 
thing. We must emphasise however that it is not good 
programming practice to try to write optimised code 
directly. This is an error-prone process because the 
programmer is liable to become caught up in 
optimisation details and to lose track of the correct 
solution. With high-level language code to serve as a 
master solution, the introduction of errors through 
optimisation is much less likely. 

5.2.3 Multi-armed conditionals 
Multi-armed conditionals are conditional statements 
where several conditions are evaluated and the action 
following the true condition is executed. Readers 
familiar with Pascal will recognise the case statement 
as a form of multi-armed conditional but in BASIC it 
must be implemented as a sequence of IF-THEN 
statements. For example: 

10 IF T = 7 THEN AGE = BAND1 
20 IF T = 9 THEN AGE = BAND2 
30 IF T = 14 THEN AGE = BAND3 
40 IF T = 15 THEN AGE = BAND4 
50 .... 

Of course, this may be translated into assembly code as 
a sequence of IF-THEN statements as described above. 
However, multi-armed conditionals often use the same 
value in all tests and often have similar actions with 
different values being assigned to the same variable in 
each action. 

The following structure shows how multi-armed 
conditionals can often be implemented. 

Load test variable 
if NOT(testl) goto T2 
Load value to be assigned 
goto STORE 
T2 if N0T(test2) then goto T3 
Load T2 value 
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goto STORE 

STORE Store value to be assigned 

The above sequence of IF-THEN statements may be coded 
in assembly language: 

LDA T ; Load variable to be tested 
CMPA #7 ; First test, compare A with 7 
BNE L1 ; if A <> 7 then goto L1 
LDB BAND1 ; variable to be assigned into B 
BRA L4 ; Jump to store 

L1 CMPA #9 ; Second test, compare A and 9 
BNE L2 ; if not equal, go on to next test 
LDB BAND2 
BRA L4 

L2 CMPA #14 
BNE L3 ; if A <> 14 then goto L3 
LDB BAND3 
BRA L4 

L3 CMPA #15 ; last test 
BNE L5 ; do nothing if not equal 
LDB BAND4 

L4 STB AGE ; assign to AGE 
L5 • • • • 

Compound conditional expressions 
So far, we have looked at conditional statements where 
the condition involved is a simple condition of the 
form <operand> <conditional operator> <operand>. 
However, compound conditional statements using ANDs and 
ORs to connect conditions are also frequently used. 
These have the general form: 

<simple condition> <logical operator> <condition> 

where permitted logical operators in BASIC are AND and 
OR. 

In BASIC, therefore, the following are all valid 
conditional expressions: 

P = Q AND T >= R 
J > I AND J < K 
J > I OR K = L 
K = J AND (P > Q OR T >= R) 

When such conditions are implemented in assembly 
language we may write them so that it is often only 
necessary to test a single condition rather than the 
conditions on each side of the AND or OR operator. This 
is possible because we know that both conditions must 
be true for an AND operation to be true and that both 
conditions must be false for an OR operation to be 
false. 
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Therefore, if we test the first condition in an AND 
operation and find it false there is no need to test 
the second condition. Similarly, if we test the first 
condition in an OR operation and find it true, the 
entire expression must be true. The second condition 
need not be tested. For AND operations, the outline 
structure of an assembly language program is: 

Test left hand condition 
If false goto L1 
Test right hand condition 
If false goto L1 
Actions if condition is true 
L1 ... 

For OR conditional operators, the outline is similar: 

Test left hand condition 
If true goto L1 
Test right hand condition 
If false goto L2 
L1 actions if condition is true 
L2 . . . . 

We illustrate this by showing how BASIC IF-statements 
with compound conditions may be expressed in assembly 
code. Again, assume that all variables are unsigned 8-
bit quantities. 

IF P = Q AND T >= R THEN M = N 

The assembly language equivalent of this is: 

LDA P ; A = P 
CMPA Q 
BNE OUT ; if P <> Q skip second condition 
LDA T ; A = T 
CMPA R 
BLO OUT ; if T < R skip action 
LDA M 
STA M 

OUT .... 

Notice how only a single test is necessary if P is not 
equal to Q. 

IF (P > Q OR T >= R) AND K = J THEN M = N 

To implement this in assembly language we re-order it 
to test first if K = J. If this is false, there is no 
need to carry out any more tests. 

LDA K ; A = K 
CMPA J 
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BNE OUT ; If A <> K do no more 
LDA P 
CMPA Q 
BHI OK ; OR condition is true, skip to action 
LDA T 
CMPA R 
BLO OUT ; Skip over action 

OK LDA N 
STA M 

OUT 

5.3 LOOP CONSTRUCTS 

Loop constructs are those programming constructs which 
allow the programmer to specify that a group of 
statements is to be executed a number of times. They 
take three fundamental forms: 

(1) For loops 
These execute the loop a specified number of 
times. A loop counter variable is used and the 
loop terminates when this variable reaches a 
specified value. 

(2) While loops 
These execute the statements in the loop while 
some condition remains true. Loop execution stops 
as soon as this condition becomes false. 

(3) Repeat loops 
Repeat loops cause the loop to be executed until 
some condition becomes true. The important dis
tinction between repeat loops and while loops is 
that the test for loop termination comes at the 
end of a repeat loop whereas it comes at the be
ginning of a while loop. Repeat loops, therefore, 
always execute at least once. 

BASIC provides facilities which allow each of these 
looping constructs to be expressed. For loops are 
constructed using FOR and NEXT statements and both 
while and repeat loops are built from combinations of 
IF-THEN and GOTO statements. 

We shall now look at each of these loop constructs 
in turn and see how they may be expressed in assembly 
language. 

5.3.1 For loops 
For loops are loops which execute a given number of 
times. They have a controlling for-loop variable which 
is incremented or decremented by one or by some 
programmer specified value until it reaches a 
terminating value. For example, consider the following 
BASIC program which sums the integers between 1 and N, 
where N is some positive number. 
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100 TOT = 0 
110 FOR I = 1 TO N 
120 TOT = TOT + I 
130 NEXT I 

On completion of this program fragment, the value of 
TOT will be the desired sum. To see how this might be 
expressed in assembly code it is best to consider it in 
primitive terms using only IF-THEN and GOTO statements 
to implement looping. 

100 TOT = 0 
110 I = 1 
120 IF I > N THEN GOTO 160 
130 TOT = TOT + I 
140 I = I+1 
150 GOTO 120 
160 

Now we have reduced the loop to conditionals and gotos 
which we know how to express in assembly language: 

CLR TOT ; TOT = 0 
LDA #1 ; A = 1 
STA I 

LOOP LDA I ; A = I 
CMPA N 
BHI OUTLP ; IF I > N stop looping 
LDA TOT 
ADDA I 
STA TOT 
INC I ; Notice use of INC rather than ADD 
BRA LOOP 

OUTLP .... 

In this example we have implemented the statement I=I 
+ 1 as INC I which appears to be a sensible 
optimisation. However, if we look at the body of the 
loop we see that I is not actually modified in the loop 
body so we can keep the loop counter in a register for 
the duration of the loop. 

CLR TOT ; TOT = 0 
LDB #1 ; B = 1, loop counter 

LOOP CMPB N 
BHI OUTLP ; if B > N then skip 
TFR B,A ; A = B 
ADDA TOT ; A = A + TOT 
STA TOT ; TOT = A 
INCB ; B = B + 1 
BRA LOOP 

OUTLP .... 

The above code shows how the for loop may be 
implemented when TOT is an 8-bit value. If TOT is a 
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16-bit value, an alternative strategy may be adopted. 
Because of the existence of the register add 
instruction ABX, the B register may be used to hold the 
loop counter and the X register the sub-total as the 
loop is executed. 

LDX #0 ; X = 0, initial total 
LDB #1 ; Loop counter 

LOOP CMPB N 
BHI OUTLP ; If B > N then goto OUTLP 
ABX ; X = X + B 
INCB ; B = B + 1 
BRA LOOP ; goto LOOP 

OUTLP STX TOT ; TOT = X 

You can see from these examples that there is no single 
'best' way of implementing for loops in assembly 
language. Rather, if optimal code is required, the 
programmer must look at the statements within the loop 
and code his loop with how they interact with the loop 
counter. 

As a final example in this section, we show how a 
FOR-NEXT loop using a negative step might be 
implemented in assembly code. This example is also our 
first introduction to arrays. The program fragment 
assigns those numbers between 100 and 50 which are 
divisible by 8 to adjacent array elements. Therefore, 
the first element holds 96, the second 88, the third 80 
and so on. In BASIC, this may be written as follows: 

100 I=0 
110 FOR J = 100 TO 50 STEP -2 
115 RM = J - (INT(J/8) * 8) 
120 IF RM <> 0 THEN 150 
130 ARR(I) = J 
140 I = I + 1 
150 NEXT J 

A completely literal translation of this program is not 
possible because there is no direct equivalent in 
assembly language to the divide operator. However, the 
calculation of the remainder may be simulated by using 
the fact that a binary number which is divisible by 8 
always has its 3 least significant bits (bits 0-2) 
equal to 000. If the bit pattern 00000111 is anded with 
a number and the result is zero then bits 0-2 of that 
number must be 000 and the number is divisible by 8. 

In the assembly language example below, the array 
ARR is accessed by placing the address of its first 
element in register X. Indexed addressing is then used 
to access this and succeeding elements. 

CLR I ; I = 0, not 1 as assembly language 
* array indexes always start at 0 
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LDA #100 
STA J ; J = 100 

LOOP LDA J 
CMPA #50 
BLO OUTLP ; if J < 50 then goto OUTLP 
ANDA #$F8 ; AND with bit pattern 11111000 
CMPA J ; Compare anded value with original 
BNE L150 ; if not divisible by 8 goto L150 
LDB I 
STA B,X ; Register B holds array index 
INCB 
STB I ; I = I + 1 

L150 LDA J ; next J 
SUBA 2 
STA J ; J = J - 2 
BRA LOOP ; Back to LOOP 

OUTLP 

This code may be optimised by making use of registers 
to hold the value of the loop counter J and the array 
index I. We leave this optimisation as an exercise for 
the reader. 

5.3.2 While loops 
While loops are loops which execute while some 
condition is true. When this condition becomes false, 
execution of the loop terminates. In BASIC, while 
loops are implemented using IF-THEN and GOTO 
statements. 

For example, consider the following while loop: 

count = 0 
while m > n do 

m = m - n 
count = count + 1 

end while 

In BASIC, this loop might be written: 

100 COUNT = 0 
110 IF M <= N THEN 150 
120 M - M - N 
130 COUNT = COUNT + 1 
140 GOTO 110 
150 

It is a straightforward task to translate this to 
assembly language using the techniques which we have 
already described for converting IF-THEN and GOTO 
statements to assembly code: 

CLR COUNT ; COUNT = 0 
WLOOP LDA M 

CMPA N 
BLS OUTLP ; If M <= N goto OUTLP 
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LDA M 
SUBA N 
STA M ; M = M - N 
INC COUNT ; COUNT = COUNT + 1 
BRA WLOOP 

OUTLP 

As usual, the direct translation of BASIC to assembly 
code may be optimised by removing redundancies and 
making more effective use of the processor registers. 

CLRB ; Use B to hold COUNT 
LDA M ; A = M 

WLOOP CMPA N 
BLS OUTLP ; If M <= N goto OUTLP 
SUBA N ; M = M - N. 

* Don't store back into M 
* as value is needed 

INCB ; COUNT = COUNT + 1 
BRA WLOOP 

OUTLP STB COUNT ; COUNT = B 
STA M ; M = A 
• * • • 

Although there are exactly the same number of 
instructions in this optimised sequence, the number of 
instructions executed within the loop has been reduced 
from 8 to 5. As these are the instructions which are 
each executed several times (once for each loop 
execution), this reduction means that the optimised 
program will run more quickly than its unoptimised 
equivalent. 

5.3.3 Repeat loops 
Repeat loops and while loops are similar. The most 
important difference is that the test for loop 
termination in a repeat loop comes at the end of the 
loop whereas in a while loop the termination test is 
placed at the start of the loop. The result of this is 
that repeat loops always execute at least once whereas, 
if the while test is initially false, the while loop 
will not execute at all. Again, the BASIC programmer 
uses IF-THEN and GOTO statements to implement repeat 
loops. 

For example, consider the following repeat loop: 

repeat 
m = m + t 
p = p + m 

until p >= n 

In BASIC, this might be written: 
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100 M = M + T 
110 P = P + M 
120 IF P < N THEN 100 

Translating this BASIC program to assembly language 
results in the following program fragment: 

RLOOP LDA M 
ADDA T 
STA M ; M = M + T 
LDA P 
ADDA M 
STA P ; P = P + M 
LDA P 
CMPA N 
BLO RLOOP ; If P < N goto RLOOP 

We leave the optimisation of this assembly code 
sequence as an exercise for the reader. 

5.4 GOTO STATEMENTS 

Although you may never have considered them as such, 
the only function of BASIC GOTO statements is to 
provide a means for the programmer to implement 
conditional statements and loop statements. You will 
have surmised by now that the equivalent, in assembly 
code, to BASIC'S GOTO statement is the unconditional 
branch instruction BRA <label>. 

There is also an alternative form of the BASIC GOTO 
in assembly language and that is the unconditional jump 
instruction JMP. Executing a JMP instruction causes the 
program counter to be set to the value of JMP's 
operand. Unlike the BRA instruction where the operand 
is added to or subtracted from PC, JMP's operand is not 
a relative but is an absolute value. 

In general, you will probably find that you use BRA 
more often than JMP as it is part of the fundamental 
mechanism involved in the implementation of loops and 
conditional statements. 

5.5 INPUT AND OUTPUT 

One of the most significant advantages of programming 
in a language like BASIC, rather than in assembly 
language, is the fact that BASIC provides easy-to-use 
statements for the input and output of program data. 
Generalised input/output programming is very complex; 
indeed, we devote the whole of Chapter 8 to this topic, 
and the BASIC system hides much of this complexity from 
the programmer. 

In BASIC, we may say INPUT N in order to read a 
number from the keyboard into variable N. Similarly, 
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PRINT N prints the contents of the variable N on the 
display screen. When you think of it however, you 
don't really type the binary form of a number on the 
keyboard nor do you get the binary pattern representing 
the number printed on the screen. Rather, you type 
characters, which happen to be the digits making up the 
number required, and you read characters on the screen. 

The BASIC system contains routines which convert 
character sequences, say '5' and '8', to the binary 
representation of 58. Similarly, when printing a 
number say -326, the PRINT routine converts the binary 
pattern representing -326 to the characters '-', '3', 
'2' , '6' . 

The assembly language programmer does not have ready 
access to these BASIC conversion routines so must 
always deal with input and output in terms of 
characters rather than numbers. If conversion to and 
from numbers is required, you must write your own 
conversion routines for this task. Some of these 
routines are provided as part of the machine code 
monitor program given in the final section of this 
chapter. 

As I/O programming is described in general in 
Chapter 8, we only describe very basic facilities here 
which allow you to input characters from the keyboard 
and output characters to the screen. These operations 
are carried out by calling subroutines which are an 
inherent part of the Dragon's input/output system. 

We call the routine which is used to input 
characters from the keyboard INCH. The details of how 
this routine works are not important, all the user must 
know is how to call this routine and the results of the 
routine call. When INCH is called, it interacts with 
the keyboard controller and returns an 8-bit value in 
the A accumulator. This value is either zero, which 
means that no key has been pressed, or is a code 
representing the input character. 

The key code returned by INCH is, in most cases, the 
ASCII value of the character typed by the user. The 
exceptions to this, when another value is returned in 
A, are shown in the table below. 

Character 

Up arrow 
Shift up arrow 
Down arrow 
Shift down arrow 
Shift @ 
BREAK 
Shift BREAK 
Left arrow 
Shift left arrow 
Right arrow 

Hex Code 

5E 
5F 
0A 
5B 
13 
03 
03 
08 
15 
09 



Shift right 
arrow ENTER 

Shift ENTER 
CLEAR 
Shift CLEAR 

5D 
0D 
0D 
0C 
5C 
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A jump to the starting address of the INCH routine is 
always stored in memory at address 8006. The INCH 
subroutine can therefore be called directly either by 
using this address as the instruction operand or by 
equating the name INCH with the address and using INCH 
in the operand field of the instruction. 

We call the routine using the jump subroutine 
instruction JSR which pushes the value of PC onto the 
S-stack and jumps to the called routine. On 
termination, the called subroutine restores the value 
of PC. Therefore, a character may be input as follows: 

JSR INCH 

However, when you actually look for a character using 
INCH there is no guarantee that a key has been pressed. 
INCH returns 0 in A if no key is pressed and also sets 
up the condition code register flags. Remember, the Z 
bit in CC indicates whether the result of the previous 
operation was zero or not so, if CC.Z is set, this 
means that A = 0. The following short loop continually 
calls INCH until a character is actually input. 

GETCH JSR INCH ; Look for a character 
BEQ GETCH ; if none input, keep looking 

The routine INCH does not destroy any register contents 
apart, obviously, from A and CC. If the value of CC is 
precious and must be preserved, it must be saved before 
calling INCH and restored after the return from the 
subroutine. For example: 

PSHS CC ; Save CC on S-stack 
GETCH JSR INCH ; get a character 

BEQ GETCH 
PULS CC ; Restore CC 

Normally, it is not necessary to save and restore CC as 
it should not be used to hold permanent information. 

INCH's complement, a character output routine, is 
accessed via address 800C and the name OUTCH may be 
equated with this address. As well as actually printing 
the character on the screen, OUTCH also moves the 
cursor one space when a character is printed and 
handles the control characters 'Backspace', 'Return', 
etc. 

To output a character, that character should be 
placed in the A register and OUTCH called. The value 
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of the condition code register is lost when OUTCH is 
called but the values of all other registers, including 
the A register, are not affected. 

The use of OUTCH is illustrated by the following 
example which outputs a '*' at the current cursor 
position. 

LDA #'* ; A = ASC("*") 
JSR OUTCH ; Output character 

Using these simple character input and output routines, 
we may now write an assembly language program which 
reads characters from the keyboard and prints them on 
the display. Assume that the read/print sequence halts 
when the BREAK key is pressed. 

LDA #$03 
STA BREAK ; Set location BREAK to 

* BREAK key input code 
GETCH JSR INCH 

BEQ GETCH ; Get a character 
CMPA BREAK ; Is it BREAK 
BEQ DONE ; If so, finish with no print 
JSR OUTCH ; Print the character 
BRA GETCH ; Get next character 

DONE .... 

The final example in this introduction to assembly 
language input and output reads 10 characters into a 
memory area then prints them in reverse order. Notice 
how auto increment and decrement of the X register is 
used in this sequence. 

CLRB ; B is counter register 
LDX #CHARS ; Set up address of memory area 

GETCH JSR INCH 
BEQ GETCH ; Get a character 
STA ,X+ ; Store it and increment X 
INCB ; Add 1 to counter 
CMPB #10 ; If counter <= 10 then 
BLS GETCH ; get next character 

* Now all characters are input and the address in X is 
* one greater than the address of the last character 
* in the sequence 
* Count downwards to output them in reverse order 

DECB ; Reset B to correct number 
COUT LDA ,-X ; Decrement X 
* and fetch character to A 

JSR OUTCH ; Print it 
DECB ; One off counter 
BNE COUT ; If counter <> 0 goto OUTCH 
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5.6 SUBROUTINES 

A subroutine is a self-contained section of code which, 
usually, is set up to implement a particular function. 
Subroutines may be called from within a program. They 
carry out their specified function and control then 
return to the statement following their call. 

Subroutines are a very important programming 
construct and the assembly language programmer has 
great flexibility in how he defines and uses 
subroutines. In fact, much of the next chapter is 
dedicated to this topic and we confine our description 
here to an explanation of how BASIC'S GOSUB command may 
be implemented. 

In BASIC, when we set up or declare a subroutine, we 
assign it a line number which is out of sequence with 
the numbers in the rest of our program. To call the 
subroutine, we set up the values which it needs in 
program variables and then execute a GOSUB <line 
number> instruction. This transfers control to the 
subroutine until a RETURN statement is executed when 
control returns to the calling program. 

For example, the following BASIC sequence calls a 
subroutine to check if a number is an odd number less 
than 20. If so, the subroutine converts it to another 
number by adding 20 to it. Otherwise, it returns the 
number unchanged. The subroutine expects its input to 
be stored in the variable INN and returns its output in 
the variable OUTN. 

100 INPUT INN 
110 GOSUB 1000 
120 PRINT OUTN 
130 .... 
1000 RM = INN - (INT(INN/2)*2) 
1010 IF INN < 20 AND RM = 0 THEN 1040 
1020 OUTN = INN 
1030 GOTO 1050 
1040 OUTN = INN + 20 
1050 RETURN 

When using subroutines in assembly code, we may either 
use the BSR instruction or the JSR instruction. The 
BSR instruction is like the unconditional branch 
instruction BRA, but as well as branching it saves the 
value of PC on the S-stack. The JSR instruction is 
used when we have subroutines set up at known addresses 
or when it is necessary to use indirect addressing to 
call the subroutine. 

Consider how the above BASIC code might be 
translated to assembly language. As we haven't yet 
covered the input and output of numbers, let us assume 
that there exists a subroutine GETNUM which inputs a 
number to the A register and a corresponding routine 
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PUTNUM which outputs the A register, as a number, to 
the screen. 

JSR GETNUM ; INPUT A 
STA INN ; INN = A 
BSR CONVON ; To convert number 
LDA OUTN 
JSR PUTNUM ; PRINT A 

* CONVON - Add 20 to odd numbers < 20 

CONVON LDA INN 
CMPA #20 
BHI EXIT ; If INN > 20 then goto EXIT 
BITA #$01 ; Test bottom bit of A 

* If it is 0, number is even 
BEQ EXIT 
ADDA #20 ; Add 20 to number 

EXIT STA OUTN ; and store in OUTN 
RTS ; return to calling code 

The RTS instruction is used to return control to the 
instruction which immediately follows the subroutine 
call. As CONVON is called above, the first load 
instruction LDA INN is redundant as INN is already held 
in register A. However, we don't optimise this by 
removing the load instruction as the subroutine 
specification does not require the programmer to store 
INN in register A before the subroutine call. 

Notice also that the subroutine alters the value of 
register A. In general, subroutines should leave the 
states of registers exactly as they were when the 
subroutine was called. Therefore, all subroutines 
ought to have the following structure. 

Save registers used by subroutine on stack 
Subroutine code 
Restore register values from stack 
Return 

The subroutine CONVON may be adapted to reflect this 
structure: 

CONVON PSHS A,CC ; Save A and CC on stack. 
LDA INN 
CMPA #20 
BHI EXIT 
BITA #$01 
BEQ EXIT 
ADDA #20 

EXIT STA OUTN 
PULS A,CC,PC ; Restore and return 

All the RTS instruction does is to pull PC from the S-
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stack so it can be left out if PC is pulled explicitly 
when the saved registers are restored from the stack. 

This mechanism of passing parameters to and from a 
subroutine in fixed memory locations is not ideal. We 
shall describe its deficiencies and introduce better 
parameter passing conventions in the following chapter. 

5.7 ARRAYS 

Arrays are one of the most commonly used data 
structures where a sequence of storage elements is 
given a name and particular elements in that sequence 
are accessed by number. In this section, we show how 
arrays of numbers may be stored and accessed using 
assembly language. 

In BASIC, the programmer may use one-dimensional 
arrays which are made up of a linear sequence of 
numbers or two-dimensional arrays which, conceptually, 
may be considered as a table or matrix of numbers. In 
fact, two-dimensional arrays are also stored in the 
computer's memory as a linear sequence and the BASIC 
system provides routines to map a row/column pair 
(l,m), say, to the appropriate address n in the linear 
sequence. Two possible mappings which may be used by 
the assembly language programmer are described later in 
this section. 

When using one-dimensional arrays in assembly 
language, you must know the address of the first 
element in the array. You get this by associating a 
label with a 'reserve store' directive as described in 
section 4.3. This label identifies the so-called 'base 
address' of the array. We assume, in the remainder of 
this section, that NARR is the base address of a one-
dimensional array of 8-bit numbers and that MATRIX is 
the base address of a two-dimensional numeric array. 

These may be set up using assembler directives as 
follows: 

NARR RMB 15 
MATRIX RMB 100 

The index registers X and Y are the mechanism through 
which consecutive array elements may be accessed. The 
base address of the array is loaded into one of these 
index registers and the auto increment/decrement 
facilities used to sequence through the array. For 
example, say NARR is made up of 15 8-bit values and you 
want to set all elements to 0. In BASIC, you would 
write: 

100 FOR I = 1 TO 15 DO 
110 NARR(I) = 0 
120 NEXT I 
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Exactly the same assignments may be specified in 
assembly language but there is no need for an explicit 
counter variable. 

LDX #NARR ; Put array base address in X 
SET0 CLR ,X+ ; NARR(X) = 0 : X = X + 1 

CMPX #NARR+15 ; Compare X to base address+15. 
* see if all elements cleared 

BLS SET0 ; If not, goto SET0 
* to clear next element 

The availability of index registers makes array element 
access a very efficient operation. Even when auto 
increment or decrement cannot be used to update the 
index register, because the step is not one or two, the 
LEA instruction may be used to perform arithmetic on 
the index register. 

For example, say the following BASIC code is to be 
implemented in assembly language: 

100 FOR I=3 STEP 3 to 15 
110 NARR(I) = NARR(I - 1) + 1 
120 NEXT I 

Using assembly language, there is again no need for an 
explicit array index variable: 

LDX #NARR + 2 ; X = base of NARR + 2 
* As NARR+0 is first element 
* this refers to 3rd element 
SETVAL LDA ,-X ; A = Previous element 

INCA ; A = A + 1 
LEAX 1,X ; X = X + 1 to get back to 

* address to be assigned 
STA ,X ; NARR(X) = NARR(X-1) + 1 
LEAX 3,X ; X = X + 3 
CMPX #NARR + 15 ; Are we finished? 
BLS SETVAL ; If not, back to SETVAL 

The use of index registers to hold the address of the 
array element to be accessed is easy to implement for 
one-dimensional arrays. However, when two-dimensional 
arrays are used, the programmer must devise a way of 
storing the array as a linear sequence and must invent 
a mapping to convert a row/column address to an address 
in that sequence. There are two techniques which are 
commonly used for this conversion. 

The first of these techniques stores the entire 
array, row by row, in contiguous memory locations. So, 
if an array is declared in BASIC as MATRIX(10,10) this 
takes up 100 memory elements. The first 10 elements 
are row 1, written as MATRIX(1,*), the next 10 are row 
10, MATRIX(2,*), etc. The position of an element in 
row m say is found by finding where row m starts then 
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adding the column displacement to it. 
The starting position of a particular row, the row 

base, is computed by multiplying the row number by the 
length of the row. As the row base of the very first 
row is the same as the array base address, we count row 
numbers from 0. Therefore, to find the row base of the 
sixth row, we actually multiply the row length by five. 
For example, MATRIX(6,*) would have a row base address 
of MATRIX + 50 (5 * row length) and the element 
MATRIX(6,8) has the address MATRIX + 5 0 + 8 . 

An alternative storage technique for two-dimensional 
arrays does not require array rows to be stored 
consecutively nor does it require a multiplication to 
compute the row base address. Rather, the row base 
addresses are all stored separately in another array 
called an Iliffe vector, named after J. Iliffe, the 
inventor of the mapping technique. This is best 
illustrated diagrammatically as shown in Figure 5.1. 

Fig. 5.1 Using Iliffe Vectors to implement 2-D arrays 

To find out the row base address, the row number is 
used as an index into this Iliffe vector and the 
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starting address of the row is returned. The column 
number is then added to this to compute the actual 
element address. The base address of the array is not, 
in this case, the address of the very first array row 
but is the address of the first element in the Iliffe 
vector. 

The main disadvantage of using Iliffe vectors is, 
obviously, the fact that the Iliffe vector itself takes 
up precious memory locations. However, the flexibility 
which it affords inasmuch as all array rows need not be 
in contiguous storage elements and the fact that a 
multiplication is avoided in the address computation 
often outweighs this disadvantage. 

Both of these techniques of array storage are 
illustrated below with assembly language versions of 
the following BASIC code. 

10 DIM MATRIX(10,10) 
100 INPUT M 
110 FOR J = 1 TO 10 
120 MATRIX(M,N) = 0 
130 NEXT J 

When MATRIX is stored row by row in a linear sequence, 
the above BASIC may be implemented in assembly code as 
follows. Assume that the subroutine GETNUM inputs a 
number to the A register. 

JSR GETNUM ; INPUT M 
* That is, get row number into A 

DECA ; Subtract 1 as count from 0 
LDB #10 ; This is the row length 
MUL ; D = A * B ie 10*(M-1) 
ADDD #MATRIX ; Add the matrix base address 
TFR D,X ; Set up index register X 
LDA #10 ; Use A to count assignments 

NEXT CLR ,X+ ; Zero element: X = X + 1 
DECA ; A is counter register 
BNE NEXT ; If A <> 0 goto NEXT 

When the two-dimensional array is represented using an 
Iliffe vector, the array base MATRIX holds the address 
of the first element of that vector. 

JSR GETNUM ; A = row number 
DECA ; Get displacement from array base 
LDX #MATRIX ; Put base address in X 
LDX A,X ; Index to load X with the row base 

* taken from the Iliffe vector 
LDA #10 ; A is counter 

NEXT CLR ,X+ ; Set element to zero 
DECA 
BNE NEXT ; If all elements not cleared 

* go back to clear next element 
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Notice, from this example, how the powerful indexed 
addressing features of the M6809 makes the computation 
of the row base very efficient indeed. In fact, both 
techniques of two-dimensional array implementation are 
efficient on the M6809. 

5.8 A MACHINE CODE MONITOR 

Rather than present a number of small examples of 
working assembly code programs, we have chosen to 
illustrate the principles described in this chapter 
with a single, substantial assembly code program. 
However, we have written this program in a structured 
way so that it is made up of a number of easily 
understood routines. 

The reason for adopting this approach is that we 
want to present a program which is of use to the novice 
assembly code programmer and which can help him debug 
his own programs. The program below is a so-called 
'monitor' which provides facilities for the user to 
examine the contents of specified memory addresses and 
to change them by typing the revised value. 

The monitor issues a prompt to the user and responds 
to two commands: 

(1) J - this means jump to the start of the user pro
gram. 

(2) M <address> - this displays the contents of the 
specified address. 

Once an M command has been issued, the user may examine 
subsequent addresses by typing any letter and may 
examine the previous address by typing an 'up arrow' 
character. If the user types a value made up of three 
decimal digits or two hexadecimal digits preceded by a 
'$' sign, this value is filled in to the current 
address. 

To return to the program which called the monitor, 
you must type a 'BREAK' character. A number is 
normally terminated with an 'ENTER' character but can 
be terminated early with any other character in which 
case, the change is ignored. 

The sequence below is an example of a possible 
dialogue with the monitor. User input is underlined. 

*M $1000 
$1000 000 $00 255 
$1001 001 $01 $FF 
$1002 128 $80 2[ENTER] 
$1003 016 $10 [up arrow] 
$1002 002 $02 $A+ 
$1003 016 $10 [up arrow] 
$1002 002 $02 [BREAK] 
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The monitor program itself now follows. Do not worry if 
you cannot understand it completely on your first 
reading. You may find it helpful to read Chapter 6 and 
then come back to this program for further study. 

* MONITOR - memory examine and change system 
* 
* This program is intended to help with the 
* development and debugging of assembly language 
* programs. It provides facilities for the 
* user to input a memory address and display its 
* contents. These contents may then be modified 
* by the user. 

* Unless otherwise specified, all routines preserve 
* all register values except CC and any registers used 
* for returning results. 

ORG 20001 
LBRA DRAMON ; Entry point of the monitor 

INTRO FCC "DRAGON MONITOR 1.0" 
FCB 0 ; Terminator for string 

CR EQU $0D 
QMARK EQU $3F 
UPAROW EQU $5E 
BREAK EQU $03 
DOLLCH EQU $24 
STAR EQU $2A 
CBLINK EQU $8009 ; Cursor blink routine 
INCH EQU $8006 ; Keyboard input routine 
OUTCH EQU $800C ; Output character routine 

* INECHO - read a character and echo it to screen 

* Register inputs NONE 
* Register outputs A - contains character input 
INECHO PSHS X,B ; Save registers affected 
INLOOP JSR CBLINK ; Blink the cursor 

JSR INCH ; Scan the keyboard 
BEQ INLOOP ; and wait for a character 
JSR OUTCH ; Echo the character 
PULS X,B,PC ; Restore registers and return 

* OUTSTR - print string of characters 
* 
* Register inputs X - pointer to beginning of string 
* Registers destroyed X,A 
* 
* String must be terminated with a null byte 
* 
OUTSTR LDA 0,X+ ; Get character from string 

BEQ ENDSTR ; Terminated by a zero byte 
JSR OUTCH ; Output the character 
BRA OUTSTR ; and deal with the next one 

ENDSTR RTS 
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* OUTCR - output a carriage return 

* Register inputs NONE 

OUTCR PSHS A ; Preserve A 
LDA #CR ; Load Carriage Return code 
JSR OUTCH ; and send it 
PULS A,PC ; Restore and return 

* OUTSP - output a space 

* Register inputs NONE 
* 
OUTSP PSHS A 

LDA #$20 ; Code for space 
JSR OUTCH ; and output it 
PULS A,PC 

* READY - Prompt user for new command 
* 
* Register inputs NONE 
* 
READY PSHS A 

BSR OUTCR ; Take a new line 
LDA #STAR ; before outputting 
JSR OUTCH ; prompt character 
PULS A,PC 

* 
* DOLLAR - prompt for hexadecimal value 
* 
* Register inputs NONE 
* 
DOLLAR PSHS A 

BSR OUTSP 
LDA #DOLLCH ; Hexadecimal prompt 
JSR OUTCH 
PULS A,PC 

* 
* INHEXD - input a hexadecimal value 
* 
* Register inputs NONE 
* Register outputs A - if valid hex char then hex 
* value else character 
* CC.V = 0 if valid hex character 
* = 1 if non-hex character 

INHEXD BSR INECHO ; Read a character 
CMPA #'0 ; and check the range 
BLO INHERR ; for "0" to "9" 
CMPA #'9 
BLS CHOSUB ; and convert if so 
CMPA #'A ; Could be "A" to "F" 
BLO INHERR 
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CMPA #'F 
BHI INHERR 
SUBA #7 ; Make "A" to "F" follow "9" 

CHOSUB SUBA #'0 ; Convert to numeric value 
ANDCC #$FD ; Valid return 
BRA INHXIT 

INHERR ORCC #2 ; Error return, V bit set 
INHXIT RTS 

* OUTHXD - Output hex digit as character 

* Register inputs A - hexadecimal value 

OUTHXD ANDA #$F ; Mask off MS 4 bits 
CMPA #9 ; Check for decimal digit 
BLS ADDCHO 
ADDA #1 ; A to F offset 

ADDCHO ADDA #'0 ; Convert to character 
JSR OUTCH ; and output it 
RTS 

* INDECD - input decimal digit and convert to value 
* 
* Register inputs NONE 
* Register outputs A - decimal value if in range 0-9 
* - character if non-decimal 
* CC.V - 0 if valid input 
* =1 otherwise 
* 
INDECD BSR INECHO 

CMPA #'0 
BLO INDERR 
CMPA #'9 
BHI INDERR 
SUBA #'0 ; Converts to numeric value 
ANDCC #$FD 
BRA INDXIT 

INDERR ORCC #2 
INDXIT RTS 

* OUTDCD - output decimal digit as character 
* 
* Register inputs A - decimal value 

OUTDCD ANDA #$F 
ADDA #'0 
JSR OUTCH 
RTS 

* HCNVAB - combine hex digits into single byte 
* 
* Register inputs A - new hex digit 
* B - existing hex digit 
* Register outputs B - new hex value = B*16+A 
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* 
HCNVAB STA 0,-S ; Save for later 

ASLB ; Move LS 4 bits 
ASLB ; of B 
ASLB ; to the 
ASLB ; MS 4 bits 
ADDB 0,S+ ; Add in new hex digit 
RTS 

* 
* INHEXB - input a hexadecimal byte 
* 
* Register inputs NONE 
* Register outputs A - hex byte value 
* CC.C = 0 means value is OK 
* CC.V = 0 means that B contains last 
* hex value input 
* CC.V = 1 means hex byte terminated 
* prematurely and B holds 
* character read in. 
* 
INHEXB CLRB ; Initialise to 0 

BSR INHEXD ; Read a hex digit? 
BVS NONHEX 
BSR HCNVAB ; yes, so add to byte 
BSR INHEXD ; Second hex digit? 
BVS NONHEX 
BSR HCNVAB ; yes, so add that also 

NONHEX ANDCC #$FE ; Indicate OK 
EXG A,B ; Return with A and B set up 
RTS 

* OUTHXB - output a hex byte as characters 

* Register inputs A - contains byte value 
* 
OUTHXB PSHS A 

LSRA ; Shift MS 4 bits 
LSRA ; to LS 4 bits 
LSRA 
LSRA 
BSR OUTHXD ; and output the hex digit 
LDA 0,S ; Get original again 
BSR OUTHXD ; MS 4 bits masked off by OUTHXD 
PULS A,PC ; Return intact 

* 
* MULB10 - multiply by 10 
* 
* Register inputs B - value to be multiplied 
* Register outputs B = B*10 
* CC.C = 0 means result between 0-255 
* =1 result out of range 
* 
MULB10 CLR 0,-S ; Create temp on stack 

ASLB ; Evaluate 2*B 
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BCS MULXIT ; Too big? 
STB 0,S ; Save as temp result 
ASLB ; Evaluate 4*B 
BCS MULXIT ; Too big? 
ASLB ; Evaluate 8*B 
BCS MULXIT ; Too big? 
ADDB 0,S ; Evaluate (2*B)+(8*B) 

* If this is too big a result C will be set 
MULXIT LEAS 1,S ; Release temp. 

RTS 
* 
* DCNVAB - combine decimal values 
* 
* Register inputs A - new decimal digit 
* B - old decimal value 
* Register outputs B - result = B*10 + A 
* CC.C = 0 - result in range 0-255 
* = 1 - result out of range 
* 
DCNVAB PSHS A ; Save register 

BSR MULB10 ; B:=B*10 
BCS DCNXIT ; Too big? 
ADDB 0,S ; B:=(B*10)+A 

DCNXIT PULS A,PC ; Restore and RTS 
* 
* INDECB - Input decimal byte value 
* 
* Register inputs NONE 
* Register outputs A - input value if valid 
* CC.C = 0 value in range 0-255 
* =1 value out of range 
* If CC.V = 1 then number terminated early so must 
* be in range 0-255. B holds last converted digit 
* of all 3 typed otherwise set to terminator. 
* 
INDECB CLRB ; Initialise byte 

BSR INDECD 
BVS NONDEC ; Valid digit? 
BSR DCNVAB ; yes, add to byte 
BCS IDBXIT ; Too big? 
BSR INDECD 
BVS NONDEC ; Valid digit? 
BSR DCNVAB ; yes, add to byte 
BCS IDBXIT ; Too big? 
BSR INDECD 
BVS NONDEC ; Valid digit? 
BSR DCNVAB ; yes, add to byte 
BCS IDBXIT ; Too big, so leave C set 

NONDEC ANDCC #$FE ; Result is in range 0 - 255 
IDBXIT EXG A,B ; Return registers 

RTS 

* OUTDCB - output byte as 3 digit decimal value 
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* Register inputs A - contains byte to be output 
* 
OUTDCB PSHS D ; Both A and B used 

TFR A,B ; A is to be used in sub. 
CLRA ; Clear the 100s digit 

NXTHUN CMPB #100 ; Any 100s? 
BLO TRYTEN 
INCA ; yes, so update digit 
SUBB #100 ; Subtract a 100 
BRA NXTHUN ; and try again 

TRYTEN BSR OUTDCD ; Output the 100s digit 
CLRA ; Set up for 10s 

NXTTEN CMPB #10 ; Any 10s 
BLO TRYONE 
INCA ; yes, so update 10 digit 
SUBB #10 ; Subtract 10 
BRA NXTTEN ; and try again 

TRYONE LBSR OUTDCD ; Output 10s digit 
CLRA ; Now count the 1's 

NXTONE CMPB #1 ; Any 1's 
BLO OUTONE 
INCA ; yes, update 1's digit 
DECB ; Subtract 1 
BRA NXTONE ; and try once more 

OUTONE LBSR OUTDCD ; Final digit 
PULS D,PC ; Restore and return 

* 
* HCONVX - Add hexadecimal digit to X 
* 
* Register inputs A - new hex digit 
* X - old hex value 
* Register outputs X = X*16 + A 
* 
HCONVX STA 0,-S ; Save away for later use 

EXG X,D ; So we can do arithmetic 
ASLB ; This performs an ASL 
ROLA ; on the D register 
ASLB 
ROLA 
ASLB 
ROLA 
ASLB 
ROLA ; Have now space in LS 4 bits 
ADDB 0,S+ ; To add in new hex digit 
EXG D,X ; Restore D and return X 
RTS 

* 
* INHEXW - input hex word (address) 
* May be up to 4 hex digits 
* 
* Register inputs NONE 
* Register outputs X - hex address value 
* CC.V = 1 address terminated 
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* CC.V = 0 full 4-digit address 
* read in 
* CC.C = 0 value in range O-FFFF 
* 
INHEXW PSHS D ; Save from harm 

LDX #0 ; Initialise address 
LBSR INHEXD ; Read hex digit? 
BVS NONHW 
BSR HCONVX ; yes, add to X 
LBSR INHEXD ; Read hex digit? 
BVS NONHW 
BSR HCONVX ; yes, add to X 
LBSR INHEXD ; Read hex digit? 
BVS NONHW 
BSR HCONVX ; yes, add to X 
LBSR INHEXD ; Read hex digit? 
BVS NONHW 
BSR HCONVX ; yes, add to X 

NONHW ANDCC #$FE ; Result valid 
PULS D,PC ; Restore and return 

¥ 

* OUTHXW - output hex word as 4 hex digits 

* Register inputs X - value to be output 
* 
OUTHXW PSHS D 

TFR X,D ; D := hex word 
LBSR OUTHXB ; Output MS byte first (A) 
TFR B,A 
LBSR OUTHXB ; followed by LS byte (B) 
PULS D,PC 

* MCOMND - memory examine and change 
* 
* Register inputs NONE 
* Registers destroyed X, A, CC 
* 
* Interprets user commands as defined in introduction 
MCOMND LBSR DOLLAR ; Prompt for hexadecimal 

BSR INHEXW ; Expecting an address (hex) 
EXAMIN LBSR OUTCR ; Prefix the address 

LBSR DOLLAR ; with a "$" 
BSR OUTHXW ; followed by the address 
LBSR OUTSP ; separate by a space 
LDA 0,X ; Get contents of that address 
LBSR OUTDCB ; Shown as decimal value 
LBSR DOLLAR ; and followed by the 
LBSR OUTHXB ; hexadecimal value 
LBSR OUTSP ; Then a space 
LBSR INDECB ; Assume decimal change 
BCS QUERY ; Too big a number? 
BVC CHANGE ; If OK just change the byte 

* A non-digit has been typed, check for hex prefix 
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CMPB #DOLLCH ; Hex number? 
BNE CHKCR 
LBSR INHEXB ; yes, so get the rest 
BVC CHANGE ; If OK just change the byte 

* At this point an early end to the number has 
* been typed. Only CR (ENTER) will be allowed. 
* Note: If only a CR is typed then the byte is 
* cleared to zero!. Be careful! 
CHKCR CMPB #CR ; CR (ENTER)? 

BEQ CHANGE ; yes, then change the byte 
* Check for the "up arrow" key since this 
* returns to the previous location. 

CMPB #UPAROW ; "up arrow"? 
BEQ LSTLOC ; yes, move back to last 

* Now check for the BREAK key since this exits 
* the Monitor 

CMPB #BREAK ; BREAK in? 
BEQ MCDXIT ; yes, then exit 

NXTLOC LEAX 1,X ; Move location address on 
BRA EXAMIN ; and repeat 

LSTLOC LEAX -1,X ; Back up location address 
BRA EXAMIN ; and repeat 

CHANGE STA 0,X ; Make the change 
CMPA 0,X ; and check afterwards 
BEQ NXTLOC ; OK?, move on if so 

QUERY LDA #QMARK ; Made a mistake. 
JSR OUTCH ; so report it. 
BRA EXAMIN ; Don't do anything untoward 

MCDXIT RTS ; Return 
* 
* JCMND - jump to start of program 
* 
* Register inputs NONE 
* 
JCOMND LBSR DOLLAR ; Put out $ prompt 

LBSR INHEXW ; Get hex address 
BVS JERR ; MUST be all 4 hex digits 
JMP 0,X 

JERR RTS ; Only get here on error 
* 
* DRAMON - main driving routine 
* 
* Register inputs NONE 
* Registers destroyed X, A, B, CC 

DRAMON LBSR OUTCR ; Prompt on a new line 
LEAX INTRO,PCR ; Output intro. 
LBSR OUTSTR 

NXTCMD LBSR READY ; Prompt the user 
LBSR INECHO ; Read the command 
CMPA #'M ; Memory examine and change? 
BNE TRYJ 
BSR MCOMND ; yes, then obey it 
BRA NXTCMD ; and repeat 
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TRYJ CMPA #'J ; Is it the Jump command? 
BNE TRYBRK ; no, then check for BREAK 
BSR JCOMND ; yes, so obey it 
BRA NXTCMD ; but don't expect to get here 

TRYBRK CMPA #BREAK ; Is it the BREAK key? 
BNE NXTCMD ; no, then prompt again 
RTS ; yes, return to caller 



Chapter 6 

Subroutines and strings 

When we try to solve a problem, we do not go directly 
from the general statement of the problem to a detailed 
solution unless the problem is very trivial indeed. 
Rather, we split the problem into a sequence of sub-
problems and work out the individual solutions to these 
smaller problems. The sub-problem solutions are then 
integrated and coordinated to form the general problem 
solution. 

When a problem is intended for computer solution, we 
can use exactly the same approach. The overall problem 
solution is a computer program but, rather than 
generate this as a monolithic code sequence, it can be 
made up of calls to subroutines. Each subroutine is 
the solution to a particular sub-problem. By adopting 
this approach, we reduce the overall complexity of the 
program because we never have to understand or think 
about any more than one subroutine at any one time. 

The idea of a subroutine as a self-contained section 
of code which can be initiated from elsewhere in the 
program was one of the earliest advances in computer 
programming. Subroutines are an essential tool for the 
programmer as they allow him to create 'black boxes' 
implementing particular functions. Once these have been 
written and tested, the programmer need not be bothered 
how they work as long as he knows their function and 
how to use them. 

To make the most effective use of this problem-
solving method, the programming language which we use 
must allow us to create subroutines which are 
independent of their environment. Unfortunately, BASIC 
subroutines are very primitive indeed and are not truly 
self-contained. Their disadvantages can be summarised 
as follows: 

(1) BASIC subroutines cannot be made independent of 
their environment because the only way of passing 
information to and returning information from a 
subroutine is through its environment. That is, 
program variables must be used to pass informa
tion to and from the subroutine. This means that 
BASIC subroutine libraries cannot be created be
cause both the subroutine and the program must 
'agree' on what variables should be used for 
passing input and output parameters. 

121 
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(2) There is no way, in BASIC, for a subroutine to 
have a completely private data area which no 
other subroutine may tamper with. A private or 
local variable area is essential if the 
subroutine is to be self-contained and if the 
programmer is to be sure that a call of the 
routine always does exactly what's expected of 
it. 

(3) The BASIC programmer cannot give his subroutine a 
name which reflects its function. Rather, he 
must refer to it by a meaningless line number. 
When a program has many subroutines, it is 
difficult to discern what operations are 
implemented by a sequence of subroutine calls, 
especially if the program is not properly 
commented. 

The subroutine facilities available to the assembly 
language programmer are actually slightly less 
primitive that BASIC'S subroutine mechanism. At least 
in assembly language, a mnemonic name rather than a 
number can be given to a subroutine. As in BASIC, 
there are no built-in mechanisms for passing 
information to and from a subroutine or for 
establishing local data space. 

However, the flexibility of assembly language 
programming is such that the programmer may establish a 
set of conventions which allow local data areas to be 
created and which allow parameters to be passed to and 
from a subroutine without using global variables. 
These conventions provide a more powerful, effective 
and safer mechanism for using subroutines than that 
available to the BASIC programmer. 

In this chapter we show how the M6809's architecture 
is well suited to the implementation of self-contained 
subroutines and we describe a very general way of 
declaring and calling subroutines. We also describe a 
subroutine calling technique which can be used when 
execution speed is the paramount consideration and we 
explain how to construct subroutines which are position 
independent. The final sections of the chapter discuss 
techniques for representing and manipulating character 
strings and we show how assembly language subroutines 
may be integrated with BASIC programs. 

6.1 ASSEMBLY LANGUAGE SUBROUTINES 

We have already shown in section 5.6 how the BASIC 
GOSUB and RETURN statements can be implemented in 
assembly language using the BSR, JSR, and RTS 
instructions. In that section, we showed how 
parameters could be passed to and from subroutines 
using shared global variables but this is not a 
recommended technique. Furthermore, if it is important 
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to produce very efficient code, using shared variables 
for parameter passing has the additional disadvantage 
that it takes time to set up and access these shared 
variables. 

In many cases, there is no need for separate 
variables to be used for parameter passing. Rather, if 
one or two parameters only are to be passed to and from 
the subroutine, it is often possible to pass their 
values or addresses in registers. This saves both the 
calling program storing register values and the 
subroutine reloading these values into registers. 

The use of registers for parameter passing also has 
the advantage that the parameters do not take up memory 
space and that the impermenent nature of register 
values emphasises that subroutine parameters are 
distinct from other permanent program variables. 

Program 6.1 shows how the A and X registers can be 
used to pass parameters to and from a subroutine. 

* SQUARE - compute square of input parameter 
* 
* Register input A - positive number to be squared 
* Register output X - square of input 
* Method used is to add n to itself n times 

SQUARE PSHS B ; Save B register 
TFR A,B ; B = A 
LDX #0 ; Clear X 

SQLOOP ABX ; X = X + B 
DECA ; Use A as counter of the 

* number of adds 
BNE SQLOOP 
TFR B,A ; Restore value of A 
PULS B,PC ; Restore B and return 

Program 6.1 SQUARE - compute square of input 

Notice that a return from subroutine instruction, RTS, 
is not required as the program counter is explicitly 
restored using a PULS instruction. 

To call this subroutine, the input parameter must be 
set up in register A. A possible calling sequence might 
be: 

LDA #28 ; Compute 28 squared 
PSHS X ; Save value of X as it is 

* destroyed by SQUARE 
BSR SQUARE ; Call routine 
STX RESULT ; Store result of call 
PULS X ; Restore X 

Notice how the S-stack is used to save register values 
which are subsequently restored. Of course, the value 
of X before the call of SQUARE is not necessarily 
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precious. If this is the case there is no need to 
save it before the call and restore it after the 
subroutine has been executed. 

Any of the registers A, B, X, Y, or U may be used to 
pass parameters to and from subroutines. However, the 
S register is never used for this purpose because of 
its role as a system stack pointer. As the return 
address, the value of PC when the routine is called, is 
stacked, it is important that the value in S is not 
corrupted otherwise a proper return from the subroutine 
is impossible. 

In some subroutines it is useful to return an error 
indicator specifying whether or not the subroutine has 
succeeded in its task and the best way to do this is to 
make use of the CC register. The programmer may use 
CC.V or CC.C as error indicators or, alternatively, the 
settings of CC.Z and CC.N may indicate that an event 
has or has not occurred. 

We have already seen an example of how this latter 
method can be used to determine if an input routine has 
returned a character. If a character has been input, 
CC.Z is unset otherwise CC.Z is set. Therefore, the 
following code loops until a character is input: 

GETCH JSR INCH ; Call input routine 
BEQ GETCH 

When using the CC register to return results from a 
subroutine, the ANDCC and ORCC instructions may be used 
to set and unset particular bits in that register. 

Using registers for subroutine input and output 
parameters is an efficient parameter passing technique 
which should be used when subroutine calls must be 
executed as quickly as possible. However, this 
technique requires that the programmer knows exactly 
what registers must be set up when the subroutine is 
called and what registers are used by the subroutine to 
return results. Typically, different subroutines have 
different conventions in this respect depending on the 
number and type of input parameters and on whether they 
return one or more results. The programmer must know, 
in detail, the conventions for each subroutine before 
he can make use of it. 

If there are only a few subroutines used in a 
program, it may be fairly easy to memorise such 
details, but in a large program, where there might be 
tens or even hundreds of subroutines, this is not 
possible. Furthermore, the programmer may wish to build 
up a library of useful subroutines to be included in 
his programs as they are required. It is obviously a 
good idea to have all the subroutines in the library 
used in a consistent way so passing parameters in 
registers is not really suitable. 

There are two different general mechanisms which can 
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be devised to support subroutine parameter passing. 
The first technique, which we do not describe in 
detail, is to allocate a specified parameter area for 
each subroutine and store the addresses of the 
parameters in that area. When calling the subroutine, 
this area is set up immediately prior to the subroutine 
call. The address of the parameter area is assigned to 
an agreed register such as the Y register, and indirect 
indexed addressing is used to access the subroutine 
parameters. 

This technique works well in most cases but cannot 
support so-called recursive subroutines. Recursive 
subroutines are subroutines which contain an embedded 
call to themselves. Although this may seem an unusual 
idea to the programmer who has only ever programmed in 
BASIC, recursion is very useful in many situations as 
it allows you to write compact programs which, with 
practice, are easy to understand. Readers who wish to 
experiment with recursive programming should consult 
textbooks which describe data structures such as lists 
and trees to see how recursion is used. 

The second generalised technique of subroutine 
parameter passing can handle recursive routines. It 
makes use of a stack to pass parameters to and return 
results from subroutines. This technique can be 
implemented very efficiently on the M6809 because of 
its built-in stack manipulation instructions. It is 
described in detail below. 

6.1.1 Parameter passing using a stack 
The M6809 processor is designed so that two stacks may 
be used, at the same time, by the assembly language 
programmer. One of these stacks, the hardware or system 
stack, is referenced via the S register and is always 
in existence as it is used to hold the program counter 
when a subroutine is called. The user stack, or U-
stack, is referenced via the U register and may or may 
not be used depending on the application being 
programmed. 

A parameter passing mechanism can be devised which 
uses the S-stack to hold information such as the 
subroutine return address and which uses the U-stack to 
hold subroutine parameters. This works perfectly well 
and is often used. It does, however, require 
considerable housekeeping by the calling and called 
routine to make sure that the stacks are always 
consistent. 

The technique which we describe below uses only a 
single stack, the S-stack, but uses two stack pointer 
registers, S and U. As well as being useful to the 
assembly language programmer, this technique of 
subroutine parameter passing is that used by structured 
high-level languages such as Pascal. 

To understand this parameter passing method, we must 
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introduce the idea of a stack frame. A stack frame is 
a data area which is set up on the stack when a 
subroutine is called. The exact number of bytes making 
up a stack frame depends on the number of subroutine 
parameters, the registers saved by the subroutine and 
the local data space required by the subroutine. 
Figure 6.1 is a diagram of a stack frame in its most 
general form: 

Fig. 6.1 Stack frame organisation 

The saved registers are those registers which are 
modified by the subroutine. The return address is the 
value of PC stacked by the BSR or JSR instruction. 

The subroutine parameter area is set up by the 
calling program with the values of the subroutine input 
parameters and, if a result is returned by the 
subroutine, the calling program reserves a location on 
the stack for it. 

To illustrate how stack frames are used, consider 
the SQUARE subroutine described earlier in this 
chapter. This is a subroutine which we might wish to 
implement as a function which returns the square of its 
parameter. Assuming that we use the stack for 
parameter passing, we would call the function SQUARE 
using the following instruction sequence: 

LEAS -2,S ; Decrement S by 2. 
* As stacks in the M6809 grow downwards 
* this leaves a 2-byte 'hole' in the 
* stack for the result 

LDA N ; A = number to be squared 
PSHS A ; Put parameter onto the stack 
BSR SQUARE ; call SQUARE 

The call of SQUARE pushes PC onto the S-stack. The 
subroutine SQUARE first pushes the registers which it 
uses onto the stack and then sets up a register so that 
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indexed addressing may be used to access the subroutine 
parameters and result. As the X and Y registers are 
often used for array accessing, it is best to use the U 
register as the stack index register set to the base of 
SQUARE'S stack frame. 

Given that the subroutine SQUARE saves the registers 
A, B, X, U, and CC, the stack structure after 
subroutine entry is shown in Figure 6.2. 

Fig. 6.2 Stack structure after entry to SQUARE 

In general, a called routine should save the value 
of the U register then reset it so that it points to 
the current stack frame. It is important to ensure 
that the U register is set to the same relative 
position in the stack frame for every subroutine but 
the particular location chosen does not matter a great 
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deal. In our examples, the U register is set so that 
it refers to the hi-byte of the subroutine return 
address on the stack. 

The U register is assigned after the registers have 
been saved using an LEAU instruction. As S points at 
the top location on the stack, the stack address 
assigned to U is computed using the S register value 
and the number of register bytes stacked. 

The code implementing the subroutine SQUARE is: 

* SQUARE - returns the square of its input 
* 
SQUARE PSHS A,B,U,X,CC 

LEAU 7,S ; set U register 
LDA 2,U ; Get parameter from stack 

* it is immediately below 
* the return address 

TFR A,B ; Use repeated addition to 
LDX #0 ; square N 

SQLOOP ABX ; X = X + B 
DECA ; A counts adds 
BNE SQLOOP 
STX 3,U ; Store result 

* Result is always immediately 
* below parameter on the stack 

PULS A,B,U,X,CC,PC ; Restore and return 

Program 6.2 SQUARE with stack parameter passing 

On return from the subroutine, the S register is set so 
that it points to the subroutine parameter on the 
stack. As this is no longer required, the calling 
program must increment S to discard the parameter or 
parameters. After this modification of S, S then 
refers to the result returned by the subroutine. 

The complete call/return sequence for SQUARE is 
therefore: 

LEAS -2,S ; Space for result 
LDA N 
PSHS A ; parameter onto stack 
BSR SQUARE ; call routine 
LEAS 1,S ; discard parameter 
PULS D ; result in D register 

* for processing, store, etc 

Obviously, if the subroutine does not return a result, 
there is no need to reserve space on the stack for the 
result. It is, therefore, very important that the 
programmer ensures that each subroutine has an 
associated comment at its head which states the size, 
in bytes, and the type of any result. This is 
essential so that the correct call/return sequence may 
be used for that routine. 
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In general, the call sequence for a subroutine where 
the stack is used for parameter passing is as follows: 

Reserve space, if necessary, for subroutine result 
Evaluate parameters and store on S-stack 
Call subroutine 
Discard parameters 
Retrieve subroutine result from the stack 

The called routine must have an entry and exit sequence 
as follows: 

Save U register and other registers as necessary 
Set up U as stack frame register 
<Body of subroutine> 
Restore registers including PC 

An important advantage of using this technique of 
parameter passing is that the stack may also be used as 
a local variable area for the called subroutine. These 
local variables are accessed using indexed addressing 
via the U or S registers. 

Rather than allocate specific memory locations as 
private working store for the subroutine, it is 
possible to use stack locations for this purpose. This 
store is allocated dynamically on entry to the 
subroutine and de-allocated on exit from the routine. 
Thus store is only allocated when it is required and 
need not be set aside permanently for subroutine local 
variables. 

Program 6.3 takes an array base address and an array 
length as parameters on the stack and returns the 
maximum and minimum values of that array as results. 
It uses local variables to hold the maximum and minimum 
values which have been determined so far. 

* MAXMIN - determines MAX and MIN array values 
* 
* Results are left on the stack in space left 
* by calling routine. 
* 
MAXMIN PSHS U,A,B 

LEAU 4,S ; U points at return address 
LDA 2,U ; Array length in A 
LDX 3,U ; address in X 
LDB ,X+ ; 1st element in B 
PSHS B 
PSHS B ; Push locals onto stack 

* Both MAX and MIN initially set up 
* to be the value of 1st element 
* MAX=stack(S), MIN=stack(S+1) 

DECA 
BEQ DONE ; If only one element, all done 

MMLOOP LDB ,X+ ; Array element in B 
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CMPB ,S ; Compare with MAX 
BGT NEWMAX ; If greater, re-assign MAX 
CMPB 1,S ; Compare with MIN 
BGT ELOOP ; Value greater, go on to next 
STB 1,S ; Otherwise re-assign MIN 
BRA ELOOP 

NEWMAX STB ,S ; Re-assign MAX 
ELOOP DECA 

BNE MMLOOP 
DONE LDA ,S+ ; Maximum value 

STA 5,U ; into result space 
LDA ,S+ ; Minimum value 
STA 6,U ; into result space 

PULS U,A,B,PC ; Restore and return 

Program 6.3 MAXMIN - find maximum and minimum of 
array 

This technique of local variable allocation allows 
recursive subroutines, subroutines which call 
themselves, to be implemented. When a subroutine calls 
itself, a completely new local variable area is set up 
on the stack and the data area of the calling routine 
is not destroyed. 

We illustrate this using a recursive routine which, 
given an input parameter N, returns the Nth Fibonacci 
number. Fibonacci numbers are numbers in a sequence 
where the value of a given number is computed by adding 
the previous two numbers in the list. The first values 
in the sequence are 0 and 1 so the first 10 Fibonacci 
numbers are: 

0 1 1 2 3 5 8 13 21 34 

Fibonacci numbers are not just mathematical oddities 
but have practical uses in sorting large data files 
held on magnetic tape. Readers interested in how they 
are used should consult a textbook on sorting 
techniques. 

A general formula for computing the Nth Fibonacci 
number is recursive: 

if N = 1 then 
FIB(N) = 0 

else 
if N = 2 then 

FIB(N) = 1 
else 

FIB(N) = FIB(N-1) + FIB(N-2) 

So, if the 5th Fibonacci number is required, this 
formula would be evaluated as follows: 

FIB(5) = FIB(4) + FIB(3) 
= FIB(3) + FIB(2) + FIB(2) + FIB(l) 
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= FIB(2) + FIB(l) + 1 + 1 + 0 
= 1 + 0 + 1 + 1 + 0 
= 3 

The assembly code routine below takes an 8-bit input 
parameter N and returns a 16-bit result which is the 
Nth Fibonacci number. As BASIC does not support 
recursion, we cannot first translate our logical 
solution above into BASIC but must go straight to 
assembly code. 

* FIB - Computes Nth Fibonacci number 
* 
* Result left on stack in location P+1 where P 
* is parameter address 
* Set up equates to refer to stack locations 
* 
FRES1 EQU 3 ; Result 
FPAR1 EQU 2 ; Parameter 
FIBL1 EQU -5 ; Local variable 
FIBL2 EQU -7 ; Local variable 

FIB PSHS A,U,CC ; Save registers 
LEAU 4,S ; Set stack frame register 
LEAS -4,S ; Space for local variables 

* FIBL1 and FIBL2 
LDA FPAR1,U ; Get input parameter 
BLE ERR1 ; If it is not positive, error 
CMPA #1 ; is it 1st Fibonacci number? 
BNE FIB2 ; If not, try the second 
LDD #0 ; D = FIB(l) 
BRA EXIT ; Get out of routine 

FIB2 CMPA #2 ; Is FIB(2) required 
BNE FIBN ; No, compute FIB(n) 
LDD #1 ; D = FIB(2) 
BRA EXIT ; Get out 

FIBN LEAS -2,S ; Get stack space for result 
DECA ; FIB(N-1) is being computed 
PSHS A ; Parameter for recursive call 

* of FIB 
BSR FIB ; Call FIB 
LEAS 1,S ; Discard parameter 

* S now refers to result 
PULS D ; Pull result into D 
STD FIBL1,U ; Store D into local variable 

* Now call Fib again to compute FIB(N-2) 
* 

DECA ; A = N - 2 
LEAS -2,S ; space for result 
PSHS A ; stack parameter 
BSR FIB ; and call FIB recursively 
LEAS 1,S ; discard parameter 
PULS A,B ; D = FIB(N-2) 
STD FIBL2,U ; Assign to local 
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* Now add locals to get Fibonacci number 
* 

LDD FIBL2,U 
ADDD FIBL1,U ; D = FIB(N-1)+FIB(N-2) 
BRA EXIT ; get out 

ERR1 LDD #-1 ; D = -1 if error 
EXIT STD FRES1,U ; Store D in result space 

PULS A,U,CC,PC ; Restore and return 

Program 6.4 FIB - compute nth Fibonacci number 

This routine can be optimised by using the space on the 
stack reserved for the result of FIB as local working 
store and by removing some redundant load instructions. 
We leave this optimisation as an exercise for the 
reader. 

You will probably have to think quite hard to 
understand exactly what the FIB program is doing. You 
may find it helpful to draw a diagram of the stack 
structure and see how it expands and contracts as the 
routine is called recursively. Whilst this example 
demonstrates the power of assembly language, it also 
shows that, if you try to do complex things, the code 
to implement them can be difficult to understand! 

The generalised parameter passing and local variable 
allocation techniques which we have described are 
useful when you are writing large programs with many 
subroutines or when you are building a subroutine 
library. For fairly small assembly language programs 
their generality can be confusing and it is better to 
adopt a simpler parameter passing technique. 

However, we do recommend that you should avoid the 
allocation of fixed local variable space for 
subroutines. In many cases, you can use registers as 
local work areas and this is often the most efficient 
approach. In other cases, where this is impossible, 
you should use the stack as a local work area. You may 
either set up the U register as a pointer to this area 
or may use S register relative addressing to access 
local subroutine variables. These techniques are 
illustrated in some of the character string 
manipulation routines which are described later in this 
chapter. 

6.2 CHARACTER STRINGS 

We have described how BASIC arrays can be set up using 
the FCB, FDB, and RMB directives. These arrays can be 
accessed using index registers with the array length 
held in an accumulator register. Naturally, these 
arrays can be arrays of characters and this is one way 
of carrying out character manipulation in assembly 
language. 

However, the use of fixed-length arrays to hold 
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character strings means that the decision as to the 
number of characters in a string must be made when the 
array holding the string is declared. In this respect, 
character arrays are not like BASIC'S character strings 
where the number of characters in a string may vary 
from 0 to 255. When this flexibility is required, it 
is not usual to implement character strings as fixed-
length arrays. 

In this section we describe how the assembly 
language programmer may set up variable-length 
character strings and we explain how various string 
manipulation operations can be implemented. In section 
6.3 we provide listings of a package of subroutines 
which implement character string operations. 

In order to implement variable-length strings the 
programmer must set aside a large data area for string 
storage where the actual characters making up the 
string are kept. The string name is associated with a 
2-byte area which holds the address of the string 
characters within the string storage area. 

The fundamental operations which are normally 
allowed on character strings are as follows: 

(1) Comparison 
Character strings are compared for equality 

(2) Assignment 
One character string is assigned to another 

(3) Catenation 
Two character strings are put together (catenat
ed) to form a longer string 

(4) Substring selection 
Part of a character string (a substring) is 
selected 

(5) Length computation 
The number of characters making up a string is 
computed 

There are also other operations which may be carried 
out with character string operands such as determining 
the ASCII value of a particular character and 
converting numeric strings to integers and vice-versa. 

Given that all character strings are to be stored in 
a common string storage area, the first decision that 
the programmer must make is how to represent strings so 
that the length of the string can be determined. All of 
the string operations listed above need to know the 
string length in order to operate correctly. 

Probably the simplest variable-length string 
representation technique is to associate an explicit 
'end-of-string' character with each string. This 
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character is catenated with the characters making up 
the string so that the storage space required for the 
string is the length of the string plus one byte. 
Usually the null byte, hexadecimal 00, is used as the 
string terminator. Therefore the string 'HI THERE' 
would be stored as 'HI THERE<NULL>' . 

There are two advantages of using this technique of 
variable-length string representation. 

(1) There is no limit to the length of the strings 
which may be represented. 

(2) Strings whose length cannot be predicted can be 
stored in this way as the string 
modification (adding the null byte) is carried 
out after the entire string is known. This means 
that the technique is very useful for represent
ing strings which are input from the keyboard or 
some other device. Obviously, the length of such 
strings is not known in advance. 

The disadvantage of this representation technique is 
that string length determination requires a program to 
explicitly count the string characters until a null 
byte is detected. This takes time and when a program 
does a lot of character manipulation, this time penalty 
may be unacceptable. 

An alternative technique for string representation 
is to hold the length of the string as the very first 
byte of the string. For example, the string 'HI THERE' 
would be stored as <8>HI THERE. This means length 
computation is very fast but has the disadvantages that 
the maximum string length is 255 characters and that 
the length of the string must be known in advance 
before it can be entered in the string store. 

As character strings are represented as a 2-byte 
reference to the string store, the assignment of one 
character string to another is a very efficient 
operation. There is no copying of the string 
characters themselves. Assignment simply involves 
assigning one string reference to another. However, 
this can result in much wasted store. The reason for 
this is best illustrated by an example. 

Assume that the variables STR1, STR2, and STR3 have 
been set up using an FDB directive and have been 
initialised to refer to strings as follows: 

STR1 -> 'HI THERE' 
STR2 -> 'WELCOME' 
STR3 -> 'HELLO' 

If STR1 is assigned to STR2, this means that STR2 now 
points to the string 'HI THERE' and the string 
'WELCOME' is no longer referenced by anything. However, 
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the space occupied in the character store by this 
string cannot magically disappear so, if many string 
assignments are executed, the string store soon fills 
up with such inaccessible 'garbage'. 

This is a general problem which is inherent in all 
systems where variable-length strings are allowed. The 
BASIC programmer has the advantage that the BASIC 
system has an in-built 'garbage collection' routine 
which finds all unreferenced strings in its string 
store and marks the store which they occupy as 
reusable. Garbage collection is a fairly complex 
operation and the interested reader should refer to a 
computer science textbook which covers data structures 
for a description of various garbage collection 
algorithms. 

Rather than discuss garbage collection, we describe 
how routines can be written to allocate and deallocate 
space in the string storage area so that the amount of 
garbage is minimised. The first routine described 
below is called GETSP. This takes one parameter, say 
n, and returns an address in the string storage area of 
n consecutive unused bytes. The second routine below 
is FREESP, which is called after string assignment, to 
mark a group of bytes as being available for re
allocation. 

Let us assume that the string storage area is called 
HEAP and is set up using the following directive: 

HEAP RMB 4096 ; String storage area 

Furthermore, let us assume that we use an explicit 
length byte at the start of each string. If this byte 
has a value between 0 and 254, this is taken as the 
string length. If the length byte is 255, the 
following two bytes hold a number which is the number 
of unused bytes in that area and therefore available 
for string allocation. 

Figure 6.3 shows part of HEAP with intermingled 
character strings and free space. Initially, HEAP is 
set up so that the very first byte (byte 0) is 255 and 
bytes 1 and 2 hold the 16-bit integer 4096 indicating 
that the entire storage area is available for 
allocation. The routine GETSP starts at the beginning 
of HEAP searching for a byte whose value is 255. When 
such a byte is found, GETSP checks if the number of 
free bytes available is enough to satisfy its request. 

If so, GETSP claims what it needs from this free 
space and marks the remainder as free. If the free 
space is not sufficient, GETSP goes on to find the next 
byte whose value is 255. If no free space is found 
before the end of the string storage area, GETSP 
returns an error indicator showing that it is unable to 
satisfy the request for space. 
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Fig. 6.3 String storage area organisation 

The code for the routines GETSP and FREESP is provided 
in section 6.3. For the moment, let us assume that they 
are available and have the following specifications: 

* GETSP - gets space on heap 
* 
* Register input B - number of bytes required 
* Register outputs Y - pointer to space requested 
* CC.V = 0 if no space available 
* CC.V = 1 if request satisfied 
* 
* FREESP - returns free space to heap 
* 
* Register input X - address of space to be freed 
* Register output CC.V = 0 if invalid address 
* CC.V = 1 if space freed 

Given these routines, the initialisation of strings can 
be implemented as shown below. Assume that a string, 
terminated by a null byte, has been read into an input 
buffer area called INBUF. The routine STINIT takes the 
address of INBUF as its parameter in register X and 
returns in register Y the address of the initialised 
string on the heap. The assembly code for this routine 
is: 

* STINIT - Initialise a string 
* 
* Register input X - input buffer address 
* Register outputs Y - string address in heap 
* CC.V = 0 if error 
* CC.V = 1 if no errors 
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STINIT PSHS X,A,B,PC ; Restore and return 
CLRB ; B is counter 

* holding length of string to be 
* initialised 

TFR X,Y ; Save value of X 
STCNT LDA ,Y+ ; Get string byte 

BEQ FSPCE ; If null byte, stop count 
INCB ; Otherwise, count it 
BRA STCNT 

FSPCE INCB ; To account for length byte 
BSR GETSP ; get space 
BVC XIT ; No space found - error 
DECB ; No of characters in string 
STB ,Y+ ; Store length 
BSR CPSTR ; String copy -see examples 
ORCC #2 ; Set success flag 
LEAY -1,Y ; To point at length byte 

XIT PULS X,A,B ; Restore and return 

Program 6.5 STINIT - string initialisation 

Further examples illustrating string manipulation 
techniques are provided in the following section. 

6.3 STRING MANIPULATION ROUTINES 

This section is entirely taken up with listings of 
routines which carry out string manipulation. All the 
examples here are written in a position-independent way 
and may readily be incorporated with your own programs. 

* CHKHP - check string validity 
* 
* Register input X - string address 
* Register output CC.V = 1 if string in heap 
* CC.V = 0 if not in heap 
* 
CHKHP PSHS X ; Save register 

LEAX HEAP,PCR ; Heap start 
CMPX ,S ; comparison 
BHI HPERR ; Input address <• heap start 
LEAX HEAPEND,X ; Heap end 
CMPX ,S ; comparison 
BLO HPERR ; Input address > heap end 
ORCC #2 ; Set CC.V 
BRA XIT1 

HPERR ANDCC #$FD ; CC.V = 0 
XIT1 PULS X,PC ; Restore and return 

Program 6.6 CHKHP - check string address validity 

* CPSTR - copy string characters 

* Register inputs X - source string address 
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* Y - destination string address 
* B - string length 
* 
CPSTR PSHS X,Y,A,B ; Save registers 

TSTB ; Check for zero length 
CPLOOP BEQ XIT2 ; Check if finished 

LDA ,X+ ; Get character 
STA ,Y+ ; and copy it 
DECB ; B is counter 
BRA CPLOOP 

XIT2 PULS X,Y,A,B,PC ; Restore and return 

Program 6.7 CPSTR - copy characters 

* GETSP - get space for string 
* 
* Register input B - number of bytes required 
* Register output Y - string address 
* CC.V = 0 if request fails 
* CC.V = 1 if request satisfied 
* Uses first-fit algorithm, ie, returns first area 
* large enough to satisfy request. Returns excess 
* space as free if space found > space requested 

GETSP PSHS A,B,X,U ; Save registers 
TFR S,U ; U is pointer to locals 
LEAX HEAPEND,PCR ; 1st local = U-2 
CLRA ; U-4 is 16-bit length 
PSHS X,A,B ; Locals onto stack 
LEAY HEAP,PCR ; Initialise to heap start 

FFREE CMPY -2,U ; At heapend? 
BHS NTFND ; Yes, no space available 
LDA ,Y ; Check if free area 
CMPA #255 ; by comparing with 255 
BEQ SPFND ; If so, space found 
LEAY 1,Y ; Otherwise increment Y 
BRA FFREE ; and keep looking 

SPFND LDD 1,Y ; Pick up free area length 
CMPD -4,U ; Compare with length needed 
BHS LENOK ; We have enough 
LEAY 3,Y ; No, look for next free 
BRA FFREE ; area on heap 

* Now check if too much space. Don't return 
* an extra 1 or 2 bytes as they are unusable 
LENOK LDD -4,U ; Space requested 

ADDD #2 ; If D + 2 >= that available 
CMPD 1,Y ; don't return space 
BHS EXITOK ; and exit 
LDD 1,Y ; get space available 
SUBD -4,U ; subtract space requested 
PSHS A,B ; and save on stack 
LDB -3,U ; B = 8 bit length 
LEAX B,Y ; start of free string 
LDA #255 ; Free indicator 
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STA ,X+ ; and mark byte free 
PULS A,B ; get free string length 
STD ,X ; and store it 
BRA EXITOK ; and exit 

NTFND ANDCC #$FD ; Error indicator 
BRA XIT3 

EXITOK ORCC #2 ; No errors 
XIT3 LEAS -4,S ; Discard local space 

PULS A,B,X,U,PC ; Restore and return 

Program 6.8 GETSP - get string space 

* FREESP - free space on heap 

* Register input X - address of space to be freed 

* Register output CC.V = 1 if space freed 
* CC.V = 0 if invalid input 
* 
FREESP PSHS A,B,X,Y ; Save registers 

BSR CHKHP ; Is input valid? 
BVC EEXIT ; No, error return 
LDB ,X ; String length 
INCB ; To get actual no of bytes 
LDA #255 ; Free space indicator 
STA ,X ; Mark string free 
CLRA ; and store 16-bit 
STD 1,X ; free string length 
LDA #255 ; See if following string 
CMPA B,X ; is free 
BNE LKLAST ; No, try preceding string 
LEAY B,X ; yes, so join strings 
BSR JOIN 

LKLAST TFR X,Y ; Find preceding free string 
FLOOP CMPA ,-X ; Is byte free 

BEQ CHKJN ; Yes, can it be joined 
BSR CHKHP ; At heap start? 
BVC XIT7 ; No preceding free string 
BRA FLOOP 

CHKJN LDD 1,X ; Length of free string 
STD ,--S ; Stack it 
TFR X,D 
ADDD ,S++ ; D = address+length 
PSHS Y 
CMPD ,S++ ; Are strings adjacent 
BNE XIT7 ; No, return 
BSR JOIN ; Yes, join them 

XIT7 ORCC #2 ; Set CC.V 
BRA END7 

EEXIT ANDCC #$FD ; Clear CC.V 
END7 PULS A,B,X,Y,PC 
* 
* JOIN - join adjacent free segments 
* Register inputs X,Y - addresses of areas to be 
* freed 
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JOIN PSHS A,B 
LDD 1,X ; Length of 1st area 
ADDD 1,Y ; Length of 2nd area 
STD 1,X ; Store total 
CLR ,Y ; Get rid of free indicators 
CLR 1,Y 
CLR 2,Y 
PULS A,B,PC 

Program 6.9 FREESP - free string space 

* CMPSTR - compare strings for equality 
* Register input X - string 1 
* Y - string 2 
* Register output CC.Z = 1 if strings equal 
* CC.Z = 0 if not equal 
* 
CMPSTR PSHS A,B,X,Y ; Save registers 

LDA ,X+ ; Length of string 1 
CMPA ,Y+ ; must be same as length 2 
BNE CMPXIT ; If not, exit, CC.Z=0 
TSTA ; Check for 0 length 

CMPLP BEQ CMPXIT ; A = 0, so all done, CC.Z=1 
LDB ,X+ ; Get character 
CMPB ,Y+ ; and compare 
BNE CMPXIT ; Not the same, CC.Z=0 
DECA ; Yes, decrement length 
BRA CMPLP ; and continue comparisons 

CMPXIT PULS X,Y,A,B,PC ; Restore and return 

Program 6.10 CMPSTR - compare strings 

* STRCAT - catenate strings 
* 
* Register inputs X - string 1 
* Y - string 2 
* Register outputs Y - new string 
* CC.V = 1 - no errors 
* CC.V = 0 - error 
* 
STRCAT PSHS X,A,B 

BSR CHKHP ; Check 1st string 
BVC XIT8 ; Invalid, abort 
EXG X,Y 
BSR CHKHP ; Check 2nd string 
BVC XIT8 ; Invalid, abort 
LDB ,Y ; work out length 
ADDB ,X ; of new string 
BVS EEXIT ; Too long(overflow), abort 
CMPB #255 ; 255 also too long 
BEQ EEXIT 
STX ,--S ; Stack string addresses 
STY ,--S 
INCB ; Total space needed incl. 
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BSR GETSP ; length byte. Get space 
BVC XIT8 ; No space, abort 
DECB ; New string length 
STB ,Y+ ; stored as 1st byte 
LDX ,S++ ; Get source address 
LDB ,X+ ; and its length 
BSR CPSTR ; and copy characters 
LEAX -1,X ; Then free space 
BSR FREESP 
LEAY B,Y ; Update destination 
LDX ,S++ ; Get source address 
LDB ,X+ ; and its length 
BSR CPSTR ; and copy characters 
LEAX -1,X ; Then free space 
BSR FREESP 
ORCC #2 ; Set CC.V 
BRA XIT8 

EEXIT ANDCC #$FD ; Error indicator 
XIT8 PULS A,B,X,PC 

Program 6.11 STRCAT - catenate strings 

* SUBSTR - select substring 
* 
* Register inputs X - source string address 
* A - substring length 
* B - offset from string start 
* Register outputs Y - new address or error number 
* CC.V = 1 - no errors 
* CC.V = 0 - error 
* 
SUBSTR PSHS X,A,B ; Save registers 

BSR CHKHP ; Is string valid? 
BVS STROK ; yes, next check 
LDY #0 ; error type indicator 
BRA EEXIT1 ; error exit 

STROK INCB ; To get offset from 1st char. 
LEAY B,X ; Substring address 
PSHS Y ; Stack it 
LDB ,X ; Total string length 
INCB ; To account for length byte 
LEAY B,X ; End of string address 
CMPY ,S ; With substring address 
BLS INDXOK ; If invalid index 
LDY #1 ; Index error = 1 
BRA EEXIT1 

INDXOK LDU ,S ; Substring address 
LEAU A,U ; Add length 
PSHS U ; and stack it 
CMPY ,S++ ; Compare with end of string 
BLS LENOK ; is index + length valid? 
LDY #2 ; No, length too long 
BRA EEXIT1 

LENOK INCA ; To get number of bytes for 
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TFR A,B ; getspace parameter 
BSR GETSP ; Get the space 
BVS GSPOK 
LDY #3 ; No space available error 
BRA EEXIT1 

GSPOK PULS X ; Source address 
DECB ; For string length 
STB ,Y+ ; New string length 
BSR CPSTR ; Now copy characters 
ORCC #2 ; No errors 
BRA XIT5 

EEXIT1 ANDCC #$FD ; Indicate error 
XIT5 PULS X,A,B,PC ; Restore and return 

Program 6.12 SUBSTR - select substring 

6.4 POSITION-INDEPENDENT CODE 

One of the problems which can arise when you try to use 
machine code routines which have been written by other 
people is that these routines make assumptions about 
the contents of particular memory locations which you 
have used for other things. What has happened is that 
the operation of the routines depends on particular 
instructions and/or data residing at fixed addresses 
and, if these instructions/data are not at these 
addresses, the routines will not work. 

Routines like this are called 'position dependent' 
and often cause many problems for the assembly language 
programmer. However, it is possible to write 'position 
independent' code which executes correctly irrespective 
of where it is loaded into the machine memory. If you 
are building a library of subroutines or writing a 
program which may run on other machines, you should 
always write position-independent code. 

Position-independent code (PIC) is code that 
executes in the same way regardless of where it resides 
in memory. In other words, if it is located at a 
different address from that which it was originally 
assembled, it will still execute correctly. To produce 
position-independent code for the Dragon, you must 
adhere to a single fundamental rule: 

All addresses which you use in your program should 
be relative rather than absolute addresses. 

In general, it is best to write your routines so that 
addresses are all relative to PC but it is also 
possible to use the direct addressing mode of the M6809 
in the production of PIC. For the meantime, however, 
we shall concentrate on how to produce PIC by using 
PC-relative addressing. 

We have already seen examples of PC-relative 
addresses as all the M6809 branch instructions refer to 
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the destination address as an offset from the current 
value of the program counter. Therefore, even if the 
code is moved (relocated) to some other address, the 
relative distance between the branch instruction and 
its destination remains the same. However, you cannot 
cheat by adding or removing machine code instructions 
without re-assembly. If you do so, the program will not 
work as the relative distance specified in the branch 
instruction will be incorrect. 

In early microprocessors, the production of PIC was 
often difficult because relative branch instructions 
only allowed an 8-bit offset thus restricting the 
relative branch to the range -128 -> 127. However, no 
such problem exists in the M68C9 as long branch 
instructions allowing offsets from 32767 to -32768 may 
be used. In fact, if you wish to use some of the 
examples discussed in earlier chapters in combination 
with the examples in this chapter, you may have to 
change some of the BSR instructions to LBSR 
instructions as the subroutine code may be located more 
than 127 bytes away from the subroutine call. 

As well as addressing instructions in a position-
independent way, it is also essential that data are 
also addressed using the PC-relative addressing mode. 
Although we introduced this addressing mode in Chapter 
2, our examples so far have mostly used direct, 
extended or indexed addressing. The reason for this is 
that we felt that the introduction of PC-relative 
addressing was peripheral to the concepts illustrated 
in the examples. 

Recall that the M6809's PC-relative addressing mode 
uses the program counter as an index register and adds 
either an 8-bit or a 16-bit offset to it. The table 
below shows examples of how data can be addressed in a 
position-independent way using PC-relative addressing. 
Assume that TABLE, WORD, and DATA are storage locations 
set up using an FCB or RMB assembler directive. 

Non-PIC PIC 

LDX STABLE LEAX TABLE,PCR 

LDX WORD LDX WORD,PCR 

STA DATA STA DATA,PCR 
Notice how easy it is to write code in a position-
independent way. Instead of referring to the absolute 
symbolic address, all you have to do is to tell the 
assembler that PC-relative addressing is to be used. 
The assembler works out the correct displacement from 
the instruction position and generates the appropriate 
postbyte and offset. 

The only instructions which cause any real 
difficulty are those which use 16-bit immediate 
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addressing where the 16-bit value in the instruction 
refers to an absolute address. To load such addresses 
in a position-independent way, the LEA instruction 
rather than the LD instruction is used. Therefore, 
rather than saying LDX STABLE to load the address of 
TABLE into register X, this should be written LEAX 
TABLE,PCR. 

However, other instructions such as CMP which might 
also use immediate values which are addresses do not 
have position-independent forms. This means that when 
a 16-bit register is to be compared with an immediate 
value representing an address, we have to make use of a 
temporary location on the stack. 

For example, consider the following fragment of 
non-PIC code which is often found in programs which 
look up tables of values. 

LDX #TABLE ; Set up base address of table 
LOOP .... 

Code to look 
up table 
CMPX #TABEND ; is table completely scanned 
BNE LOOP 

TABLE FCB <<table data values) 
TABEND EQU * ; table end 

In this example, TABLE and TABEND represent absolute 
addresses and, if relocated without reassembly, this 
code would not execute properly. In order to make this 
code position independent, we must ensure that all 
absolute addresses are eliminated. We do this by using 
the LEA instruction to compute an address and we then 
store this address where it may be accessed and 
compared. We need a temporary location for the 
absolute address and, as always, the best place to 
allocate temporary store is on the stack. 

We might, therefore, write the above example in a 
position independent way as follows. 

LEAX TABEND,PCR 
PSHS X ; Stacks address of TABEND 
LEAX TABLE,PCR 

LOOP .... 

CMPX ,S ; Compare X with top stack 
BNE LOOP 
LEAS 2,S ; Discard top stack element 

In general, when you are writing your own routines you 
should always try and use PC-relative addressing so 
that PIC is generated by the assembler. However, if 
you are making use of routines built into the BASIC 
system, such as the input and output routines INCH and 
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OUTCH described in Chapter 5, PC-relative addressing 
should not be used. 

The reason for this is that these routines always 
reside at fixed locations and if you relocate your own 
program, the system routines do not move with your 
program. Therefore, you should always use jump rather 
than branch instructions to reference these system 
routines. 

For example, to reference the input routine at 
address 8006, you might write the following code: 

INPUT EQU $8006 
• • • • 
JSR INPUT 

It would be quite incorrect to say LBSR INPUT as 
relocating your code would cause the displacement built 
into the branch instruction to be incorrect. 
Naturally, the same applies to memory areas which have 
a dedicated function, such as the BASIC screen area. 
This starts at absolute address 400, so LD rather than 
LEA instructions are used to pick up that address. 

6.4.1 Jump tables 
The only real problem associated with PIC arises when 
some other program is assembled and uses PIC routines. 
Naturally, the addresses of these routines are 
assembled into the program and, if the routines are 
relocated, these addresses will be wrong. After 
relocation, it is necessary to modify the program to 
reflect the new, relocated addresses and this seems to 
negate some of the advantages of producing PIC. 

In order to avoid a great deal of tedious address 
modification, an addressing technique can be used which 
isolates the necessary changes so that only a single 
table need be changed. This technique is based around 
the idea of so-called 'jump tables' or 'vector 
locations' . 

A jump table contains, at known positions, a link to 
the actual addresses of routines and data used by a 
program. If these addresses change, only the jump 
table need be modified to reflect the new addresses. 
There is no need to change the program which refers to 
these addresses through the jump table. 

Where routines are addressed, the jump table is 
usually made up of jump or branch instructions (hence 
the name) which immediately jump to the addressed 
routines. We shall see shortly how such a table, which 
is called a direct jump table, may be set up. 

When data are referenced via a jump table, the table 
locations do not contain instructions but merely hold 
the address of the referenced data. The data item can 
be accessed using indirect addressing. Hence, this 
type of jump table is often termed an indirect jump 
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table. Of course, there is no reason why the data in 
such a table should not be subroutine addresses. The 
actual routines would then be called using a JSR 
instruction with the indirect addressing mode. 

Jump tables are the mechanism which provides access 
to the BASIC I/O routines. In fact, there are two jump 
tables referencing these routines - a direct jump table 
starting at address 8000 and an indirect jump table 
starting at address A000. 

As an example of how these tables can be used, 
consider the character input routine discussed in 
Chapter 5. In the direct jump table, address 8006 
holds a jump to this routine whereas the first location 
in the indirect jump table (A000) is set up with the 
address of the input routine. 

If we wish to use the direct jump table, the 
following instruction is used to call this input 
routine: 

JSR $8006 

On the other hand, if the indirect jump table is used, 
indirect addressing must be used to reference the input 
routine: 

JSR ($A000) 

The jump tables for these BASIC I/O routines are set up 
at known locations but if you envisage that other 
programs will use your routines, it is a 
straightforward matter to set up your own jump tables. 

The skeleton example below shown how direct and 
indirect jump tables may be defined by the assembly 
code programmer. 

SUB1 
<code for subroutine 1> 

SUB2 
<code for subroutine 2> 

SUB3 
<code for subroutine 3> 

* 
* Now set up an origin for the jump table 
* 

ORG $1000 
SUB1V JMP SUB1 
SUB2V JMP SUB2 
SUB3V JMP SUB3 
* 
* If an indirect jump table is required it 
* might be set up as follows: 
* 
SUB1V FDB SUB1 
SUB2V FDB SUB2 
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SUB3V FDB SUB3 

This is a simple way to set up jump tables but the 
disadvantage with this technique is that the addresses 
filled in the jump table are those known when the 
program is assembled. They are called 'static 
addresses'. If the program is relocated, these 
addresses remain as they were and are therefore 
incorrect. What is needed is a technique which 
allocates addresses to a jump table immediately before 
the program runs. That is, the jump table must be set 
up dynamically each time the program is executed. 

To calculate the addresses at run-time requires the 
use of initialisation code which fills in the jump 
table addresses. The following initialisation code 
shows how this can be achieved. 

INIT LEAX SUB1,PCR 
STX SUB1V+1 ; SUB1V+1 because the 

* JMP opcode is at SUB1V 
LEAX SUB2,PCR 
STX SUB2V+1 
LEAX SUB3,PCR 
STX SUB3V+1 

ORG $1000 ; Jump table address 
SUB1V JMP $0000 
SUB2V JMP $0000 
SUB3V JMP $0000 

We leave it as an exercise for the reader to work out 
how to initialise an indirect jump table dynamically. 

Normally, the INIT routine is the very first routine 
in a program as it is essential that its address is 
known in order that it may be called to set up the jump 
table. Placing INIT at this position also means that 
the program can be initiated from BASIC once CLOADMed 
by using the EXEC command. There is no need to specify 
an address for EXEC. 

The use of an initialisation routine opens up the 
possibility of using an alternative technique of 
producing position-independent code. This technique 
relies on all addresses being direct addresses with the 
actual address computed by adding the contents of DP to 
the address specified in the instruction. In other 
words, the instruction address is actually a DP-
relative address. 

In order to produce PIC code using direct 
addressing, DP must be set up dynamically at the start 
of program execution. The INIT routine must search for 
an available page in memory and assign its address to 
the direct page register. You might wish to explore 
the possibilities of this technique but be warned that 
the BASIC system keeps many pages for its own use and 
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assumes that they will not be used by the programmer. 
You have to be very careful about saving and restoring 
the value of the DP register and it is our opinion that 
the use of PC-relative addressing is a better way of 
producing position-independent code. 

6.5 COMBINING ASSEMBLY LANGUAGE WITH BASIC 

A disadvantage of assembly language programming is that 
it is difficult to write and test low-level language 
programs even when strict rules of programming are 
adhered to. This is in contrast to BASIC programs 
which, because of the way in which BASIC is 
implemented, are easy to test. It is simple to print 
out the values of variables as the program executes or 
to break in and inspect variable values that you think 
might be wrong. Ideally, we would like this flexibility 
but with the speed and power of assembly language. 

There is no such ideal system but, in many cases, it 
is possible to call assembly code routines from BASIC 
programs thus using high and low level programming in 
the most productive way. It is a fact that most 
programs spend most of their time executing a 
relatively small proportion of the total program code. 
The speed of BASIC programs can be significantly 
increased by identifying execution-intensive sections 
and replacing these by machine code equivalents. In 
this way, the majority of the program made up of user 
prompts, print statements, etc. can remain in BASIC 
with only time critical sections programmed in assembly 
language. 

The easiest way to incorporate machine code routines 
in a BASIC program is to use BASIC'S EXEC statement. 
The EXEC statement takes an address as a parameter and 
transfers control to the code residing at that address. 
It is used as follows: 

EXEC <address> 

In actual fact, the address operand, which must lie in 
the range 0000 to FFFF, in the EXEC statement is 
optional. If it is present, the machine code routine at 
that address is executed with control returned to BASIC 
after a RTS or PULS PC instruction is executed. If the 
address is omitted, EXEC consults a jump table (the 
EXEC vector) to find the address of the code to be 
executed. 

The EXEC vector is located at address 9D and is made 
up of a single word only. Therefore, the memory 
locations 9D and 9E should contain the address of the 
code to be EXECed. Initially, the EXEC vector is set 
up to contain the address of an error routine which 
explains why the message '?FC ERROR' is output when an 
EXEC without a parameter is used as the first EXEC in a 
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program. If an address is specified in an EXEC call, 
that address is filled into the EXEC vector with the 
result that subsequent EXECs without an address 
parameter call the machine code at that address. 

An alternative way to set up the EXEC vector is via 
the CLOADM command. 

CLOADM "Name" 
EXEC 

This instruction sequence sets up the EXEC vector to 
refer to the execution address of the machine code 
program called "Name" which has just been loaded. The 
EXEC instruction then transfers control to this code. 

The main advantage of EXEC is its simplicity and the 
fact that it can be used to invoke any number of 
machine code routines. The main disadvantage with EXEC 
is that any routine parameters must be passed in memory 
locations and the programmer must POKE these parameters 
into known locations before the EXEC call. Similarly, 
the results of executing the machine code routine must 
be in known locations and can only be retrieved using 
PEEK. 

An alternative way to invoke machine code routines, 
which permits parameter passing, is to make use of the 
USR call. The number of USR calls available to the 
BASIC/machine code programmer is restricted to ten and 
these are named USRO to USR9. USR calls do not take an 
explicit address but transfer control to the address 
which the programmer has previously associated with 
that USR call. 

The addresses to which particular USR calls should 
transfer control are set up using a DEF USR statement. 
This has the general form: 

DEF USRn = address 

The number n must be a single digit in the range 0 to 9 
and the address must lie in the range 0 to FFFF. The 
general form of the USR call itself is: 

USRn(<argument>) 

Executing a call of USRn causes control to be 
transferred to the address specified in the 
corresponding DEF USRn statement. Although the 
definition of the USR call function states that the 
name USR should be followed by a single digit from 0 to 
9, readers who try to call USR in this way will find 
that all USR calls actually result in a call to USRO. 
This is due to an error in the BASIC system which, 
fortunately, can be circumvented very easily. 

The bug in the BASIC system causes the interpreter 
to skip the digit so that USRO is taken to be the same 
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as USR1, USR2, etc. As BASIC takes a USR call without 
a parameter to be equivalent to USRO, the effect of the 
bug is to make all USR calls default to USRO. 

Rather than call a USR call as USR1, USR6, USR9, 
etc., the digit indicating which USR call is to be used 
should be padded with an extra zero. Therefore, to 
call USR1, you must actually write USR01, to call USR6, 
you must write USR06, etc. Obviously, this is not 
necessary for USRO but for reasons of consistency it is 
probably better to call this as USR00. 

A USR call from BASIC is treated like a BASIC 
function so that it is used as part of an expression 
and should return a value to the BASIC program. 
Examples of USR calls are: 

10 DEF USRO = &H1000 : DEF USR1 = &H2000 
20 A = USR00(A) : ' Transfers control to &H1000 
30 IF USR01(0) = 0 THEN B = B + 1 

If a USR call is used without first defining the 
address it refer to, the USR call will cause a message 
'?FC ERROR' to be printed. Like the EXEC statement, 
each USR call has an associated vector which contains 
the address of the entry point of the machine code 
routine to be executed. The USR vector is initially set 
up to refer to the error routine which prints the '?FC 
ERROR' message. When a DEF USR statement is used, this 
fills in the address in the appropriate vector. 

The table below lists the vector addresses 
associated with each USR call. 

If you are trying to link machine code and BASIC for 
the first time, we recommend that you experiment with 
the technique by using EXEC rather than USR calls. 
Unfortunately, to set up USR call parameters requires 
knowledge of how BASIC represents numbers and strings. 
We therefore return to the use of USR calls in Chapter 
9 after BASIC'S data representation has been described. 

USR Call 
USRO 
USR1 
USR2 
USR3 
USR4 
USR5 
USR6 
USR7 
USR8 
USR9 

USR Vector 
134:135 
136:137 
138:139 
13A:13B 
13C:13D 
13E:13F 
140:141 
142:143 
144:145 
146:147 



Chapter 7 

Graphics programming 

One of the greatest advantages of assembly code 
programming, its total flexibility, is also one of its 
most serious drawbacks as the programmer has to concern 
himself with every detail of the problem. One area in 
particular where this lack of support is very evident 
is in graphics and animation. 

The problem becomes very obvious if the would-be 
animator has relied on the graphics facilities provided 
in Extended Color BASIC and has come to expect such 
facilities when designing and writing graphics 
programs. However, the major disadvantage of BASIC 
programming is its inherent slowness and it is in 
graphics applications that this is most evident. Only 
the simplest of games, for example, with minimal 
movement can be programmed in BASIC if they are to 
present a challenge to the player. 

A very large part of the Dragon's BASIC system is 
dedicated to providing graphics facilities and it is 
not an easy task to duplicate those features as 
assembly code routines. Nevertheless, if speed is 
required, some graphics programming must be carried out 
in assembly code but the programmer should, as far as 
possible, make use of BASIC for those parts of his 
program which are not time critical. 

In general, a good graphics programming strategy is 
to develop the complete program using BASIC'S 
facilities and to iron out program bugs at this stage. 
This will probably result in a system which is far too 
slow but you may then replace BASIC routines . with 
assembly code routines to speed up your system. 

It is seldom necessary to duplicate the BASIC 
routines exactly unless they are components of other 
routines. Rather, it is usually possible to make all 
sorts of simplifications and later in the chapter we 
look at how to design, code and animate screen 
patterns. The chapter also discusses, in some detail, 
the Dragon's graphics hardware and describes the 
different graphics modes available to the programmer. 

Firstly however, we describe in general terms, how 
the Dragon's display system is organised. As in most 
personal computer systems, the display system on the 
Dragon is memory-mapped. This means that an area of 
memory is scanned 50 or 60 times per second, depending 
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on the local mains frequency, and the contents of that 
area are translated by special hardware to a standard 
TV signal which may be displayed on a domestic 
television set. 

The machine allocates a 512 byte area of memory for 
an alphanumeric display and it is this area which is 
used to display BASIC program text as it is input, and 
program results as they are output. The Dragon's 
alphanumeric display is organised as 16 lines with 32 
characters per line. We show later that this display 
area can also be used as a low-resolution graphics 
area. This text segment is always allocated at address 
400 in memory so locations 400-5FF are dedicated to the 
alphanumeric display. 

The memory dedicated to graphics, that is, the 
display of pictures rather than text, is organised into 
graphics segments of 512 bytes each. In full graphics 
mode, a minimum of 2 segments must be allocated but 
there is no inherent maximum number of graphics 
segments. Obviously, however, the maximum number of 
such segments is limited by the amount of free memory 
available to the graphics programmer. These graphics 
segments are usually allocated from address 600 
onwards, that is, immediately after the BASIC text 
segment. The BASIC system organises these graphics 
segments into 'pages' of 1536 bytes and a maximum of 8 
pages is available to the BASIC programmer. 

In order to display characters, the display screen 
is considered as a two-dimensional array of 'picture 
elements' or pixels. The more pixels on the screen, the 
finer detail which can be resolved and the Dragon 
compares favourably with other personal computers in 
this respect. The Dragon's display is made up of 256 
horizontal pixels by 192 vertical pixels. The Dragon's 
graphics hardware provides various graphics modes where 
the screen is considered as a matrix of elements. Each 
element is made up of a single pixel at the highest 
resolution or consists of an array of pixels. 
Depending on the resolution chosen, this array can vary 
from 2 by 1 pixels to 12 by 8 pixels. 

In a memory-mapped graphics system, all information 
about a particular screen element must be encoded in 
memory. This means that the pixel settings and colours 
must be held in memory locations so there is a trade
off between display resolution and the number of 
colours available to the programmer. High-resolution, 
multi-colour displays require a great deal of memory to 
encode the screen information so the Dragon's graphics 
system limits the number of colours available when 
resolution graphics are used. 

7.1 GRAPHICS DISPLAY HARDWARE 

The Dragon's graphics display hardware is made up of 3 
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microchips. Working in combination, these chips extract 
information from the system's memory and display that 
information on a standard television screen. The so-
called 'Video RAM' is the memory area which is devoted 
to the display and the contents of this memory area 
determine what is actually displayed on the user's 
screen. 

The chips making up the graphics system are the 
Video Display generator (VDG - 6847), the Synchronous 
Address Multiplexor (SAM - 6883), and a Peripheral 
Interface Adapter(PIA - 6821). The interconnections of 
these chips is shown in the system block diagram in 
Figure 1.2. In spite of the fact that the names of 
these chips sounds daunting, it is fairly easy for the 
assembly language programmer to control these devices. 
Each of them, and the Video RAM, is described below. 

7.1.1 The VDG chip 
The video display generator (VDG) chip is the main 
component of the Dragon's graphics system. As the name 
suggests, it generates the video signals that are input 
to the user's television set to provide the screen 
display. For those readers with experience in 
electronics, a complete description of this chip is 
provided in Appendix 3. 

However, you do not need experience in electronics 
to understand how to control this chip. All you must 
understand is that the chip has a set of control lines 
which may be in one of two states representing the 
binary values 1 and 0. When a line represents a 1, we 
say that it is HI, when it represents a binary zero, we 
say that the line is LO. Control signals can be 
generated by writing information to specific memory 
addresses. 

The VDG chip determines the graphics capabilities of 
the Dragon and it does so by providing a selection of 
modes of operation. These modes dictate the resolution 
of the display, the number of display colours, the 
actual colours displayed, etc. In all, there are a 
total of 14 different display modes: 

(1) Four alphanumeric modes 

(2) Two Semigraphics modes 

(3) Four colour graphics modes 

(4) Four resolution graphics modes 

The PMODE statement in BASIC allows some of these modes 
to be provided but not all of them are available to the 
BASIC programmer. However, the assembly language 
programmer may use all of the display modes by directly 
configuring the VDG chip. Each of these modes is 
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described in a separate section later in this chapter. 
The VDG chip has eight control lines which are used 

to select the mode of the display. The table below 
shows the function and the names of each of these 
control lines. 

The mode control lines, A/G, INT/EXT, GM0, GM1, GM2, 
and CSS, are connected to the PIA chip as described in 
the following section. The desired mode may be set up 
by setting the appropriate bit pattern in the PIA's 
data register. This causes the appropriate control 
signals for the VDG chip to be generated. 

Although six of the VDG control lines are set up via 
the PIA, there are only five output lines from the PIA 
to the VDG chip. There is no need for six lines as the 
INT/EXT and GM0 input lines share a single PIA output 
line. When GM0 is needed in graphics mode, the value 
of INT/EXT is irrelevant and when the value of INT/EXT 
is actually needed in alphanumeric/Semigraphics mode, 
the value of GM0 is not used. 

The remaining VDG control lines A/S and INV are 
connected to two of the RAM data lines, D6 and D7. 
These lines can therefore be set on a character by 
character basis in the alphanumeric/semigraphic modes. 

The VDG chip has the capability of generating eight 
colours but, when colour graphics modes are used, 
memory restrictions limit the number of colours which 
may be displayed to four. The eight colours are 
therefore separated into two colour sets and the CSS 
control line on the VDG indicates which colour set is 
in use. 

The colours in each colour set are: 

When the memory bits defining an element are set, this 
means that the element is 'on' and it is displayed in 

Control line 
A/G 

A/S 

INT/EXT 

GM0,GM1,GM2 
CSS 
INV 

Function 
Set LO to indicate Alphanumeric 
HI to indicate Graphic mode 
LO to indicate Alphanumeric 
HI to indicate Semigraphic mode 
Selects between internal (LO) 
and external (HI) character 
generator ROM. 
Selects the graphics mode 
Selects between the two colour sets 
Selects between inverse and normal 
video 

Colour set 1 
Green 
Yellow 
Blue 
Red 

Colour set 2 
Buff 
Cyan 

Magenta 
Orange 
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colour. When the associated bits are unset, the 
element is off and is displayed as black. 

7.1.2 The peripheral interface adaptor 
The PIA is an example of a general-purpose programmable 
interface device which is used to interface the M6809 
processor to other devices. We describe the operation 
of the PIA in Chapter 8 as it plays a very important 
role in input/output programming. 

The block diagram of the Dragon in Figure 1.2 shows 
that the system contains two PIA chips. The PIA used to 
control the VDG chip is PIA1 and, by setting the 
appropriate bits in the PIA's B-side peripheral data 
register, control signals for the VDG chip can be 
generated. 

As the M6809 uses memory-mapped addressing, this 
data register is set by writing bit patterns to the 
appropriate memory address. PIA1 is addressed via 
memory locations FF20 through to FF23 with the B-side 
peripheral data register located at location FF22. We 
might therefore set up the VDG inputs as follows: 

LDA <VDG input state> 
STA $FF22 

In fact, only bits 3 to 7 of this register are used to 
set the VDG control lines with bits 0 to 2 used for 
other purposes by the Dragon. The values of these bits 
are irrelevant for graphics programming. The table 
below shows the association of bits in the PIA register 
and VDG control lines. 

7.1.3 The video RAM 
Whilst it is the VDG chip which determines how data is 
displayed on the user's screen, it is the contents of 
the video RAM which specifies what is displayed. 
Remember that the display is made up of 256 by 192 
pixels and the contents of the video RAM determine 
which pixels should be displayed and the colour of 
displayed pixels. 

The VDG continually scans the video RAM and uses the 
data there to build up an image on the screen. 
Therefore, by changing a data byte in the video RAM, 
the programmer can change the pixels in the 
corresponding screen position. The resolution of the 
display is determined by the number of pixels affected 
when a single data byte of video RAM is modified. 

Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

CSS 
GM0 
GM1 
GM2 
A/G 



F0 
F1 
F2 
F3 
F4 
F5 
F6 

FFC6/7 
FFC8/9 
FFCA/B 
FFCC/D 
FFCE/F 
FFD0/1 
FFD2/3 
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7.1.4 The synchronous address multiplexor - SAM 
The SAM chip has been specifically designed to provide 
the necessary control and timing signals for the M6809, 
the VDG chip, and the video RAM. Much of this 
information is of no relevance to the programmer but 
some aspects of the operation of the SAM chip are 
important. We concentrate on these aspects in this 
section rather than describe the SAM chip in detail. 

Three bits in the SAM control register are used to 
set the appropriate display mode. These bits should be 
set to the same value as bits 3-5 in the VDG control 
register. The SAM control register is memory mapped at 
address FFC0 and occupies the address range FFC0 to 
FFDF. As the control register is 16 bits wide, why are 
32 bytes allocated in memory to that register? 

The 16-bit control register maps onto the 32-bit 
range FFC0 to FFDF so that each register bit is 
represented by two memory bytes which have adjacent 
even and odd values. Therefore bit 0 in the control 
register is represented by FFC0/1, bit 1 by FFC2/3, bit 
2 by FFC4/5 etc. In order to clear a particular bit, a 
write operation to the even address is carried out, and 
to set a SAM control register bit you must write to the 
associated odd address. This technique of setting and 
unsetting the control register bits is the reason why 
32 bytes are allocated to a 16-bit register. 

The SAM control register bits which indicate the 
current graphics mode are the bottom three register 
bits termed V0, V1, and V2. These have associated 
addresses FFCO/1, FFC2/3 and FFC4/5. To set up the 
graphics mode required, you must carry out the 
requisite write operations to these addresses. 

As well as these mode control bits, there are seven 
other SAM control register bits (bits F0-F6) which are 
used to indicate the base address in memory of the 
graphics segments used for the video RAM. The table 
below shows the association between these SAM control 
register bits and memory bytes: 

The 7-bit value in the SAM control register is 
multiplied by 512 to compute the base address of the 
graphics segments used. This is the reason why 
graphics segments always have a base address which is a 
multiple of 512 and why they are always 512 bytes long. 

Because the VDG and SAM chips must operate in 
tandem, they are normally set up in the same mode so 



that signal timings, etc. are compatible. If set up in 
different modes, the system will produce garbage except 
when the VDG chip is in alphanumeric mode and the SAM 
chip is in one of the colour graphics modes. In this 
case, extra Semigraphics modes are available and these 
are described in section 7.6. 

7.2 INTEGRATING BASIC AND ASSEMBLY CODE GRAPHICS 

One of the strengths of the BASIC system on the Dragon 
is the graphics facilities provided by Microsoft's 
Extended Color BASIC. These facilities allow complex 
graphics programs to be written with relative ease but, 
as with all BASIC programs, they are relatively slow. 
Using assembly code speeds up the system's graphics 
very considerably but is much less convenient for the 
programmer. The ideal solution is to use the 
convenience of the BASIC facilities when execution 
speed is not important and to program time-critical 
sections of the program in assembly language. 

Typically, those parts of a graphics program which 
are not time critical are the parts involved with 
initialisation and hardware setup. In this section we 
look at some useful BASIC graphics commands and 
describe a BASIC subroutine which will set up the 
graphics system then call an assembly language program 
which actually creates the display. 

Of the many BASIC commands used for high resolution 
graphics, three are of particular importance to the 
assembly language programmer. 

(1) SCREEN type,colourset 
This command is used to specify whether full 
graphics or alphanumeric/Semigraphics mode is to 
be used. For a full graphics mode, type is 1, 
otherwise 0. The colourset parameter is either 1 
or 0 and selects the colour set as defined in 
section 7.1.1. 

(2) PMODE mode,startpage 
This statement selects one of the five graphics 
modes available with Extended Color BASIC and is 
only meaningful if a SCREEN 1, colourset command 
has been issued. The modes available are summar
ised below: 

The startpage value is used to select the base 

Mode 
0 
1 
2 
3 
4 

Resolution 
128 by 96 
128 by 96 
128 by 192 
128 by 192 
256 by 192 

RAM bytes 
1536 
3072 
3072 
6144 
6144 

Graphics type 
Resolution 
Colour 
Resolution 
Colour 
Resolution 



Page 
1 
2 
3 
4 
5 
6 
7 
8 

RAM address range 
600-BFF 
C00-11FF 
1200-17FF 
1800-1DFF 
1E00-23FF 
2400-29FF 
2A00-2FFF 
3000-35FF 
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address of the graphics display. In Extended 
Color BASIC, the display area is made up of one 
to four pages of 1536 bytes each with up to eight 
pages used for the display. Therefore, the start
ing page value must lie in the range 1 to 8 with 
page 1 starting at address 600, immediately after 
the text page. The table below shows the rela
tionship of pages to RAM addresses. 

(3) PCLS c 
This command is used to clear the high-resolution 
display screen to the background colour c, pro
vided that c is in the available colour set for 
the current mode. If this is not the case, or c 
is omitted, the default background colour is 
used. This is green if colour set 1 is selected 
and buff if colour set 2 is used. 

SCREEN, PMODE and PCLS are useful to the assembly 
language programmer since they can be used to set up a 
graphics display prior to its use in an assembly 
language program. In other words, the use of these 
commands avoids the need to write machine code routines 
to perform similar functions. 

We show how these can be used in the BASIC 
subroutine below. This routine initialises the 
graphics system using SCREEN, PMODE, and PCLS commands 
then calls an assembly language routine at address 
4E21. 

1000 SCREEN 1,0 'Select graphics screen 
1010 PMODE 0,1 'Select graphics mode 
1020 PCLS 'Clear graphics display 
1030 EXEC &H4E21 'Call machine code 
1035 ' Don't return immediately to BASIC 
1036 ' as this means switch to text screen 
1040 IF INKEY$="" THEN 1040 ' and display is lost 
1048 'Switch colour sets and watch 
1049 'screen colours change 
1050 SCREEN 1,1 
1060 IF INKEY$="" THEN 1060 
1070 SCREEN 0,0 'Now revert to text mode 
1080 RETURN 

Program 7.1 BASIC test rig for graphics programs 
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7.3 ALPHANUMERIC DISPLAY MODES 

The alphanumeric mode is the mode adopted by the Dragon 
when it is switched on or reset. In this mode, the 
display is made up of a 32 by 16 matrix of display 
elements with 512 bytes of video RAM dedicated to this 
display. The BASIC system allocates this display area 
at address 400 so that the SAM control register bits 
F0-F6 are set to 02. 

Although the VDG chip supports four different 
alphanumeric modes, the Dragon hardware is only 
designed to make use of one of these. The other modes 
require special read-only memories to be installed and 
attempting to use them will result in unpredictable 
access to RAM. Nevertheless, it is possible to use 
these modes if you are prepared to spend some time in 
experimentation to determine where the VDG accesses 
RAM. The information in the VDG data sheet should be 
sufficient to get you started with these experiments. 

Each character on the display is represented by 8 by 
12 pixels although only 5 by 7 pixels are used to form 
the actual character. The remaining pixels define the 
space between the characters. The shape of the 
characters in alphanumeric mode is determined by a 
read-only memory (ROM) which is build into the VDG 
chip. Unfortunately, this ROM has space for only 64 
characters so this means that the full ASCII character 
set is not available. In particular, lower case 
characters have been excluded and this limits the 
display capabilities of the Dragon. 

As the maximum number of characters which may be 
held in the VDG's ROM is 64, this means that 6 bits of 
an 8-bit byte are required to represent the character 
value. The remaining 2 bits represent the INV and A/S 
control inputs to the VDG chip. One bit specifies 
whether the display mode is alphanumeric or Semigraphic 
and the other specifies whether the character is to be 
displayed in reverse or normal video. The table below 
shows the usage of the bits in an 8-bit data byte: 

One of the problems which arises with this display mode 
is that there is not a one-to-one correspondence 
between the character code in the video RAM byte (which 
is an ASCII character) and the character which is 
actually displayed. To illustrate this, you might like 
to run the following BASIC program: 

5 CLS 
10 FOR K = 0 to 127 
20 K$ = CHR$(K) 
30 POKE &H400 + K,K 

Bits 0-5 
Bit 6 
Bit 7 

Character code 
INV control bit 
A/S control bit 
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40 PRINT @256 + K,K$; 
50 NEXT K 

Program 7.2 Screen character mapping 

The statements at lines 30 and 40 should be equivalent 
in that they should both place the ASCII value of a 
character in the video RAM. However, some characters 
will be displayed differently. 

To further illustrate this point, type in the 
following amendments to the program: 

10 K$=INKEY$: IF K$="" THEN 10 
20 K =ASC(K$) 
50 P1 = PEEK(&H400 +K) 
60 P2 = PEEK(&H400 + 256 + K) 
70 PRINT @480,HEX$(K),HEX$(P1),HEX$(P2); 
80 GOTO 10 

When the program is run, you will see that the actual 
ASCII codes K and P1 remain the same but that P2, the 
result of printing a character, is different. This 
means that the BASIC print routine is altering the 
character code before placing it in the video RAM. 

This conversion is carried out by the standard BASIC 
character printing routine OUTCH. We have already 
mentioned this routine in Chapter 5 and, because it 
takes care of the necessary character conversions for 
the VDG chip, we recommend that it always be used for 
character output. 

OUTCH places the character to be output at the 
current cursor position on the screen. The cursor 
position is held in a system variable called CURADR and 
the contents of that variable determines where, on' the 
screen, the cursor is displayed. Cursor blinking is 
under the control of a system routine called CBLINK and 
the blinking effect is the result of inverting and re-
inverting the cursor position character. 

As well as performing code conversions, the routine 
OUTCH also carries out other screen 'housekeeping' 
duties. It handles screen scrolling when the end of a 
line is reached, deletes characters from the screen 
when the delete key is pressed, and updates the cursor 
position so that the next character input is at that 
position. 

Normally, the Dragon display consists of dark 
characters on a light background. In fact, the 
'normal' character set of the VDG chip consists of 
light characters on a dark background so the Dragon's 
display is actually the inverse character set. This 
means that the INV control bit (bit 6) of each data 
byte must be set to indicate dark-on-light display. To 
illustrate this, the following program manipulates the 
INV bit of every character in the display: 
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LDX #$400 ; Display start address 
NEXTCH LDA ,X ; Character into A 
* INV bit manipulation here - see below 

STA ,X+ ; Put character back 
CMPX #$5FF ; Reached end of screen? 
BLS NEXTCH ; No, repeat 
RTS 

Program 7.3 INV bit manipulation 

The INV bit can be manipulated in the following ways: 

Instruction Effect 
ORA #$40 Sets INV to 1 so 'normalising' the 

display 
ANDA #$BF Clears INV so inverting the display 
EORA #$40 If INV is set, it is unset and vice 

versa. The effect of this is to 
reverse the display 

7.4 COLOUR GRAPHICS DISPLAY MODES 

The VDG provides eight full graphics modes although 
only five of these are directly supported by Extended 
Color BASIC. The modes range from a four-colour 64 by 
64 element display requiring 1024 bytes of video RAM to 
a two-colour 256 by 192 display requiring 6144 bytes of 
video RAM. Four of these modes are termed colour 
graphics modes and these are described in this section. 
Each of these modes is numbered 1, 2, 3 or 6 depending 
on the number of graphics pages required and colour 
graphics modes are indicated by using this number and 
suffixing it with C. 

In any colour graphics mode, the setting of each 
element in the display is controlled by two bits in the 
video RAM byte so that the element may be one of four 
colours. The general format of a video RAM byte for 
colour graphics is shown in Figure 7.1. 

Fig. 7.1 Colour graphics byte format 

Because the VDG is capable of generating eight colours, 
two colour sets each of four colours are available. 
Which colour set is in use is determined by the CSS 
input line to the VDG. The table below shows the 
available colours and their associated coding in the 
video RAM byte. 

c1c0 

E3 

C1C0 

E2 

C1C0 

E1 

C1C0 

E0 
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To illustrate each of the graphics modes available, the 
assembly language routine shown as Program 7.4 
generates a checkerboard pattern on the screen. As 
each graphics mode has different requirements, the 
appropriate constants have been defined using an EQU 
directive so that they may be easily altered for 
another mode. The appropriate equates are defined along 
with the description of each of the graphics modes and 
are initially set up for the colour graphics 1 mode. 

The method used to generate the checkerboard pattern 
is to set up alternating on-off patterns in the video 
RAM byte and then write a complete row of such bytes to 
the screen. After a row has been written, the on-off 
patterns are reversed and another row written. This 
means that an on-pattern falls immediately below an 
off-pattern which is black thus creating the 
checkerboard. 

When in colour graphics mode, two bits are used to 
define each screen location so the appropriate on-off 
pattern in the video RAM byte is 00110011. This is 
encoded, in hexadecimal, as $33. 

DSTART EQU $0600 ; Display start address 
DSIZE EQU 1024 ; Display size 
DEND EQU DSTART+DSIZE ; Display end address 
DWIDTH EQU 16 ; Display width in bytes 
DBITS EQU $33 ; Display bit pattern 

ORG $4E21 ; Set up code address 
PATGEN PSHS A,B,X ; Save registers 

LDX #DSTART ; Set up base address 
LDA #DBITS ; Set up pattern 
LDB #DWIDTH ; Set up width 

NXTCOL STA 0,X+ ; generate pattern 
DECB 
BNE NXTCOL ; are we finished? 
COMA ; yes, complement pattern 
LDB #DWIDTH ; and reset row length 
CMPX #DEND ; Reached end of display 
BLO NXTCOL ; no, do next column 
PULS A,B,X,PC ; restore and return 

Program 7.4 Checkerboard routine 

CSS 
0 
0 
0 
0 
1 
1 
1 
1 

Colour 
Green 
Yellow 
Blue 
Red 
Buff 
Cyan 

Magenta 
Orange 

C1C0 
00 
01 
10 
11 
00 
01 
10 
11 
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7.4.1 The colour graphics 1 mode 
This mode provides a 64 element wide by 64 element high 
four colour graphics display and is referred to as the 
1C mode. As the display screen is 256 by 192 pixels, 
this means that each element is 4 pixels by 3 pixels in 
size. Given that the code for 4 screen elements can be 
held in each byte, the display memory requirement for 
this mode is therefore 1024 bytes. 

The pattern generator program is set up initially in 
this mode. However, as the BASIC PMODE command does not 
recognise this particular mode, the SAM and VDG chips 
have to be set up directly in the BASIC test rig by 
poking values into their control registers. It is still 
possible to use the SCREEN command to select the 
graphics screen since this is independent of the mode. 
It is also possible to use one of the colour graphics 
PMODEs (1 or 3) to set up the start page and PCLS to 
clear the screen graphics display since the byte format 
is the same. This does mean that 3072 (3C) or 
6144 (6C) bytes will be cleared when only 1024 bytes 
need be but this is not usually a problem. 

The following amendments to Program 7.1 configure 
the graphics hardware for the 1C mode. 

1010 PMODE 1,1 
1022 POKE &HFFC1,1 'Set V0 in SAM 
1024 POKE &HFFC2,0 'Clear V1 in SAM 
1026 POKE &HFFC4,0 'Clear V2 in SAM 
1028 POKE &HFF22,&H80 'Configure VDG 

The lines 1022-1028 are used to configure the VDG and 
SAM directly and therefore override the PMODE 1 
command. 

7.4.2 The colour graphics 2 mode 
The display generated by this mode is in four colours 
on a 128 by 64 grid. Elements are made up of 2 by 3 
pixels and a total of 2048 bytes of video RAM is 
required to support this mode. To convert the 
checkerboard generator to this mode, the following 
equates must be made: 

DSIZE EQU 2048 
DWIDTH EQU 32 

Again, the programmer must configure the SAM and VDG 
chips by the use of POKEs to set their control 
registers. The amendments to the BASIC test rig below 
set these devices for this mode. 

1010 PMODE 1,1 
1022 POKE &HFFC0,0 
1024 POKE &HFFC3,1 
1026 POKE &HFFC4,0 
1028 POKE $HFF22,&HA0 'Configure VDG 
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7.4.3 The colour graphics 3 mode 
This mode considers the screen to be made up of 128 by 
96 elements and, like all the colour graphics modes, 
can display up to four colours. The total video RAM 
requirement for this mode is 3072 bytes or two high-
resolution graphics pages. 

To reconfigure the checkerboard program for this 
mode requires the following redefinitions 

DWIDTH EQU 32 
DSIZE EQU 3072 

BASIC recognises this mode so the hardware can be set 
up using a PMODE 1 command. 

7.4.4 The colour graphics 6 mode 
This is the highest resolution colour graphics mode. 
The screen is made up of 128 by 192 elements and there 
are four possible colours. Elements are each 2 by 1 
pixels in size. The memory requirements for this mode 
are 6144 bytes which needs four high-resolution 
graphics pages. 

The following alterations to the pattern generator 
program are needed: 

DSIZE EQU 6144 
DWIDTH EQU 32 

Again, this mode is recognised by BASIC and can be set 
up by using a PMODE 3,1 command. 

7.5 RESOLUTION GRAPHICS DISPLAY MODES 

Resolution graphics, as the name implies, are more 
concerned with screen resolution rather than colour so, 
in these graphics modes, the colours are limited. The 
display is black on a background colour or a foreground 
colour on black. 

The background or foreground colours are green and 
buff as shown in the table below. 

In resolution graphics, each element in the display is 
controlled by a single bit which means that an element 
can be one of two colours. 

The bit pattern used to define the checkerboard 
consists of bits with alternating values, that is, 
01010101, so for all resolution graphics modes the 
DBITS constant in Program 7.4 is set to $55. 

CSS 
0 
0 
1 
1 

Colour 
Black 
Green 
Black 
Buff 

RAM bit value 
0 
1 
0 
1 



c 

E7 

C 

E6 

C 

E5 

C 

E4 

C 

E3 

C 

E2 

C 

E1 

C 

E0 
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The general format of a video RAM byte for 
resolution graphics is shown in Figure 7.2. 

Fig. 7.2 Resolution graphics byte format 

There are four resolution graphics modes which are 
given the names 1R, 2R, 3R and 6R. These are the 
resolution graphics equivalents of modes 1C, 2C, 3C, 
and 6C and each is described below. 

7.5.1 The resolution graphics 1 mode 
This mode generates a 128 element wide by 64 element 
high two-colour graphics display. Each element is 
controlled by a single bit in the video RAM byte and is 
2 pixels by 3 pixels in size. The total memory 
requirements for this mode are 1024 bytes. Like the 1C 
mode, this mode is not supported directly by BASIC. 

The pattern generator can be altered for this mode 
by redefining some of the constants as follows: 

DSIZE EQU 1024 

The BASIC test rig must be modified to set up the VDG 
and SAM chips but a PMODE 0 command followed by a PCLS 
will clear enough screen bytes for this mode. The 
following amendments to the BASIC test rig will 
configure the VDG and SAM chips for the 1R mode. 

1022 POKE &HFFC1,1 'Set V0 in SAM 
1024 POKE &HFFC2,0 'Clear V1 in SAM 
1026 POKE &HFFC4,0 'Clear V2 in SAM 
1028 POKE &HFF22,&H90 'Configure VDG 

7.5.2 The resolution graphics 2 mode 
This resolution graphics mode generates a display of 
128 elements wide by 96 elements high. This means that 
each element is 2 pixels by 2 pixels in shape. Its 
memory requirements are 1536 bytes or 1 high-resolution 
graphics page. 

The checkerboard program may be modified for this 
mode by redefining the equates as follows: 

DSIZE EQU 1536 

The 2R mode is supported by BASIC and can be invoked by 
issuing a PMODE 0 command. 
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7.5.3 The resolution graphics 3 mode 
This mode generates a 128 by 192 element display in two 
colours. Each element is 2 pixels by one pixel and the 
total memory requirement is 3072 bytes. 

To reconfigure the pattern generator for this mode 
only requires DSIZE to be equated to 3072. The mode is 
supported by BASIC as PMODE 2. 

7.5.4 The resolution graphics 6 mode 
This is the highest resolution mode possible since each 
pixel is controlled by a single bit in the video RAM. 
The display is arranged as a 256 by 192 pixel grid and 
therefore the video RAM size required for this is 6144 
bytes. To set up the checkerboard routine for this mode 
requires DSIZE to be equated to 6144 and the BASIC test 
rig must be modified so that a PMODE 4 command is 
issued. 

7.6 SEMIGRAPHICS DISPLAY MODES 

As well as graphics and alphanumeric modes, the VDG 
chip has two Semigraphics modes where special-purpose 
characters representing graphics symbols can be built 
up and displayed on the screen. As the fundamental 
display element is the character, it is possible to mix 
these graphics characters with normal alphanumerics 
thus allowing text and graphics to appear together on 
the Dragon's display. Furthermore, the use of a 
Semigraphics mode allows the use of eight-colour rather 
than four-colour graphics, thus opening up more 
creative possibilities for the graphics programmer. 

The in-built Semigraphics modes are termed 
Semigraphics 4 and Semigraphics 6 modes with the 
associated number referring to the number of elements 
making up a graphics character. As well as these in
built modes, it is also possible to set up three 
additional Semigraphics modes (8, 12, 24) by setting 
the VDG chip in alphanumeric mode and the SAM chip in 
2C, 4C, or 6C colour graphics mode. Details of these 
additional modes are briefly described below and fully 
described in Appendix 2. 

When in Semigraphics mode, each character is made up 
of a number of elements. The character organisation 
for Semigraphics 4 mode is shown as Figure 7.3. The 
other modes have a similar pixel organisation although, 
obviously, they offer higher resolution graphics as 
each character is made up of more elements. In all 
cases, the horizontal width of an element is 4 pixels 
but the vertical width varies from 1 to 6 pixels. Apart 
from the Semigraphics 6 mode, all of the Semigraphics 
modes allow eight-colour graphics and use three bits in 
each byte to represent the colour of the character 
elements represented in that byte. Bits 4-6 in the 
byte hold the colour information and the table below 
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defines the colours associated with each three-bit 
colour value. 

Fig. 7.3 Semigraphics 4 character organisation 

A Semigraphics byte is arranged so that bits 0-3 hold 
the settings of character elements, bits 4-6 hold the 
colour and bit 7 is the mode bit. In Semigraphics 4 
and 6 modes, bit 7 is 1, in Semigraphics 8, 12, or 24 
modes, bit 7 is 0. All elements that are 'on' are 
displayed in the colour specified in bits 4-6 and 
elements which are 'off' are displayed as black. There 
is no way that elements represented in the same byte 
can take different colours. 

7.6.1 The Semigraphics 4 mode 
In Semigraphics 4 mode, each character is split into 4 
elements of size 4 by 6 pixels. A single video RAM 
byte is therefore needed to hold each character where 
bits 0-3 are named L0-L3. 

To experiment with this mode, you might like to 
modify Program 7.2 which manipulates the INV bit in the 
video RAM bytes. Rather than manipulate bit 6, you 
manipulate bit 7 using AND, OR and EOR instructions. 
These will turn the Semigraphic mode on and off. 

7.6.2 Semigraphics 6 mode 
The Semigraphics 6 mode splits each character into 6 
elements of size 4 by 4 pixels giving a display 
resolution of 64 horizontal by 48 vertical elements. 
Each element is controlled by a bit in the video RAM 

Colour 
Green 
Yellow 
Blue 
Red 
Buff 
Cyan 

Magenta 
Orange 

Bit pattern 
000 
001 
010 
011 
100 
101 
110 
111 

4 

L3 

L1 

4 

L2 

LO 

6 

6 
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byte so, as a single byte is used for each character 
position in this mode, six bits of that byte are 
required to encode element settings. This leaves only 
two bits (bits 6 and 7) for colour information so only 
four colours may be represented. As in the colour 
graphics modes, the setting of CSS determines which 
colour set is used. 

In fact, the number of colours available in this 
mode is even more restricted as bit 7 has a double 
function as a colour coding bit and as a mode setting 
bit. In order to remain in Semigraphics mode, bit 7 
must always be set to 1 so this means that only blue 
and red from colour set 0 and magenta and orange from 
colour set 1 may be used. 

7.6.3 The Semigraphics 8 mode 
The Semigraphics 8 mode is the first of the extra 
Semigraphics modes which can be used by setting up the 
VDG chip to alphanumeric mode and the SAM chip to one 
of the colour graphics modes. In this mode, a standard 
8 by 12 pixel character is split into eight elements of 
4 by 3 pixels. 

In order to set up the Semigraphics 8 mode from 
BASIC you must issue a SCREEN 0,0 command to put the 
VDG chip into alphanumeric mode then poke the bit value 
Oil into the SAM control bytes as shown in the graphics 
examples above. 

In this mode, 4 bytes of video RAM are required to 
represent each character position and only the bottom 
two bits (LO and L1) are used to hold element settings. 
As before, bits 4-6 hold the colour value and bit 7 
should be set to indicate Semigraphic mode. Bits 2 and 
3 are not used but should be set so that bit 2 has the 
same value as bit 0 and bit 3 is the same as bit 1. 

Each character is built up as 4 rows of 4 by 3 pixel 
elements. However, the bytes representing these rows 
are not contiguous but are actually spaced 32 bytes 
apart. The reason for this is that the SAM chip is 
configured to a colour graphics mode where the image is 
built up row by row, with each complete row taking up 
32 bytes. As Semigraphic elements consist of a number 
of rows, this means that the bytes specifying the 
element must be set up at this spacing. 

As four bytes are used, it is possible to mix 
element colours when using this mode as, obviously, 
each pair of elements in a byte has its own colour 
information. Furthermore, it also allows character 
rows from different characters to be incorporated into 
new characters and symbols. This means you can provide 
facilities such as character underlining by switching 
to Semigraphics mode at the appropriate time. 

However, using this facility requires great care as 
you must build up each character individually with each 
row of elements defined in a separate byte. You also 
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have the problem of spacing character definition bytes 
32 bytes apart as explained above so we recommend that 
you write a program to help you organise byte layout if 
you wish to use this facility. 

7.6.4 The Semigraphics 12 mode 
In this mode, the VDG chip is set to alphanumeric mode 
and the SAM chip to colour graphics 4C mode. Each 
character element is represented by twelve 4 by 2 pixel 
elements held in six bytes. As in the Semigraphics 4 
mode, only the bottom two bits per byte are used for 
element settings and different bytes may be set to 
different colours. 

To set up this mode, you must issue a SCREEN 0,0 
command from BASIC then poke the value 001 into the SAM 
control bytes. 

7.6.5 The Semigraphics 24 mode 
In this mode, the SAM chip is set up to 6C mode and 
each character element is made up of twenty four 4 by 1 
pixel elements thus giving a screen resolution of 64 by 
192 elements. A total of 12 bytes is required to hold 
these element settings and, again, the colour of the 
two elements represented in each byte may be set up 
independently. 

To set up this mode, you must issue a SCREEN 0,0 
command from BASIC then poke the value 011 into the SAM 
control bytes. 

7.7 GRAPHICS UTILITIES 

So far we have shown how the various display modes can 
be set up from BASIC and we have assumed that this is 
carried out before an assembly code graphics routine is 
called. Sometimes, setting up the display hardware 
from BASIC is neither possible nor desirable so in this 
section we describe how BASIC commands such as SCREEN, 
PMODE, PCLS, etc. may be implemented in assembly 
language. 

We have described, in section 7.1, the various 
hardware control bits and have explained that they are 
set up via memory-mapped I/O addresses. Remembering 
which bit means what is difficult, so it is good 
practice to set up mnemonic names for the various 
control bit settings. A table of equates defining 
these names, which we use throughout the remainder of 
this chapter, is shown below. 

* VDG/PIA and SAM addresses 
* 
VDGPIA EQU $FF22 ; Port B of PEA - VDG control 
SAMVOC EQU $FFC0 ; Used to clear V0 
SAMV0S EQU $FFC1 ; Used to set V0 
SAMV1C EQU $FFC2 ; Used to clear V1 
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SAMV1S EQU $FFC3 ; Used to set V1 
SAMV2C EQU $FFC4 ; Used to clear V2 
SAMV2S EQU $FFC5 ; Used to set V2 
SAMF0C EQU $FFC6 ; Base address of F0-F6 
* 
* VDG/PIA bit patterns - assumes CSS=0 
* 
ALPHAI EQU $00 ; Internal alphanumeric 
ALPHAE EQU $10 ; External alphanumeric 
M0DES4 EQU ALPHAI ; Semigraphics 4 
M0DES6 EQU ALPHAE ; Semigraphics 6 
MODES8 EQU MODES4 ; Semigraphics 8 
MODS12 EQU MODES4 ; Semigraphics 12 
M0DS24 EQU M0DES4 ; Semigraphics 24 
* 
* Full graphics modes 
* 
M0DE1C EQU $80 ; Graphics 1C 
MODE1R EQU $90 ; Graphics 1R 
MODE2C EQU $A0 ; Graphics 2C 
MODE2R EQU $B0 ; Graphics 2R 
MODE3C EQU $C0 ; Graphics 3C 
MODE3R EQU $D0 ; Graphics 3R 
MODE6C EQU $E0 ; Graphics 6C 
MODE6R EQU $F0 ; Graphics 6R 

Normally, the modes of the VDG and the SAM chip are the 
same but for some of the extra Semigraphics modes they 
must be set up differently. Therefore, rather than use 
a single routine with complex parameters to set up 
these devices, it is better to use two separate 
routines. The routine to configure the VDG chip is 
called VDGMOD and the routine to configure the SAM chip 
is SAMMOD. They are shown below as Program 7.5. 

* VDGMOD - sets up VDG chip 

* Sets control lines A/G, GM0-2, and CSS 
* 
* Register input A - configuration bit pattern 
* to be written to PIA 
* Note only bits 3-7 of PIA are set so bits 0-2 must 
* be preserved 
* 
VDGMOD PSHS A ; Preserve setup pattern 

LDA VDGPIA ; Preserve bottom bits 
ANDA #7 ; of PIA register 
ORA ,S ; Or in setup pattern 
STA VDGPIA ; Setup VDG 
PULS A,PC ; Restore and return 

* 
* SAMMOD - Setup SAM chip 
* 
* Register input A - bit pattern used to set up VDG 
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* In general, V0,V1,V2 in SAM are set up as GM0, 1, 2 
* in VDG but there are three special cases: 
* If A/G = 0 then V0V1V2 = 000 
* If A/G = 1 and GM0GM1GM2 = 000 then V0V1V2 = 100 
* If A/G = 1 and GM0GM1GM2 = 111 then V0V1V2 = 01l 

SAMMOD PSHS A ; Preserve VDG pattern 
STA SAMVOC ; Clear V0 
STA SAMV1C ; Clear V1 
STA SAMV2C ; Clear V2 
ANDA #$F0 ; Clear bottom 4 bits of A 
BPL NOTGM0 ; Text mode (B7=0) 
CMPA #MODE1C ; no, is it 1C? 
BNE NOT1C 
ORA #$10 ; yes, special case->lR 

NOT1C CMPA #MODE6R ; Is it 6R 
BNE NOT6R 
ANDA #$E0 ; yes, special case->6C 

NOT6R ROLA ; Get rid of A/G bit 
BPL NOTGM2 ; GM2 set? 
STA SAMV2S ; yes, set V2 

NOTGM2 ROLA ; get rid of GM2 bit 
BPL NOTGMl ; GM1 set 
STA SAMV1S ; yes, set V1 

NOTGMl ROLA ; get rid of GM1 bit 
BPL NOTGM0 ; GM0 set? 
STA SAMV0S ; yes, set V0 

NOTGM0 PULS A,PC ; Restore and return 

Program 7.5 VDG and SAM setup routines 

These routines set up the SAM and VDG chips. Normally, 
these devices are configured in the same mode so the 
bit pattern defining the VDG's control bits is set up 
in register A and each routine is called in turn. 

* GMODE - sets up graphics hardware 

* Register input A - VDG's control bit settings 
* 
GMODE BSR VDGMOD 

BSR SAMMOD 
RTS 

You can use this routine in conjunction with the equate 
table defined above to set up any of the graphics 
modes. You simply have to load the A register with the 
mode required then call GMODE to configure the VDG and 
SAM chips. The exceptions to this are when Semigraphics 
8, 12, or 24 modes are to be set up when VDGMOD and 
SAMMOD must be called individually to configure the VDG 
and SAM chips to different modes. 

For example: 
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* SEMI8 - selects Semigraphics 8 mode 
* 
SEMI8 LDA #ALPHAI ; Alphanumeric mode 

BSR VDGMOD ; for VDG 
LDA #MODE2C ; and 2C mode 
BSR SAMMOD ; for SAM 
RTS 

* 
* FULL6R - Selects resolution graphics 6 mode 
* 
FULL6R LDA #MODE6R 

BSR GMODE 
RTS 

These mode setup routines combine some of the features 
of BASIC'S PMODE and SCREEN commands which, together, 
set up the mode required, define the colour set and 
determine which graphics pages are to be used. In fact, 
it is better programming practice for a routine to do 
one thing and one thing only so we have defined 
separate assembly code routines to select the colour 
set and to define the starting page. These are shown as 
Program 7.6. 

* CSS - Select colour set 

* Input register A = 0 -> colour set 0 
* = 1 -> colour set 1 
* 
CSS PSHS A ; Preserve A 

LDA VDGPIA ; Read current state of VDG 
TST ,S ; Check set selection 
BEQ CSS0 
ORA #8 ; Set the CSS line 
BRA XIT 

CSS0 ANDA #$F7 ; Clear the CSS line 
XIT STA VDGPIA ; update the VDG 

PULS A,PC ; Restore and return 

* To set up the SAM control bits, we must manipulate 
* 7 bits. We use the utility routine 
* from page 16 of Appendix 2 to carry out 
* this bit manipulation 
* 
* SAMSET - Configures SAM control bits 
* 
* Register inputs X - address in SAM control register 
* A - SAM configuration bit pattern 
* B - number of bits to be copied from 
* A to SAMCR 
* NB. This routine does not preserve registers 
* 
SAMSET LSRA ; Shift bit 0 to carry 

BCC NOTSET ; Set corresponding CR bit? 
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LEAX 1,X ; Yes, odd address 
STA 0,X+ ; set bit and adjust X for 
BRA CHKCNT ; next address 

NOTSET STA 0,X++ ; Clear bit and continue 
CHKCNT DECB ; All done? 

BNE SAMSET 
RTS ; Yes, return 

* 
* SAMSET is used by PAGEX to set the page number 
* in the control register. This is passed to PAGEX 
* as a 16-bit address and PAGEX selects the top 7 bits 
* to get the graphics segment base address. This means 
* that you can pass an address within a segment 
* not just the segment base address 
* 
* PAGEX - Set up graphics segment base address 
* 
* Register inputs X - Address of or within display area 

PAGEX PSHS X,D ; Save registers 
TFR X,D ; A = X(HI), B = X(LO) 
LSRA ; We only need top 7 bits 
LDB #7 ; as specified in B 
LDX #SAMF0C ; Copy to F0-F6 
BSR SAMSET 
PULS X,D,PC ; Restore and return 

Program 7.6 Colour set and graphics page setup 

We have now defined those utility routines which allow 
the assembler programmer to dispense with BASIC'S 
SCREEN and PMODE commands and also with any POKEs that 
are needed to set up extra graphics modes from BASIC. 
We leave it as an exercise for the reader to convert 
the BASIC test rig, defined as Program 7.1 to assembly 
code. 

Now let us look at other useful graphics utility 
routines which may be used by the assembly language 
programmer. The first of these is a routine to clear 
the screen to a given colour. 

* CLS - Clear screen to specified colour 
* 
* Register input B - colour specification 
* 0 = Black, 1 = Green, 2 = Yellow, 
* 3 = Blue, 4 = Red, 5 = Buff, 
* 6 = Cyan, 7 = Magenta, 8 = Orange 
* 
CLS PSHS X,B ; Save registers 

TSTB ; B = 0 is special case 
BEQ SEMION ; as all elements turned off 
DECB ; BASIC -> VDG colour code 
ASLB ; Move colour code bits 
ASLB ; into bits D4-D6 
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ASLB 
ORB #$0F ; Turn on all elements 

SEMION ORB #$80 ; Set up Semigraphics bit 
LDX #$400 ; Set default screen address 

NXTBYT STB ,X+ ; Colour element 
CMPX #$5FF ; on the screen 
BLS NXTBYT ; If not finished, repeat 
PULS X,B,PC ; Restore and return 

Program 7.7 Clear screen 

When considering the graphics screen, the programmer 
thinks in terms of row and column numbers but, in 
memory, the screen is simply a one-dimensional 
contiguous area. There are 32 character bytes per row 
so it is useful to have a routine which, given a row 
and column number, translates this to the appropriate 
address. This routine, R32COL, is also useful for full 
graphics modes which have 32 bytes of colour/resolution 
information per row. Other graphics modes need a 
variation of this which is easily derived by replacing 
the LDB #32 instruction with an LDB #16 instruction. 
The code for this routine is shown below. 

* R32C0L - Calculate screen position 

* Register inputs B - column number 
* A - row number 
* Register output D - screen position 

* Calculates position as A * 32 + B 
* 
R32COL STB ,-S ; Save column on stack 

LDB #32 ; Set up multiplier 
MUL ; D = A * 32 
ADDB ,S+ ; D = D + B 
ADCA #0 ; Propagate carry 
RTS 

7.8 DESIGNING AND IMPLEMENTING GRAPHICS PROGRAMS 

An essential first step in the design of a graphics 
program is to sketch out the graphics symbols which you 
would like to use in your program. Examples of such 
symbols are space-ships, laser bursts, bombs, 
explosions, etc. if you are writing games programs, and 
character fonts, pie charts, maps, etc. if you are 
concerned with more serious applications. 

A well-designed graphics program is built up 
incrementally with later developments built up on 
earlier design stages. It is therefore very important 
that assembly language routines should be as flexible 
and as general-purpose as possible. In this section we 
discuss various tools and techniques used in the design 
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and implementation of graphics symbols and we use the 
Dragon logo as an example of a symbol that might be 
used in a graphics program. 

7.8.1 Graphic symbol design 
The first stage in graphics symbol design is to make a 
very rough sketch of the symbol required and, depending 
on the details of the symbol, choose the most 
appropriate screen resolution for that symbol. It 
might seem that it is always best to use the highest 
resolution but this may limit the colours available 
and, in fact, may mean more work in symbol design as 
the setting of more picture elements has to be 
considered. 

Another factor which must be taken into account is 
the height to width ratio of your symbol. Some modes 
have picture elements which are square and others have 
elements which are longer than they are high. For our 
example, the Dragon logo is slightly longer than it is 
high so the most appropriate resolution to chose is 128 
by 192 elements. This means using either the colour 
graphics 6 mode, if a colour display is required, or 
the resolution graphics 3 mode, if a foreground colour 
on black is all that is wanted. 

Fig. 7.4 Grid representation of Dragon logo 

Once you have decided on the resolution to use, the 
next thing to consider is the size of the symbol. 
Obviously, you must choose a size which is appropriate 
for the resolution. For our example, we have chosen 



176 

that the Dragon logo should be contained in a 16 by 16 
element grid. 

The next stage is to work out how to set up the 
picture elements in this grid so that the shape of a 
Dragon is produced. The easiest way to do this is to 
use a graphics worksheet, which is simply lined graph 
paper with the same height to width ratio as the chosen 
resolution. If this is not available, squared paper can 
be used but you must take into account any differences 
in the height to width ratio. The grid representation 
of the Dragon logo is shown as Figure 7.4. 

Once the symbol has been mapped out on the graphics 
worksheet, the binary patterns for each row must be 
encoded and included as data for the assembly language 
program. The simplest way to do this is to make up a 
data array of constant byte values using the assembler 
directives FCB and FDB. This process is 
straightforward when resolution graphics is used but 
requires rather more care when colour is required as 
there is not a one-to-one relationship between symbols 
on the worksheet and bits in the data byte. 

Let us take the easiest case first and look at how 
the graphic grid can be converted to resolution 
graphics data bytes. Since there is a one-to-one 
relationship between the screen elements and the grid 
elements, row 0, byte 0 is encoded as $00 (all elements 
off) and row 0, byte 1 is encoded as $3F (00111111). 
Row 1, byte 0 is encoded as $20 (00100000), row 1, byte 
1 as $3F, and so on. Therefore, the first few bytes of 
the assembly language data table might be written as 
follows: 

FCB $00 
FCB $3F 
FCB $20 
FCB $3F 

However, as we are dealing with a 16-bit entity, it is 
better practice to encode the information as a single 
16-bit value using FDB directives. For example: 

FDB $003F 

After you have worked out the appropriate byte values, 
you should then label the table with a symbolic name 
such as DRAGON. The complete table for the Dragon logo 
is shown below: 

DRAGON FDB $003F ;Row 0 bit pattern 
FDB $203F ;Row 1 bit pattern 
FDB $F860 
FDB $18DE 
FDB $E9BC 
FDB $2B7C 
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FDB $52E0 
FDB $B6C0 
FDB $BFFC 
FDB $BFFE 
FDB $C007 
FDB $7FEB 
FDB $3FFD 
FDB $140A 
FDB $2814 
FDB $0000 ;Row 15 bit pattern 

After encoding the graphics symbol, the next step is to 
design a routine which takes the encoded symbol and 
displays it on the screen. Because the display is 
memory mapped, all that you need to do is to copy the 
data from the graphics symbol table into the 
appropriate locations in the video RAM. The copy 
routine must map the row/column representation of the 
screen onto the video RAM which is organised as a 
linear sequence. As the Dragon logo only takes up part 
of the screen, succeeding row addresses are actually 
located 16 bytes from each other in this resolution 
graphics mode. 

This is an example of a situation where you should 
write a general-purpose routine which can carry out the 
mapping of data tables to screen locations for any 
graphics mode. This routine has to satisfy the 
following design criteria: 

(1) It must be able to move data from any source ad
dress to any destination address. 

(2) It must be able to cope with any row separation. 

(3) It must be able to cope with any number of rows. 

(4) It must not interact, in any way, with its cal
ling program. 

A general-purpose copy routine which meets these 
criteria is shown as Program 7.8. 

* COPY2B - Copies 2 byte chunks to video RAM 
* 
* Register inputs X - destination address (in RAM) 
* Y - source address 
* B - row width (number of bytes 
* between video RAM addresses) 
* A - number of rows (number of words 
* to copy) 
* 
COPY2B PSHS X,Y,U,A,B ; Save registers 
NEXT2B LDU ,Y++ ; Pick up source word 

STU ,X ; and store in row 
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ABX ; Add row width 
DECA ; Repeat until all 
BNE NEXT2B ; rows dealt with 
PULS X,Y,U,A,B,PC ; Restore and return 

Program 7.8 C0PY2B - update video RAM 

An example of how this routine might be used is shown 
in the program fragment below which displays the Dragon 
logo in the top left hand corner of the screen. 

DSTART EQU $0600 ; Display start 
DWIDTH EQU 16 ; Display width 

LOGOTL LDX #DSTART ; Destination address 
LEAY DRAGON,PCR ; Source address 
LDB #DWIDTH ; Display width 
LDA #16 ; Number of rows 
BSR COPY2B ; Transfer logo to screen 
RTS 

Now that we have managed to draw a dragon in the corner 
of the screen, we can now go on to repeat the pattern 
over and over again. 

* FILLER - fills screen with dragons 
* 
* Register inputs NONE 

* Registers destroyed X,Y,A,B 

FILLER LDX #DSTART ; Destination address 
LDB #DWIDTH ; Colour display row width 
LDA #16 ; Number of display rows 

NXTPOS LEAY DRAGON,PCR ; Address of source 
BSR COPY2B ; Now start copying 
LEAX DWIDTH+2,X ; dragons diagonally 
CMPX #DEND-512 ; until no room left 
BLS NXTPOS ; for another one 
RTS 

Program 7.9 FILLER - fills screen with dragons 

Now let us look at how the Dragon logo can be displayed 
using the colour graphics 6 mode which allows a four-
colour display at the same resolution. The first stage 
in this process is to convert the grid pattern to the 
appropriate four-colour data bytes. 

The best way to tackle this is to encode the diagram 
as if it was to be displayed in resolution graphics 
then convert every element that is off (0) to the 
chosen background colour (green in this case) and 
convert elements which are on to the chosen foreground 
colour (red, naturally). This means that the colour 
data table is twice the size of the resolution graphics 
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data table because two bits rather than a single bit 
are used to represent each screen element. Examples of 
the conversion of resolution data to colour data are 
shown below. 

The conversion from the resolution grid data to colour 
data is a tedious, mechanical, error-prone process 
which means that it is ideal for automation. Program 
7.10 below is a BASIC program which does the conversion 
for you. 

100 PRINT"RES0LUTI0N TO COLOUR GRAPHICS" 
110 PRINT"DATA CONVERSION PROGRAM" 
120 PRINT"COLOURS AVAILABLE ARE:" 
130 PRINT"C0L0UR SET 0" 
140 PRINT" GREEN 1, YELLOW 2" 
150 PRINT" BLUE 3, RED 4" 
160 PRINT"C0L0UR SET 1" 
170 PRINT" BUFF 5, CYAN 6" 
180 PRINT" MAGENTA 7, ORANGE 8" 
200 INPUT"BACKGROUND COLOUR (1-8)";BG 
210 IF (BG<1) OR (BG>8) THEN 120 
220 INPUT"FOREGROUND COLOUR (1-8)";FG 
230 IF (FG<<1) OR (FG>8) THEN 120 
240 IF (BG<5) AND (FG<5) THEN 300 
250 IF (BG>4) AND (FG>4) THEN 290 
260 PRINT"FOREGROUND/BACKGROUND NEED TO" 
270 PRINT"BE IN THE SAME COLOUR SET" 
280 GOTO 120 
290 BG=BG-4: FG=FG-4 'Convert to CS 0 
300 BG=BG-1: FG=FG-1 'Convert to VDG code 
310 PRINT"ENTER RESOLUTION GRAPHICS CODE" 
320 INPUT"BYTE (IN HEX)";RB$ 
330 RB=VAL("&H"+RB$) 'Convert to numeric value 
340 BM=1 'Bit Mask (first power of 2) 
350 BP=1 'Bit Pair (first power of 4) 
360 CW=0 'Colour Word value (16 bits) 
370 BC=0 'Bit Colour (FG or BG) 
380 'Now convert the single resolution 
390 'bits into pairs of colour bits 
400 FOR BIT = 0 TO 7 
410 IF (RB AND BM) THEN BC=FG ELSE BC=BG 
420 CW=CW+BC*BP 'Add colour pair to CW 
430 BM=BM*2 'Next power of 2 
440 BP=BP*4 'Next power of 4 
450 NEXT BIT 
460 PRINT"COLOUR CODE WORD (HEX) IS ";HEX$(CW) 
470 PRINT:GOTO 310 

Program 7.10 BASIC colour conversion program 

Resolution data 
$00 
$3F 
$20 

Colour data 
$0000 
$0FFF 
$0C00 
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The complete data table for the Dragon logo as a red 
dragon against a green background is: 

DRAGON FDB $0000,$0FFF 
FDB $0C00,$0FFF 
FDB $FFC0,$3C00 
FDB $03C0,$F3FC 
FDB $FCC3,$CFF0 
FDB $0CCF,$3FF0 
FDB $330C,$FC00 
FDB $CF3C,$F000 
FDB $CFFF,$FFF0 
FDB $CFFF,$FFFC 
FDB $F000,$003F 
FDB $3FFF,$FCCF 
FDB $0FFF,$FFF3 
FDB $0330,$00CC 
FDB $0CC0,$00CC 
FDB $0000,$0000 

With this colour data table, the COPY2B routine can now 
be used to update the 128 by 192 colour graphics 
display. However, the updating process is slightly 
more complex since 16 bits of data are needed to 
represent 8 elements. Therefore, it is best to modify 
this routine so that 4-byte chunks may be copied. This 
modification simply involves adding statements to copy 
another word before the ABX instruction. The code for 
this routine is provided as part of Program 7.12. 

7.8.2 Animating a graphics display 
Until now, all the graphics displays which we have 
discussed have been static in nature. In this section 
we describe how to create simple animation sequences. 
The technique used in animating graphics are very 
similar to those used in cartoon filming because the 
animation relies on rapidly flicking through different 
versions of a basic graphics symbol. If the flicking is 
sufficiently rapid, the movement will be smooth but if 
it is too slow, as is often the case with BASIC, the 
movement of the symbol is very jerky. 

To illustrate this technique we shall breath some 
life into the Dragon logo introduced in the last 
section. To be more exact, we shall breath some fire 
into the beast as it is well-known that no self-
respecting dragon is without this mythical power. What 
we shall do is to add flames which will flare out from 
the dragon's mouth, flicker and dance and then die 
down. 

At first sight this might seem to be a difficult and 
complex task but, in fact, if tackled one stage at a 
time, it is relatively easy. The secret is to build up 
the flames one at a time, flicker the flames with 
slightly differing sequences and then extinguish the 
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fire in the opposite order to that used to build it up. 
This is best illustrated by means of an example. 

Say an 8 by 8 element grid is used to contain the 
flame pattern and the flame colour chosen is yellow. 
The data tables for building up the final flame 
sequence labelled FLAME0 to FLAMES are shown below. It 
is left as an exercise for the reader to reconstruct 
the actual flame patterns which have been used to 
derive this data. 

FLAME0 FDB $0,$0,$0,$0,$0,$0,$0,$0 
FLAME1 FDB $0,$0,$0,$5,$0,$0,$0,$0 
FLAME2 FDB $0,$0,$50,$5,$0,$0,$0,$0 
FLAME3 FDB $0,$0,$50,$5,$150,$0,$0,$0 
FLAME4 FDB $0,$500,$50,$505,$150,$1400,$0,$0 
FLAME5 FDB $5000,$500,$1050,$505,$4150,$1400,$5000,$0 

The first flame sequence (FLAME0) is completely blank 
as this is used to extinguish the flames completely. 
The next flame sequence (FLAME1) is slightly more built 
up than FLAME0, the sequence FLAME2 is more developed 
than FLAME1 and so on. 

Since 2 bytes of colour data has to be copied to the 
video RAM we can make use of the COPY2B routine to set 
up the display area in memory. However, if we had used 
resolution graphics instead of colour graphics, then we 
would only have needed to copy 1 byte of resolution 
data to the video RAM. A routine called C0PY1B that 
performs this function is provided in this section for 
the sake of completeness. 

* COPY1B - copy data in 1 byte chunks 
* 
* Register inputs X,Y,B as C0PY2B 
* A - number of bytes to copy 
* 

C0PY1B PSHS X,Y,A,B ; Save registers 
STA ,-S ; Save count on stack 

NEXT1B LDA ,Y+ ; Pick up row byte pattern 
STA ,X+ ; and store it 
ABX ; Add row width indicator 
DEC ,S ; Decrement count 
BNE NEXT1B ; All rows done? 
LEAS 1,S ; Discard local 
PULS X,Y,A,B,PC ; Restore and return 

Program 7.11 C0PY1B - video RAM update 

The next stage in the development of the animated 
sequence is to provide the means to display the 
individual flame sequences. This is also the time to 
consider the delay between sequence updates since too 
short a delay will result in the animation sequence 
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lasting only a fraction of a second whilst too long a 
delay will result in faltering effect. The following 
routine is used to implement a short delay and is based 
on a software delay loop. 

* DELAY - hold up activity for a while 

DELAY PSHS X ; Save register 
LDX #$4000 ; This value may be changed 

LOOP LEAX -1,X ; to adjust the timing 
BNE LOOP ; delay 
PULS X,PC ; Restore and return 

The next routine is typical of routines needed to 
display the individual sequences: 

FIRE0 LEAY FLAME0,PCR ; Set up flame sequence address 
FIRE BSR C0PY2B ; Update display with sequence 

BSR DELAY ; Stop for a while 
RTS 

The two subroutine calls to C0PY2B and to DELAY are 
common to all the updating routines so we can enter 
FIRE0 at label FIRE to allow them to be called as a 
subroutine. This is a fairly common and harmless trick 
of assembly language programming which serves to reduce 
the size of the finished code. 

The next routine, to continue the animation, makes 
use of this technique: 

FIRE1 LEAY FLAME1,PCR 
BSR FIRE 
RTS 

This process of routine development continues until you 
end up with a complete animation program. Program 7.12 
is an animated fire-breathing dragon which is an 
appropriate conclusion to this chapter. For brevity, 
we have not duplicated the code of routines which have 
been described earlier in this chapter. Rather, we 
have indicated by comments where these routines should 
be included. 

* 
* ANIMATED DRAGON PROGRAM 

ORG 20001 
LBRA ACTION ; This preserves the entry point 

* DRAGON - Data for the Dragon logo 
* on a 16x16 colour grid 

* INCLUDE DRAGON DATA TABLE HERE 
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* Flame data follows. This is on an 8x8 colour grid 

* INCLUDE FLAME TABLE HERE 

* Constants used in the program follow 
* 
DWIDTH EQU 32 ; Due to 128x196 colour mode 
ROWS16 EQU 16 ; For a 16 row grid 
ROWS8 EQU 8 ; For an 8 row grid 
DSTART EQU $0600 ; May be changed 
* 

* INCLUDE VDG/PIA and SAM ADDRESS EQUATES HERE 

* INCLUDE VDGMOD, GMODE and SAMMOD ROUTINES HERE 

* FULL6C - Selects colour graphics 6 mode 
* 
FULL6C LDA #MODE6C 

BSR GMODE 
RTS 

* 
* INCLUDE CSS ROUTINE HERE 
* 
* INCLUDE SAMSET AND PAGEEX ROUTINES HERE 
* 
* INCLUDE COPY2B ROUTINE HERE 
* 
* COPY4B - Copies 4 byte chunks to video RAM 
* 
* Register inputs X - destination address (in RAM) 
* Y - source address 
* B - row width (number of bytes 
* between video RAM addresses) 
* A - number of words to copy 
* 
COPY4B PSHS X,Y,U,A,B ; Save registers 
NEXT4B LDU ,Y++ ; Pick up source word 

STU ,X ; and store in row 
LDU ,Y++ ; Pick up next word 
STU 2,X ; and store after first 
ABX ; Add row width 
DECA ; Repeat until all 
BNE NEXT4B ; rows dealt with 
PULS X,Y,U,A,B,PC ; Restore and return 

* DELAY - hold up activity for a while 

DELAY PSHS X ; Save register 
LDX #$4000 ; This value may be changed 

LOOP LEAX -1,X ; to adjust the timing 
BNE LOOP ; delay 
PULS X,PC ; Restore and return 

* The following routines play with fire! 
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* FIRE0 - Deals with the first flame sequence 

FIRE0 LEAY FLAME0,PCR ; Set up address first pattern 
* FIRE - Used throughout the fire routines for display 
FIRE BSR COPY2B ; Flames 8x8 in colour 

BSR DELAY ; Wait briefly 
RTS ; before returning 

* FIRE1 - Deals with the second flame sequence 

FIRE1 LEAY FLAME1,PCR 
BSR FIRE 
RTS 

* FIRE2 - Third flame sequence 

FIRE2 LEAY FLAME2,PCR 
BSR FIRE 
RTS 

* 
* FIRE3 - Fourth flame sequence 
* 
FIRE3 LEAY FLAME3,PCR 

BSR FIRE 
RTS 

* 
* FIRE4 - Fifth flame sequence 

FIRE4 LEAY FLAME4,PCR 
BSR FIRE 
RTS 

* 
* FIRE5 - Sixth flame sequence 

FIRE5 LEAY FLAME5,PCR 
BSR FIRE 
RTS 

* 
* KINDLE - Ignite (start the flame sequence) and 
* gradually build the fire up. 
* 
KINDLE BSR FIRE0 

BSR FIRE1 
BSR FIRE2 
BSR FIRE3 
BSR FIRE4 
BSR FIRE5 
RTS 

* 
* 
* FLARE - Plays flames by varying flame sequences. 
* 
FLARE BSR FIRE4 

BSR FIRE5 
BSR FIRE3 
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BSR FIRE1 
BSR FIRE4 
BSR FIRE3 
BSR FIRE5 
RTS 

* 
* DOUSE - Gradually extinguish the flames 
* by reversing the sequence. 
* 
DOUSE BSR FIRE4 ; Was at full flame 

BSR FIRE3 
BSR FIRE2 
BSR FIRE1 
BSR FIRE0 ; Fire now out. 
RTS 

* 
* FLAMES - Animates the fire-breathing dragon. 
* 
FLAMES BSR KINDLE ; Kindle the fire. 

BSR FLARE ; Play the flames. 
BSR DOUSE ; Now douse the fire. 
RTS 

* 

* ACTION - Set up the display and start the animation. 
* 
ACTION LBSR FULL6C ; Select the graphics mode 

LDA #0 ; Choose colour set 0 
LBSR CSS 
LDX #DSTART ; Set up the display start 
LBSR PAGEX ; and select the page 
LEAX 16,X ; Get breathing space 
LEAY DRAGON,PCR ; Set up dragon data 
LDB #DWIDTH ; and display width 
LDA #ROWS16 ; and number of rows 
LBSR C0PY4B ; for a 16x16 colour grid 
LEAX -2,X ; Flames come out of mouth! 
LDA #ROWS8 ; Now displaying flames 

RETAKE BSR FLAMES ; on an 8x8 colour grid 
BRA RETAKE ; Repeat the animation 

Program 7.12 A fire-breathing Dragon 



Chapter 8 

Input/output programming 

The topic of input/output programming is one that is 
often neglected in books like this. The reason for 
this is that the subject is so detailed and complex 
that it is very difficult to present a coherent 
overview of it in a single chapter. However, we have 
tried to do so and, in this chapter, we explain some of 
the general principles of I/O programming and describe 
the specifics of the Dragon's I/O system. 

As we explained earlier in the book, the Dragon's 
I/O system is memory mapped which means that I/O 
devices (or more accurately controllers) are accessed 
by reference to specific memory locations. Reading or 
writing to these locations results in an I/O transfer 
from or to the I/O device. 

The Dragon's offers a variety of I/O interfaces such 
as a cassette interface, two joystick interfaces, a 
printer interface, etc. These are shown in Figure 8.1 
which is a block diagram of the Dragon's I/O system. 
Some of the terms in this diagram will be unfamiliar to 
the reader who is new to I/O programming but they will 
be explained as the chapter progresses. 

Because the I/O system is so complex, it is 
impossible for us to provide a description here which 
contains enough detail for the electronics enthusiast 
to connect his own devices to the system. Rather, we 
have concentrated here on information for the I/O 
programmer and have avoided going into specific details 
of the system electronics. Readers who want to 
interface hardware to the Dragon must use the data 
sheets presented in the appendices for complete 
hardware details of the I/O system devices. These data 
sheets have been provided by the chip manufacturer and 
contain complete details of the chip functions and 
signals. 

There are four major sections in this chapter. The 
first two are concerned with the generalities of I/O 
programming and cover the concept of interrupts and I/O 
programming techniques. The final two sections cover 
details of the Dragon's I/O system, with section 3 
concentrating on the PIA chip, which is the principal 
interface controller on the system, and section 4 
describing the various I/O ports built into the system. 
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8.1 INTERRUPTS 

The central concept on which much I/O programming is 
based is the notion of an interrupt. An interrupt is a 
signal to the processor to temporarily stop what it's 
doing and carry out some other task. We shall explain 
the steps involved in this by means of an analogy. 

Say you are busy programming your Dragon when your 
doorbell rings. You stop what you are doing to answer 
the door and you find the occupier of the apartment 
below who tells you that water is dripping through his 
ceiling. You immediately rush to the bathroom where you 
find that you have left the water running and the bath 
has overflowed. You turn off the water, mop up the 
mess then go back to your programming. Whilst mopping 
up the bathroom you ignore other interruptions unless 
they are very urgent such as flames shooting from the 
cooker. 

In this scenario, events can be identified which 
correspond to the events which occur in a computer 
system when an interrupt is received and processed. 

(1) The interrupt 
This is the doorbell ringing to tell you to stop 
what you are doing as some other task requires 
your attention. A computer system has one or 
more interrupt request control lines. A signal 
on one of these lines is an interrupt which 
causes the currently executing task to be 
suspended and the interrupt processed. 

(2) The interrupt vector 
This is the front door. The interrupt (doorbell) 
tells you to go to a known place in order to 
start interrupt processing. In a computer there 
are usually several pre-determined memory loca
tions, called interrupt vectors. The program 
counter is automatically loaded with the contents 
of one of these locations when the interrupt is 
detected and this causes a transfer of control to 
an interrupt service routine. 

(3) The interrupt service routine 
This is the mopping up of the bathroom or, in 
other words, what you must do to clear the condi
tion causing the interrupt. In a computer the 
address of this routine is held in the interrupt 
vector and control is transferred automatically 
to it. 

(4) The interrupt mask 
This is, effectively, what you do when you ignore 
interruptions in order to get the water off your 
bathroom floor. In a computer it is usually pos-
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sible to set up a so-called 'interrupt mask' 
which indicates that an interrupt is being pro
cessed and that no more interrupts should be ac
cepted until that processing is complete. 

(5) The priority interrupt 
This is the cooker catching fire. Some events 
are so urgent that they must be handled in spite 
of the fact that another interrupt-handling pro
cess is already underway. In a computer, there 
is often a non-maskable interrupt control line. 
A signal on this line means 'something urgent has 
happened' and must be processed immediately. 

(6) Process resumption 
After handling the interrupt, you can breath a 
sigh of relief and go back to programming. In a 
computer, the interrupted process is restarted 
and execution proceeds as if the interrupt had 
not occurred. 

Interrupts are very important in I/O programming 
because they are one way that a peripheral controller 
can tell the processor that data are ready for input or 
that the peripheral is ready to accept more data for 
output. If interrupts are not used the processor has 
to examine all the peripheral devices at periodic 
intervals to see if they have completed their input or 
output operations. 

The M6809 processor has a total of four interrupt 
request control lines, a number of interrupt handling 
instructions and uses three of the bits in the 
condition code register in its interrupt processing. 
Before going on to describe these in detail, however, 
we describe a typical sequence of actions which take 
place automatically when a 'normal' interrupt occurs. 

The 'normal' interrupt control line on the M6809 is 
called IRQ and a signal on this line causes the 
processor to suspend the currently executing process 
after it has completed execution of its current 
instruction. The processor then sets the Entire flag 
in the condition code register (CC.E) and pushes all 
the processor registers, except S, onto the S-stack. 

The processor then sets the IRQ Mask flag in the 
condition code register (CC.I) to indicate that an 
interrupt is being processed and that no more 
interrupts on IRQ should be accepted. PC is then 
loaded with the contents of the IRQ interrupt vector 
(memory locations FFF8:FFF9) which causes a transfer of 
control to the interrupt service routine whose address 
is held in the interrupt vector. 

The interrupt service routine services whatever 
condition caused the interrupt then returns to the 
interrupted process by executing a Return from 
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Interrupt instruction. This instruction restores the 
register contents thus transferring control back to the 
interrupted process when PC is restored and clearing 
the interrupt mask bit CC.I when CC is restored. 

As well as the standard interrupt request line IRQ, 
the M6809 also has three other interrupt request lines 
called NMI (non-maskable interrupt), FIRQ (fast 
interrupt request) and RESET. 

The RESET line is used when the system is switched 
on. An interrupt on this line is not handled in the 
same way as other interrupts as, obviously, there is no 
executing process to be suspended. When the machine is 
switched on, a RESET signal causes transfer of control 
to a system initialisation routine in ROM which sets up 
the S-stack and causes some other process, which is 
usually the BASIC interpreter, to be initiated. 

The FIRQ interrupt line signals that fast interrupt 
processing is to take place. This is similar to the 
processing of an IRQ interrupt but instead of all 
registers being stacked and unstacked, only PC and CC 
are stacked before control is transferred to the 
interrupt service routine. The E flag in CC is unset 
to indicate that only CC and PC have been stacked. 

When an RTI instruction restores CC, the top stack 
location, it examines the CC.E flag to see if it must 
restore all other registers or if it is only necessary 
to restore PC. An FIRQ request causes the FIRQ mask in 
the condition code register (CC.F) to be set thus 
locking out other interrupts on FIRQ. 

The NMI interrupt line is used to signal an urgent 
interrupt which should not be ignored. If CC.I or CC.F 
is set, the processor ignores interrupt requests on IRQ 
and FIRQ but NMI interrupts are always processed 
irrespective of the settings of these flags. The 
processing sequence is the same as that for an IRQ 
request although, obviously, a different interrupt 
vector is used. 

As well as these hardware interrupts, the M6809 can 
also process so-called 'software interrupts'. Software 
interrupts occur when an SWI instruction is executed 
and, like hardware interrupts, they have an associated 
interrupt vector and service routine. Software 
interrupts are handled in the same way as IRQ 
interrupts and will be discussed in more detail in the 
following section where the SWI instruction is 
described. 

In all, there are seven 'levels' of interrupt which 
can be processed by the M6809. The table below shows 
the locations of the interrupt vectors associated with 
each of these. 

Vector location 
FFF2:3 
FFF4:5 

Associated interrupt 
SWI3 
SWI2 



FFF6:7 
FFF8:9 
FFFA:B 
FFFC:D 
FFFE:F 

FIRQ 
IRQ 
SWI 
NMI 
RESET 
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The interrupt priorities are as follows: 

RESET > NMI > SWI > FIRQ > IRQ > SWI2 > SWI3 

Notice that this order is not the same as the order of 
the interrupt vectors. 

8.1.1 Interrupt handling instructions 
The sequence of actions described above which initiates 
an interrupt device routine takes place automatically 
whenever a hardware or software interrupt is detected. 
No explicit instruction is needed to start interrupt 
processing but a return from interrupt instruction is 
necessary to restart the interrupted process. 

We have already introduced, in Chapter 3, the four 
M6809 instructions which are used in interrupt 
processing. Now, we describe each of these 
instructions, SWI, CWAI, SYNC, and RTI, in more detail. 

RTI - Return from Interrupt 
This instruction is always executed as the last 
instruction in an interrupt service routine. The 
instruction unstacks the CC register and examines CC.E. 
If it is unset, RTI then unstacks the next two stack 
bytes to PC thus returning control to the interrupted 
process. 

If CC.E is set, this indicates that all the 
registers were stacked before entry to the interrupt 
service routine so RTI restores all register values 
from the stack. As PC is the last register restored, 
control is thus returned to the interrupted process. 

SWI - Software Interrupt 
There are three levels of software interrupt which may 
be used by the M6809 programmer. There are identified 
by the instructions SWI, SWI2, and SWI3. Each of these 
has a different priority in the order SWI > SWI2 > 
SWI3. The SWI instruction also has a higher priority 
than FIRQ and IRQ hardware interrupts and sets the 
interrupt mask bits CC.F and CC.I. 

The sequence of operations executed when an SWI 
instruction is executed is the same as that which takes 
place automatically when an IRQ interrupt is detected. 
The register values of the interrupted process are 
stacked and control is transferred, via the appropriate 
interrupt vector, to the interrupt service routine. 

The execution of an SWI instruction is not unlike 
calling a subroutine. The advantage to the programmer, 
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however, is that SWI instructions can be used to call 
system routines without the programmer having to know 
the routine address at either load or run time. 

CWAI - Wait 
The wait instruction is used to suspend the execution 
of a process until a hardware interrupt occurs. The 
instruction takes a single-byte operand which is anded 
with CC as the first step in the execution of the 
instruction. This means that the programmer can set up 
CC prior to its stacking and can guarantee the value of 
CC when the interrupted process is resumed. 

After the ANDCC operation, CWAI sets CC.E and stacks 
all the processor registers. It then does 
nothing (waits) until a hardware interrupt occurs. If 
this is an NMI or RESET interrupt, it is immediately 
processed but if it is an IRQ or FIRQ interrupt and the 
corresponding mask bit is set in CC, the instruction 
continues to wait until a higher priority interrupt 
occurs or until the interrupt mask is cleared. 

SYNC - Synchronise 
The synchronise instruction, SYNC, is used to 
synchronise the operation of the M6809 processor and 
some other external device. A situation where this 
might be necessary is when data are being transferred 
from some fast I/O device, like a disk, to memory. 

When a SYNC instruction is encountered, the 
processor enters a wait-for-interrupt loop which is 
called the 'syncing state'. If a hardware interrupt 
occurs and is not masked, the appropriate interrupt 
service routine is activated but the processor 
registers are not stacked. 

If the interrupt is masked and the processor is in 
the syncing state, the effect of the interrupt is to 
cause the wait-for-interrupt loop to terminate. 
However, rather than cause a transfer of control to an 
interrupt service routine, execution continues with the 
instruction following SYNC. Thus processor and 
peripheral operation are synchronised by the interrupt. 

Note that the programmer must explicitly set and 
clear the interrupt mask bits CC.I and CC.F by using 
ANDCC and ORCC instructions. 

8.1.2 Dragon-specific interrupts 
In the above section we explained that the M6809 system 
assumed interrupt vectors lying between addresses FFF2 
and FFFF. In actual fact, the Dragon's address 
decoder (the SAM chip) maps these addresses onto 
alternative interrupt vectors in locations BFF2 to 
BFFF. This means that the interrupt vectors are in the 
BASIC read-only memory area and that their contents 
cannot be altered by the user. 

As a result, these locations do not contain the 



193 

address of the interrupt service routine but contain 
the address of a secondary interrupt vector in RAM 
which should be set up with a jump to the address of 
the interrupt service routine. There is one exception 
to this. The RESET interrupt which is issued when the 
machine is switched on must, obviously, have a service 
routine in ROM. Its address is stored in the RESET 
interrupt vector. 

The table below shows the how the interrupt vectors 
are assigned. 

The Dragon does not use all the M6809's interrupts but 
only makes use of the IRQ and FIRQ interrupts. 
Therefore, their secondary interrupt vectors are set up 
with a jump to their service routines, namely JMP $9D93 
and JMP $B469 respectively. All the other secondary 
interrupt vectors are set to 0 and must be initialised 
by the user if required. 

8.2 INPUT/OUTPUT PROGRAMMING TECHNIQUES 

In memory-mapped input/output, described in Chapter 2, 
all I/O devices appear to the programmer as memory 
locations called I/O ports. Although memory-mapped I/O 
devices must communicate over the same bus structure as 
memory devices, it is not normally possible or 
desirable to connect a physical device directly to the 
computer's bus structure. Instead, a device interface 
is used to control the peripheral device according to 
commands from the CPU and to isolate that device from 
the bus structure. The interface may also convert data 
into whatever format is required by the physical device 
and vice versa. 

However, unlike normal RAM memory where a read 
returns the last value written to a location, read and 
write operations to a particular I/O port address may 
be completely independent. In other words, an input 
port can occupy the same address as an output port and 
which one is selected is dependent on whether the 
operation is a read or a write. 

Most device interfaces that have been designed for 
microprocessor use are 'programmable' thereby allowing 
them to be used in a variety of applications. A typical 
example of such an interface is the PIA (Peripheral 
Interface Adaptor) which is explained in detail in the 

Vector 
BFF2:3 
BFF4:5 
BFF6:7 
BFF8:9 
BFFA:B 
BFFC:D 
BFFE:F 

Contents 
$0100 
$0103 
$010F 
$010C 
$0106 
$0109 
$B3B4 

Use 
SWI3 secondary vector 
SWI2 secondary vector 
FIRQ secondary vector 
IRQ secondary vector 
SWI secondary vector 
NMI secondary vector 
RESET service routine 
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following section. This device has a number of built-
in registers corresponding to addressed locations which 
can be accessed by the programmer. By writing the 
appropriate bit patterns into these registers, the 
programmer can configure the device in a variety of 
ways. In addition to these control registers, such an 
interface contains a status register which can be read 
by the I/O program to determine the state of the 
device; for example, 'is the data ready', 'can I send 
data now', etc. 

Given the programming model of a peripheral device's 
interface, the programmer is faced with the problem of 
what technique to use to transfer data across that 
interface under program control. In this section we 
describe three I/O programming techniques 
unconditional I/O transfer, polled or conditional I/O 
transfer and interrupt-driven I/O transfer. 

8.2.1 Unconditional I/O transfer 
This is the simplest method of I/O transfer where the 
programmer always works on the assumption that the 
peripheral controller handling the I/O is always ready 
for output and always has up-to-date input information 
available. Data to be input or output can therefore be 
read from or written to the device at any time. 

This, however, can lead to problems unless the exact 
timing of the I/O process is known. If a request is 
made for input before the peripheral controller has 
received that input from the peripheral device, the 
information returned will probably be that input in the 
previous operation. Similarly, if output is sent 
before the device has completed its previous operation, 
information may be lost. 

As a result of these timing problems, this I/O 
programming technique is not advised unless the 
programmer is forced into it by primitive I/O devices 
which have no means of communicating their status to 
the processor. 

8.2.2 Polled I/O transfer 
This is a widely used I/O programming technique which 
involves a program polling the status of a device 
periodically. When the controller status indicates 
that input is available or that the device is ready for 
output, the I/O transfer takes place. Because the 
transfer is conditional on the controller status bits, 
this method of I/O programming is sometimes called 
conditional transfer. 

In some cases the status bits of the peripheral 
controller are continually examined and the program 
waits for the I/O device to become available. In other 
cases, the status bits are examined at periodic 
intervals of, say, a millisecond. The program must 
ensure that the intervals between checks are not so 
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long that information is lost in the intervening 
period. 

The following fragment of BASIC program illustrates 
this I/O programming technique by polling the button on 
a joystick to see whether or not it has been pressed. 

100 BS = PEEK(&HFF00) ' BS = button state 
110 IF (BS AND 1) = 0 THEN 100 'Wait for press 
120 'Button pushed so deal with it here 

The drawback of simply looping indefinitely until the 
button is pushed lies in the fact that it is necessary 
to 'busy wait' for the peripheral to become available. 
This time is completely wasted as no useful work can be 
done until the I/O transfer is complete. In our 
example, the program will 'hang' until the right 
joystick button is pressed. 

In some situations this may be acceptable but it can 
cause problems in situations where several I/O devices 
have to be serviced. For example, say a two-player game 
involves movement and firing, both controlled by 
joystick. It would be impossible for one player to 
move until the other fired thus making evasion very 
difficult indeed! 

However, the program can be modified to cope with 
this situation. Rather than looping indefinitely until 
an event occurs, the program can check the status bits 
of each device in turn. This is illustrated in the 
program below. 

100 BS = PEEK(&HFF00) 
110 IF(BS AND 1) = 0 THEN 140 
120 ' Deal with right button 
130 GOTO 100 ' Look at buttons again 
140 IF(BS AND 2) = 0 THEN 100 
150 ' Deal with left button 
160 GOTO 100 

However, the player with the left joystick still has a 
problem as the right joystick button always takes 
priority. It is polled first and, if it is held down, 
the left button is ignored. The solution to this 
particular problem is to poll the devices in a round-
robin manner where the program establishes a polling 
order. The program polls each device in that order 
then cycles back to the beginning of the order. Our 
previous example can be converted to this form by 
removing line 130. 

8.2.3 Interrupt-driven I/O transfer 
We have already introduced the idea of an interrupt and 
suggested that they are very useful in I/O programming. 
In fact, the use of interrupt allows a programming 
technique to be devised which eliminates the need for a 
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'busy wait' or, indeed, any kind of polling system. 
The disadvantage of the conditional transfer method 

of I/O programming is the fact that the processor 
cannot do useful work whilst it is waiting for a device 
to become ready for I/O. A more satisfactory technique 
is to have the device inform the processor when it is 
ready thus eliminating the need for the processor to 
check the device's status at periodic intervals. The 
sequence of events that occurs upon an interrupt has 
already been explained in the previous section and we 
shall not repeat them here. 

Interrupt-driven transfers can be used as an I/O 
programming technique if the peripheral control 
register has the following facilities: 

(1) An interrupt enable/disable bit which allows the 
programmer to switch interrupts off and on. 

(2) An interrupt status bit which allows the service 
routine to find out which device has initiated 
the interrupt. 

As it is common practice to connect a number of 
peripheral devices to the same interrupt line, the 
interrupt service routine must poll each of these 
devices to see which one caused the interrupt. Once the 
interrupt service routine has identified which 
device/condition is responsible, the condition is dealt 
with by normal instructions on an I/O port. 

The service routine must also make sure that dealing 
with the condition includes removing the cause of the 
interrupt request otherwise, as soon as interrupts are 
enabled again, that same condition will cause another 
interrupt. The service routine will still, presumably, 
fail to remove the condition causing the interrupt and 
thus the system will hang indefinitely. 

If you want to incorporate interrupts into a program 
you must carry out the following steps. 

(1) Write a suitable interrupt service routine. 

(2) Set up the appropriate interrupt vector with a 
reference to that routine. 

(3) Configure the device/interface for interrupts. 

(4) Enable (switch on) processor interrupts. 

It is very important the steps 1 and 2 above be carried 
out before steps 3 and 4 and equally important that 
interrupts should be disabled whilst any changes to the 
interrupt system are being made. If this is not done 
and an interrupt occurs while the service routine is 
being changed unpredictable consequences can ensue when 
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the interrupt is processed. 
To illustrate interrupt processing, we describe how 

to make amendments to the existing Dragon interrupt 
system. 

The normal interrupt (IRQ) is derived from the video 
circuitry which provides an interrupt request every 20 
milliseconds, that is, in correspondence with every 
cycle of the mains frequency. This will be slightly 
different in countries where the mains frequency is 
60Hz rather than 50Hz. The role played by this 
interrupt is to update the system clock which is used 
by the BASIC function TIMER as well as the functions 
SOUND and PLAY. As we saw earlier, the IRQ vectors 
through a secondary vector at addresses $010C, $010D, 
and $010E which normally contain a jump to the clock 
update service routine at address $9D3D. Our example 
replaces the existing interrupt service routine with 
one that manipulates the text character in the top left 
hand corner of the screen. This manipulation is 
carried out as follows: 

ADDCH LDA $400 ; Pick up character at top left 
INCA ; alter it by adding one 
STA $400 ; and return it to its place 

To use this as an interrupt service routine, we must 
provide an IRQ vector set up routine. An example of 
this is:: 

IRQSET ORCC #$10 ; Disable IRQ 
LDX #ADDCH ; Set up entry address 
STX $10D ; and store into IRQSV 
ANDCC #$EF ; Enable IRQ 
RTS 

The new service routine also has to be augmented by the 
code that removes the interrupt request. In this case, 
the interrupt request may be removed with a read 
operation to PIAO's peripheral data register which is 
mapped through address $FF00. We also have to add an 
RTI instruction so that the interrupted process may be 
restarted after the character has been altered. 

We have excluded a check to see what device is 
causing the interrupt since there is normally only one 
IRQing device on the Dragon. We have also omitted the 
code that configures/enables the device interface as 
this required detailed knowledge of the PIA which will 
not be described until later in this chapter. However, 
it is configured by the system as part of the 
initialisation sequence when the machine is switched 
on. 

The final version of the new service routine is 
therefore: 
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* IRQSET - set up interrupt vector 
* 
* Must be called to install new service routine 
* 
IRQSET ORCC #$10 ; Disable IRQ and put entry 

LDX #ADDCH ; address of new service 
* routine 

STX $010D ; in secondary IRQ vector 
ANDCC #$EF ; Enable IRQ 
RTS 

* Interrupt service routine 
ADDCH LDA $FF00 ; Clear interrupt condition 

LDA $400 ; Pick up LH corner 
INCA ; Alter it 
STA $400 ; And put it back 
RTI ; Return from interrupt 

Once the interrupt vector has been set up and IRQ 
interrupts enabled you should see the top left hand 
character cycle through the 256 character set of the 
Dragon at the rate of 50 characters/second. 

You will now find that the TIMER, PLAY, and SOUND 
functions will not work properly. We leave it as an 
exercise to the reader to add the above code to the 
existing service routine so that the clock is updated 
and a character is updated on the screen. 

8.3 THE PERIPHERAL INTERFACE ADAPTOR - PIA 

The peripheral interface adaptors or PIAs which act as 
the Dragon's I/O interfaces are multi-purpose 
peripheral controllers. We saw in the previous chapter 
how one of these PIAs played an essential role in the 
graphics display hardware where it is used to set up 
the video display generator. This section is an 
overview of the functions of a PIA but, for those 
readers who require further information, a full 
technical description of the PIA chip is provided in 
Appendix 4. 

The function of a PIA is to interface a member of 
the M6800 processor family (in this case, the M6809) to 
various peripherals and, to do so, it provides various 
peripheral data input/output lines as well as 
peripheral control/interrupt lines. Each PIA has two 
8-bit peripheral data buses and four control lines thus 
giving a total of 20 lines which can be used to control 
and interface peripheral devices. 

The flexibility of the PIA is derived from the fact 
that it is a 'programmable' device. This does not mean 
that it can execute machine code instructions but 
rather that the PIA is not dedicated to a specific 
peripheral type. It contains various internal registers 
which can be manipulated by the assembly language 
programmer to configure the PIA to a particular mode of 
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operation. Each of the peripheral data lines can be 
configured to act as an input or as an output and each 
of the control/interrupt lines may be set up in one of 
several control modes. 

A PIA is functionally split into two, independent 
sides called the A-side and the B-side. Each side is 
configured and controlled by three internal 8-bit 
registers. These are: 

(1) The control register (CR) 

(2) The data direction register (DDR) 

(3) The peripheral data register (PDR) 

Effectively, therefore, we have four programmable 
input/output interfaces which may be used separately or 
together. Figure 8.2 is a schematic representation of 
this system. 

Fig. 8.2 PIA organisation 

The control register is used to configure/control the 
four peripheral control lines which are named CA1, CA2, 
CB1, and CB2. It also allows the assembly language 
programmer to enable and disable the interrupt lines 
IRQA and IRQB and to monitor the status of the 
interrupt flags IRQA1, IRQA2, IRQB1, and IRQB2. A full 
description of the functions of this register is 
provided in the PIA Data Sheet (Appendix 4). 

There is one bit in the control register which is 
not used in the configuration of the peripheral 
control/interrupt lines. This is the data direction 
access bit which is used to select between the data 
direction register and the peripheral data register. 
The reason for this is that the PIA only responds to 
four unique addresses and, as the programmer always 
needs access to the control registers, the other two 
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addresses must be shared by the data direction register 
and the peripheral data register. 

The data direction register (DDR) is used to control 
the direction of data through each corresponding 
peripheral data line of the peripheral data register. 
If a DDR bit is 0, this means that the corresponding 
peripheral data line is an input whereas if the DDR bit 
is 1, the associated data line is an output line. 

Therefore, each peripheral data register may have 
any combination of input and output lines thus 
providing a good deal of flexibility when interfacing 
the PIA to external devices. However, it is the 
responsibility of the programmer to keep track of which 
lines are inputs and which lines are outputs and to 
make sure that when outputs are updated, other, 
independent outputs are not affected. 

The data direction register and the peripheral data 
register share an address and the particular register 
addressed depends on the setting of the data direction 
access bit in the control register. This sharing does 
not usually cause problems as typical usage involves 
setting up the data direction register and then 
accessing the peripheral data register without further 
changes to the DDR. 

The peripheral data register is used to transfer 
data to and from peripheral devices. Each of the 
peripheral data lines can be configured as an input or 
as an output as described above. When a line is 
configured as an output, it will go HI when the 
corresponding bit in the PDR is set to 1 and will go LO 
when the corresponding bit is cleared in the PDR. In 
general, after an output has been written it can be 
read back although this is dependent on the loading of 
the line (see Appendix 4). 

When a line is configured as an input, the data on 
the peripheral data line appears directly on the 
corresponding M6809 data line during a read operation. 
As output line states are also read back, the 
programmer has to explicitly mask them out when the PDR 
is accessed. 

8.3.1 The Dragon's PIAs 
The Dragon's I/O subsystem makes use of two PIAs named 
PIAO and PIA1. This means that there are 40 peripheral 
data/control lines but, as some devices share lines, 
more than 40 lines can actually be supported. Each PIA 
responds to four unique addresses with PIAO associated 
with addresses FF00 to FF03 and PIA1 associated with 
addresses FF20 to FF23. 

These address ranges can be further subdivided into 
the individual addresses of the registers within the 
PIA. In the examples in this chapter, we shall make 
use of these addresses and shall refer to them using 
the symbolic names defined in the table below. 
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* Equates for PIA 0 

* A- side registers 
P0DDRA EQU $FF00 ; Data direction register 
P0PDRA EQU P0DDRA ; Peripheral data register 
P0CRA EQU $FF01 ; Control register 
* B-side registers 
P0DDRB EQU $FF02 ; Data direction register 
P0PDRB EQU P0DDRB ; Peripheral data register 
P0CRB EQU $FF03 ; Control register 
* 
* Equates for PIA1 
* 
* A-side registers 
P1DDRA EQU $FF20 ; Data direction register 
P1PDRA EQU P1DDRA ; Peripheral data register 
P1CRA EQU $FF21 ; Control register 
* B-side registers 
P1DDRB EQU $FF22 ; Data direction register 
P1PDRB EQU P1DDRB ; Peripheral data register 
P1CRB EQU $FF23 ; Control register 

The connections of the Dragon's PIA registers to 
specific devices is summarised in Appendix 7. 

8.4 INPUT/OUTPUT DEVICES 

Apart from the display, which we discussed in the 
previous chapter, the Dragon is equipped with a variety 
of input/output ports to which peripheral devices may 
be connected. Some of these ports, such as the keyboard 
port, are connected to I/O devices which are an 
inherent part of the system. Others, such as the 
printer port and cassette port, are available for the 
user to connect his own peripherals. 

Each I/O port in the system is connected to either 
PIA1 or PIA0 so that each PIA is an I/O controller for 
a number of devices. In particular, PIAO is responsible 
for the keyboard, the joystick control, sound source 
selection, the printer port and video synchronisation. 
PIA1 is responsible for printer handshake control, 
sound generation, the cassette port, VDG mode 
selection, D-to-A voltage control, RAM type detection 
and ROM cartridge detection. 

In this section we shall look at how the user may 
access these I/O ports and how to make use of 
peripheral devices connected to these I/O ports. 

8.4.1 Keyboard control 
The Dragon's keyboard is of extremely simple design. 
It consists of a number of keyswitches arranged in a 7 
by 8 matrix with the columns of the matrix connected to 
the peripheral data lines of the B-side of PIAO and the 
matrix rows connected to the peripheral data lines on 
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the A-side of the same PIA. When a key is pressed, this 
causes the row/column position of that key to be 
short-circuited and this change of state can be 
detected by the keyboard control routine. 

The keyboard is connected so that the column 
lines (PB0-PB7) are configured as outputs and the row 
lines (PA0-PA6) are configured as inputs. With this 
setup, a key depression can be detected by outputting a 
0 to a column line then reading the input lines PA0-
PA6. If no key in that column has been pressed, the 
result read back will be 1111111 whereas a key 
depression causes a 0 to be read in one of PA0-PA6. 

The keyboard scanning routine is activated 
approximately every ten milliseconds and it outputs a 
zero to each of the columns in turn. It immediately 
looks at the inputs PA0-PA6 and, if the result is not 
1111111, it knows that a key has been pressed. The 
keyboard scanner keeps track of which column has an 
associated row input containing a zero and from the 
position of that 0 in PA0-PA6, it can work out which 
key has actually been pressed. 

The actual arrangement of the keys in the matrix is 
shown in the table below. 

To illustrate how a key depression can be detected, say 
the user presses the 'U' key. The keyboard scanning 
routine outputs a zero on lines PB0-PB7 and, when a 
zero is output on PB5, an input pattern containing a 
zero will be detected. This zero will be in position 
PA4 thus indicating that 'U' (coordinate PA4/PB5) has 
been pressed. 

In order to keep track of which keys are pressed so 
that it can ignore the same key closure on the next 
scan (remember it scans about 100 times per second) and 
perform key rollover, the keyboard scan routine 
maintains a record of key closures in nine bytes of RAM 
at addresses 151-159 inclusive. 

The first byte (151) records the seven row states, 
that is, it records whether any of the keys in a 
particular row are pressed. When a key in a row is 
pressed, the corresponding bit in location 151 is set 
to 0. Thus, if the 'D' key is pressed, bit B2 in 151 
is cleared to indicate that a key in row 2 has been 
depressed. For other rows, where no key has been 
pressed, the bits in byte 151 are set. 

PA0 
PA1 
PA2 
PA3 
PA4 
PA5 
PA6 

PB0 
0 
8 
@ 
H 
P 
X 
ENT 

PB1 
1 
9 
A 
I 
Q 
Y 
CLR 

PB2 
2 
* 
B 
J 
R 
Z 
BRK 

PB3 
3 
; 
C 
K 
S 
Up 
N/C 

PB4 
4 
, 
D 
L 
T 
Down 
N/C 

PB5 
5 
-
E 
M 
U 
Left 
N/C 

PB6 
6 
• 
F 
N 
V 
Right 
N/C 

PB7 
7 
/ 
G 
0 
W 
Space 
SHFT 
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The individual bits in 151 are used by the keyboard 
scan routine to determine whether there has been a 
change of state of any of the rows. The value read in 
PA0-PA6 is compared with the value in location 151 and, 
if these values are the same, the keyboard scanner 
assumes that the same key is still held down by the 
user. This is fairly sensible as, when you press a 
key, you are likely to hold it down for more than a 
hundredth of a second. If there has been a change to 
any of the rows, because the user has taken his finger 
off a key perhaps, then the value of location 151 is 
modified to reflect this and a full keyboard scan takes 
place to find out which key has been depressed or 
released. 

This two-stage scanning technique is used to speed 
up the scanning routine although it does mean that key 
rollover does not occur for keys on the same row. In 
other words, holding the 'A' key down and then pressing 
a key on the same row, say 'C, does not register the 
new character but pressing a key on a different row, 
say 'H', does register. 

The remaining 8 bytes 152-159 are used to record the 
state of all the keys in the matrix as each byte 
records the state of the rows for its corresponding 
column. Column 0 state is held in 152, column 1 in 
153, etc. When a key is pressed, then the corresponding 
bit in the column byte is cleared. For example, if 
address 152 contains FE, this indicates that the '0' 
key has been pressed. 

One drawback of this technique is that it prevents 
the same key from being recognised again unless it is 
released and re-pressed. Furthermore, if a key is held 
down, it prevents other keys in the same matrix row 
from being recognised. This is illustrated by the BASIC 
program below which, at first sight, seems to be able 
to recognise all the arrow keys. 

10 R5 = &H20 'Row 5's position in column byte 
20 C4 = &H155 'Column 4's byte 
30 C5 = &H156 'Column 5's byte 
40 C6 = $H157 'Column 6's byte 
50 C7 = &H158 'Column 7's byte 
60 IF (PEEK(C4) AND R5) = 0 THEN PRINT "UP" 
70 IF (PEEK(C5) AND R5) = 0 THEN PRINT "DOWN" 
80 IF (PEEK(C6) AND R5) = 0 THEN PRINT "LEFT" 
90 IF (PEEK(C7) AND R5) = 0 THEN PRINT "RIGHT" 
100 GOTO 60 

In fact, this program does not recognise more than one 
arrow key being pressed at a time. As the arrow keys 
are on the same row, the keyboard scan routine does not 
do a full scan because the row state byte indicates 
that the row state has not changed. This is perfectly 
reasonable for most normal typing but can be limiting 
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for the game programmer who wishes to provide keys 
which allow simultaneous movement and firing. 

However, it is possible to program around this 
limitation and to force a complete scan of the keyboard 
by setting all bits in byte 151 before each IF 
statement. This can be implemented by including the 
statement POKE &H151,&HFF as statements 55, 65, 75, and 
85 in the above program and changing line 100 to goto 
55. 

This has the effect of fooling the keyboard scanner 
into thinking that all the keys on the row have been 
released and so the next scan will register any keys 
that are down as new closures. Notice that it is 
necessary to poke the value FF to the column state byte 
between every BASIC statement as the keyboard scan 
routine is executed after every BASIC statement and 
sets byte 151 to its old value. Although it works, this 
technique is clumsy and we shall describe a better, 
more elegant technique in Chapter 9 which does not 
involve such program modifications. 

A keyboard auto-repeat facility, where holding a key 
down causes that character to be continuously input, is 
very useful in applications such as games, where keys 
may indicate movement, text preparation, where you 
might want to input strings of the same character and 
screen layout design. 

This facility is not provided on the Dragon because 
a complete keyboard scan is not carried out when a key 
is held down. A complete scan can be forced, however, 
by using a technique comparable to that above and 
poking a value to the individual column bytes. By 
setting a particular column byte, we can force an 
already pressed key to be registered as a new key 
closure. 

The following BASIC program illustrates this 
facility for the INKEY$ function 

10 RB = &H151 ' Row state byte 
20 CB = &H152 ' Column state byte 
30 POKE RB,&HFF : POKE CB,&HFF 
40 A$ = INKEY$ : IF A$ = "" THEN 30 
50 PRINT A$; 
60 GOTO 30 

It is left as an exercise to the reader to predict 
which keys will auto-repeat given the above program and 
to modify the program so that auto-repeat will work 
with all keys. 

It may seem that you could write your own simplified 
keyboard controller in BASIC which directly manipulates 
the PIAs using POKE and PEEK statements. Unfortunately, 
this is not possible because there is no way of 
disabling the keyboard polling routine. If you try to 
control the keyboard yourself from within a BASIC 
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program, you are liable to get interactions between 
your controller and the standard BASIC polling routine. 
Naturally, you could write your own routine in assembly 
code. 

8.4.2 Printer control 
The Dragon's printer interface is provided so that the 
user may connect his own printer to the system. The 
interface is configured as a so-called Centronics 
interface which means any one of a number of printers 
designed to use this interface type may be connected to 
the Dragon. The user is not restricted to a single 
specialised printer as is the case with some personal 
computer systems. 

Character data is output to the printer over eight 
interface data lines D0-D7 which are connected to 
P0PDRB's peripheral data lines. These PIA peripheral 
data lines are also used by the keyboard column lines 
but, in practice, this does not cause problems. When 
characters are being printed, the I/O system knows that 
the keyboard should not be scanned and vice-versa. 

There are also a number of control (handshake) lines 
which coordinate data transfer to the printer. These 
are called 'printer strobe', 'printer busy', and 
'printer acknowledge'. Although the Dragon hardware 
supports all three of these control lines only two of 
them (strobe and busy) are used by the standard Dragon 
software. 

The printer interface control lines are connected as 
follows: 

(1) The 'printer busy' line is connected to bit 0 of 
PIA1's B-side peripheral data register 
(P1PDRB/PB0). This line is set up in the associ
ated DDR as an input. 

(2) The 'printer strobe' line is connected to bit 1 
of PIA1's A-side peripheral data register 
(P1PDRA/PA1). This line is configured as an out
put . 

(3) The 'acknowledge' line is connected to PIA1's CAI 
interrupt input but this line is not actually 
used by the Dragon's I/O system. Naturally, how
ever, you can make use of it if you wish to write 
your own printer control programs. 

The printer interface connections are shown in the 
block diagram of the I/O system (Figure 8.1) which 
shows the interface port pins and their associated 
control/data lines. 

It is fairly straightforward to send characters to 
the printer but appropriate control signals must be 
organised so that a character is not sent before the 
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printer is ready for it. The printer's state of 
readiness is indicated using the 'printer busy' line 
which is HI when the printer cannot accept a character 
for printing and goes LO when the printer is not busy. 
To tell the printer that a character is to be printed, 
that character must be set up on the data lines and the 
'printer strobe' line must be taken from HI to LO and 
then back to HI again. 

To send a character to the printer, the sequence of 
events is therefore: 

10 IF 'printer busy' THEN GOTO 10 
20 Printer data lines = Character to be printed 
30 Printer strobe = LO : Printer strobe = HI 

The strobe line is actually buffered through an 
inverting buffer so that a 0 set up in PA1 results in a 
1 on the actual strobe pin and vice-versa. Therefore to 
set the strobe line LO and then HI, you must send 
signals which first set it HI and then LO. 

If you wish to use your own printing routine, you 
must manipulate the PIA using assembler rather than 
BASIC POKE and PEEK statements. The reason for this is 
that the printer and the keyboard share PIA data lines 
and it is not possible to disable BASIC'S keyboard 
polling routine. Therefore, if you try to poke to the 
PIA locations associated with the printer, to get 
direct output say, the keyboard scanner resets the PIA 
and your pokes will have no effect. 

The standard Dragon printer output routine is called 
LPOUT and it can be addressed through location 800F. 
This routine expects register A to contain the 
character code, in ASCII, of the character to be 
printed. 

Because a variety of printers can be attached to the 
Dragon, some of the actions performed by this routine 
are determined by a set of parameters stored in RAM 
locations. The initial values of these parameters are 
set up for the most commonly connected printers but 
they can be modified to configure the routine for other 
printers. Modification involves poking the values for 
your printer to the appropriate location. 

The table below gives the addresses of the RAM 
locations used by the printer routine and briefly 
describes the functions of the information stored at 
these addresses. 

Address 
99 

Initial value 
$10 (16) 

Function 
Line printer comma field 
width. This is used by BASIC 
to determine which columns to 
print items separated by a 
comma in a PRINT statement. 



9B 

9C 

148 

14A 

14B 

14C 

$84 (132) 

$00 (0) 

$FF (255) 

$01 (1) 

$0D (13) 

$0A (10) 

Line printer width, that is, 
the length of the printed 
line. 
The line printer character 
position. LPOUT keeps track 
of the position of the next 
character to be printed by 
updating this byte. 
Automatic line feed on buffer 
full. If the line printer 
does not automatically flush 
its buffer when it is full 
then setting this byte to 0 
will cause the routine to 
send an end-of-line sequence 
to the printer which forces 
the buffer to be flushed. 
The number of characters in 
an end-of-line sequence. The 
end-of-line characters follow 
in succeeding locations from 
14B to 150. Thus there may 
be a maximum of 6 characters 
in an end-of-line sequence. 
Carriage return (CR) code 
(normal EOL sequence) 
Line feed (LF) code. If the 
printer needs a CRLF end-of-
line sequence, 14A should be 
set to 2. 

207 

As an example of how the line printer routine may be 
reconfigured, the following BASIC direct statements set 
up the printer width to be the same as the Dragon's 
display width. 

POKE $H148,0 
POKE &H9B,32 
LLIST 

The routine LPOUT carries out a number of 
'housekeeping' duties such as forcing end-of-line 
sequences, outputting extra spaces to cause line feeds, 
etc. Sometimes, you don't really want this to happen 
but all you really want is a routine which simply pumps 
characters to the printer. If this is what you need, 
there is a no-frills printer output routine called 
TXLPCH with entry point at location BCF5. Again, this 
routine expects register A to contain the character to 
be printed. 

8.4.3 Sound control 
In common with many other modern personal computers, 
the Dragon is equipped with facilities for sound 
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generation. In this respect, personal computers differ 
from larger, professional machines and, unlike graphics 
say, the creative use of sound in human/computer 
interaction is a largely unexplored area. At the 
moment, the sound generation system is mostly used to 
provide sound effects for games but it seems likely 
that applications for sound generation will be 
discovered in many other areas of computer usage. 

There are four possible sound sources in the Dragon. 
These are: 

(1) From the 6-bit digital to analogue converter. 

(2) From the cassette unit. 

(3) From the cartridge port. 

(4) From PB1 of P1PDRB. 

The first three of these sound sources above are 
analogue sources which means that they generate a 
varying voltage level which is converted to sound. The 
PIA bit, on the other hand, is a binary sound source 
which generates either a HI or a LO pulse. Sound output 
is channelled to the television's speaker by modulating 
the sound signal with the video signal that is fed to 
the aerial (antenna) input of the user's television 
set. 

The analogue sound sources are connected to the 
inputs of a device called an 'analogue multiplexor'. 
This is a device which can accept a number of inputs 
and, according to control line settings, switch any one 
of these inputs to its output line. The Dragon's 
analogue multiplexor has four input lines, a single 
output line and three control lines. One of the input 
lines is not used so it is permanently LO. Two of the 
control lines are used to select which sound source is 
to be routed to the output line with the third control 
line used to enable and disable the multiplexor output. 
This output must be disabled if a binary sound pulse 
generated from the PIA is to be used as the input to 
the sound generator. 

The multiplexor control lines are connected to PIA 
control lines. The lines used are PIA1-CB2 which is 
connected to the output enable/disable multiplexor 
control line and PIA0-CB2 and PIA0-CA2 which are used 
for sound source selection. The table below shows the 
values which these control lines may take and the 
associated sound selections. 

Sound enable 
PIA1-CB2 

1 
1 

Sound select 
PIA0-CB2 

0 
0 

PIA0-CA2 
0 
1 

Sound source 

6-bit DAC 
Cassette 



1 
1 
0 

1 
1 
X 

0 
1 
X 

Cartridge 
Not used 
Single bit sound 
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To select a sound source, you must output an 
appropriate value to the PIA control lines which are 
connected to the analogue multiplexor. When you do so, 
it is absolutely vital that you preserve the value of 
the other bits in the PIA's control register otherwise 
you are liable to cause all sorts of havoc. An example 
BASIC subroutine which selects the 6-bit DAC sound 
source is shown below. 

2000 ' Select and enable 6-bit DAC sound source 
2010 ' P0CRA = &HFF01: P0CRB = &HFF03 : P1CRB = &HFF23 
2019 ' Now set PIA0-CA2 LO 
2020 POKE &HFF01,(PEEK(&HFF01) AND &HF7) 
2029 ' Set PIA0-CB2 LO 
2030 POKE &HFF03,(PEEK(&HFF03) AND &HF7) 
2040 POKE &HFF23,(PEEK(&HFF23) OR 8) ' Enable sound 
2050 RETURN 

Rather than write your own routine for sound source 
selection, you can make use of an inbuilt system 
routine which we shall call SNDSEL. This can be called 
via address BD41. Its specification is: 

* SNDSEL - Selects 1 of 4 input lines for analogue MUX 
* 
* Register inputs B - input line number 
* 0 = DAC, 1 = Cassette 
* 2 = Cartridge 
* Registers destroyed U, A,B,CC 

This routine does not enable the output of the 
multiplexor so you must do this as a separate step. 
The routine below will switch it on and select the 
source required by calling SNDSEL. 

* SNDON - Switch on sound output from MUX 

* Register inputs - as SNDSEL 
* 
SNDON PSHS U,A,B ; Save registers 

JSR SNDSEL ; SNDSEL equated elsewhere 
LDA P1CRB ; Now enable the 
ORA #8 ; source by setting 
STA P1CRB ; PIA1-CB2 HI 
PULS U,A,B,PC ; Restore and return 

To switch off the sound source, a similar routine is 
required although, obviously, SNDSEL is not called and, 
rather than or 8 into P1CRB, you must and $F7 into that 
register. 
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The 6-bit digital to analogue converter (DAC) is a 
device which takes a 6-bit binary value and converts it 
to an analogue voltage. Such a device is very useful 
as many external devices rely on analogue rather than 
binary signals whereas the M6809, obviously, deals only 
with binary information. As well as being an integral 
part of the sound generation system, the DAC is also 
used in joystick manipulation and in the recording of 
data on cassette. We shall look at these applications 
in later sections of this chapter. 

You don't have to understand how the DAC works to 
make use of it. Basically, it converts a 6-bit value 
between 0 and 63 to an equivalent voltage in the range 
0.25V to 4.75V. The approximate output voltage 
corresponding to an input signal may be computed 
according to the following formula. 

Output voltage = (Input value * 0.0715) + 0.25V 

The DAC's six input lines are connected to P1PDRA's 
peripheral data lines PA2-PA6. Because the top 6 bits 
of P1PDRA are used to control these input lines, the 
6-bit value to be input to the DAC must be offset by 2 
bit positions before loading it into the PIA's 
register. Furthermore, the bottom 2 PIA bits are used 
for other purposes so their values must be preserved 
before the PIA is set up for DAC input. 

The following assembly code routine accomplishes 
this by shifting the input value then oring it into 
P1PDRA. 

* DACOUT - Output a 6-bit value to DAC 

* Register inputs A - 6 bit value 
* 
DACOUT PSHS A ; Save register 

ASLA ; Move bottom 6 bits 
ASLA ; into top 6 bits 
STA ,-S ; and save until later 
LDA P1PDRA ; Preserve the original 
ANDA #$03 ; bottom 2 bits 
ORA ,S+ ; and or in new value 
STA P1PDRA ; Output to DAC 
PULS A,PC ; Restore and return 

The equivalent BASIC routine is: 

1000 ' BASIC DAC output routine 
1010 ' Input parameter N, 6-bit value 
1020 POKE &HFF20,((PEEK(&HFF20) AND 3) OR (N * 4)) 
1030 RETURN 

The DAC is used to support Extended Color BASIC'S SOUND 
and PLAY commands. To create a sound waveform with this 
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device, suitable values must be sent to it at 
appropriate intervals. The volume of the sound output 
is determined by the magnitude of the values output to 
the DAC and the pitch depends on how often the DAC is 
updated with new waveform values. 

We illustrate this with Program 8.1 which generates 
a very crude approximation of a sine wave. This 
program requires that a DAC sound selector routine be 
available at line 2000 and a routine to send a value N 
to the DAC be available at line 1000. 

10 GOSUB 2000 'Select DAC sound source 
20 FOR V = 1 to 15 ' V = volume 
30 V2 = V*2: V4 = V*4 'V2=mid-volume,V4=max-volume 
40 PRINT "MAX VOLUME = ";V4 
50 TIMER = 0 ' Reset time period 
60 FOR C = 1 to 50 'No. of cycles 
70 N=0: GOSUB 1000 ' Vary the waveform 
80 N=V: GOSUB 1000 ' from min volume 
90 N=V2: GOSUB 1000 ' through mid volume 
100 N=V4: GOSUB 1000 ' to max volume 
110 N=V2: GOSUB 1000 ' and back down 
120 N=V: GOSUB 1000 ' to min volume 
130 NEXT C ' Start next cycle 
140 CP = (TIMER/50)/50 'Cycle period 
150 PRINT "CYCLE PERIOD = ";CP;" OF A SECOND" 
160 NEXT V ' Repeat for next volume setting 
170 END 

Program 8.1 Sound output generation via the DAC 

If you run this program, you should hear a steady but 
ragged note with increasing volume. The print 
statements giving details of the volume and the cycle 
period give an indication of how long it takes to 
update the DAC when using BASIC and the slowness of 
BASIC does limit the upper frequency range. The note 
sounds ragged because the DAC is not producing a 
continuously varying voltage which is necessary to 
produce a pure sine wave. Rather, the voltage steps 
from one value to another and to produce a smoother 
note you would have to include more approximations to a 
sine waveform by reducing the differences in step 
levels. Since this would slow the system down, this 
would also reduce the upper frequency range of the 
sound. 

Because of the restrictions on the upper frequency 
range when programming in BASIC, it is better to use an 
assembly code subroutine for DAC sound generation. 

The input signal from the cassette recorder can also 
be used as a sound source. All that happens in this 
case is that the multiplexor routes the cassette input 
signal directly to the TV loudspeaker so you can play 
back music, commentary or anything else you have 
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recorded on the cassette under the control of a 
program. 

This facility is directly supported in BASIC by the 
AUDIO ON and AUDIO OFF commands which actually switch 
the multiplexor to cassette input. You can use the 
SNDON routine above to perform the equivalent action if 
you are programming in assembly code. 

Similarly, the cartridge ROM port has one of its 
input lines connected to the sound multiplexor and an 
input signal from the cartridge can be switched to the 
loudspeaker. This is a rarely-used facility and if you 
are using the cartridge input port to connect some 
other device to your Dragon (we discuss this later), we 
do not recommend that you use this sound input because 
the voltage levels for it are unspecified. 

Apart from the DAC, the alternative method of sound 
generation on the Dragon is to use the single bit sound 
source. In this case the sound multiplexor is bypassed 
and must be disabled. The signal from the PIA, which is 
the single bit sound signal, is fed directly onto the 
output line of the multiplexor. Naturally, as this is 
a binary value, the sound generated consists of a train 
of pulses corresponding to the binary input to PB1 of 
the PIA. 

To make use of the single bit sound source, the 
programmer must take the following steps. 

(1) Disable the sound multiplexor output 

(2) Select P1DDRB by clearing bit 2 of P1CRB 

(3) Configure PB1 as an output by setting bit 1 of 
P1DDRB 

(4) Select P1PDRB by setting bit 2 of P1CRB 

We demonstrate this in the following BASIC program 
which shows how single bit sound may be used. 

10 GOSUB 3000 ' Disable MUX output 
20 GOSUB 4000 ' Select single bit sound 
30 TIMER = 0 ' Reset timer 
40 0V = PEEK(&HFF22) ' Save value of P1PDRB 
50 HI = OV OR 2 ' To set PB1 HI 
60 LO = OV AND &HFD ' To set PB1 LO 
70 FOR C = 1 TO 50 
80 POKE &HFF22,HI ' Set PB1 HI 
90 POKE &HFF22,L0 ' and LO 
100 NEXT C 
110 CP = (TIMER/50)/50 ' Cycle period 
120 PRINT "CYCLE PERIOD WAS ";CP;" OF A SECOND" 
130 GOSUB 5000 'Switch off single bit source 
140 END 
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We leave it as an exercise for the reader to write the 
subroutines at lines 3000, 4000 and 5000 which disable 
the multiplexor output and select the single bit sound 
source. It is important to switch off the single bit 
sound as it may interfere with the output when the 
multiplexor is in use. To switch off this sound source, 
P1PDRB-PB1 should be configured as an input rather than 
an output. 

8.4.4 Cassette control 
One of the great advantages of personal computer 
systems is that they can make use of commercially 
available tape cassette recorders and standard cassette 
tapes for input and output. These recorders are 
designed for recording and playing back music or speech 
so are analogue devices. Therefore, to use them for 
data input and output, there must be a way of 
converting a binary output to an analogue signal 
recorded on the tape and vice-versa for inputs from the 
tape. 

The technique used in the Dragon to record programs 
and data on a cassette tape is knows as Frequency Shift 
Keying (FSK). This technique involves representing 
ones and zeros as different frequencies as they are 
recorded. A LO signal (binary 0) is recorded as a 
single cycle of frequency 1200Hz and a HI signal 
(binary 1) is recorded as a single cycle of frequency 
2400Hz. This means that the effective data transfer 
rate from Dragon to cassette recorder is 1800 
bits/second as, on average, there will be an equal 
number of ones and zeros recorded for a program or data 
file. 

The choice of recording frequencies is not entirely 
arbitrary as the 6-bit DAC, described in section 8.4.3, 
is used to generate the appropriate sine waves of 
1200Hz and 2400Hz, with the signal attenuated to about 
1V before output to the recorder. The choice of 
frequencies is the result of a trade-off between the 
number of approximations required to produce these sine 
waves and the execution speed of the instructions 
needed to update the DAC. 

When a tape is used to store programs or data, it is 
not sufficient simply to dump these on the tape and 
hope that you will be able to read them back at some 
later date. Rather, the information written to the tape 
must be preceded by header information which gives a 
name to the information stored, specifies its type, 
and, perhaps, contains information which allows 
hardware synchronisation. As well as this header, a 
trailer or end-of-file block must also be written 
marking the end of the data or program on the tape. 

All the information on the tape, including the 
initial information and end-of-file information, is 
written out in a sequence of blocks which may store 
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from 0 to 255 information bytes. Each block also 
contains header and trailer information as well as 
actual data. 

The overall tape format assumed by the Dragon splits 
the tape into six logical sections: 

(1) A leader consisting of 128 bytes where each byte 
has the hex value 55. 

(2) A namefile block. 

(3) A blank section of tape to allow BASIC time to 
evaluate the namefile block. Around 0.5 seconds 
are needed for this. 

(4) Another leader of 128 bytes where each byte has 
the hex value 55. 

(5) One or more data blocks. 

(6) An end-of-file block. 

Namefile, data blocks and end-of-file blocks all share 
the same format with an identification byte used to 
mark the block type. This format is: 

(1) A leader byte - 55 (hex). 

(2) A synchronisation byte - 3C (hex). 

(3) A block type byte where 01 means data block, FF 
means end-of-file block and 00 means namefile 
block. 

(4) A block length byte - 00-FF (hex). 

(5) 0-255 bytes of data. 

(6) A checksum byte which is the sum of all the data 
+ block type + block length. 

(7) A trailer byte - 55 (hex). 

An end-of-file block has no associated data bytes and a 
namefile block has 15 data bytes giving the name and 
type of the file. These 15 bytes are organised as 
follows: 

(1) An 8-byte program name. 

(2) A 1-byte file type where 00 indicates a BASIC 
file, 01 indicates a data file and 02 a machine 
language file. 
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(3) An ASCII flag byte which indicates if the file is 
recorded as ASCII characters or as binary digits. 

(4) A gap flag byte set to 01 when the tape is writ
ten as a contiguous stream of blocks and to FF 
when there are gaps between blocks. When writing 
data to the tape, the associated processing time 
usually means that output is not continuous and 
that the tape is switched off and on between 
blocks. The gaps are the result of this switch
ing. 

(5) Two bytes for the start address of a machine 
language program. 

(6) Two bytes for the load address of a machine 
language program. 

The length of the leader on the tape is held as a BASIC 
system variable in locations 90:91 and it is possible 
for the user to modify this length to increase the 
length of the tape leader. By poking a value of 1 to 
address 90, the leader is made 3 times longer and 
poking a value of 2 gives a leader 5 times longer than 
normal. The advantage of this is that it gives the 
cassette recorder's automatic volume control more time 
to stabilise thus reducing the probability of cassette 
I/O errors. 

After a program or data file has been recorded, you 
can verify the tape by using the SKIPF command. This 
reads the tape in exactly the same way as CLOAD/CLOADM 
and reports any errors. It does not, of course, load 
the contents of the tape. 

We do not recommend that you write your own routines 
for cassette input and output. Rather, it is much 
better to use the built-in system routines which have 
been implemented as part of the Extended Color BASIC 
system. This provides routines to turn the cassette on 
and off, to read and write blocks of data to the 
cassette, to read and write single bytes to the 
cassette and to read a single bit from the cassette. 

A specification for each of these routines in the 
form of a header comment is provided below. 

* CASON - turn on cassette motor 
* 
* Register inputs - NONE 
* Registers destroyed - X, A, CC 
* Turns on motor and delays until motor comes up to 
* speed. Delay value is a 16-bit value at location 95 
* with initial value = $DA5C representing 0.5 seconds 
* 
* WRTLDR - Turn on tape for writing 
* 
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* Register inputs - NONE 
* Registers destroyed X, A, CC 
* This routines disables IRQ and FIRQ interrupt lines 
* to avoid interruption of recording then calls CASON. 
* It then outputs a bit sync leader. The number of 
* bytes in the leader is a 16-bit value at address 90. 
* It has default value $0080. 
* 
* CSRDON - turn on tape for reading 
* 
* Register inputs NONE 
* Registers destroyed ALL 
* This routine disables FIRQ 
* and IRQ, calls CASON and uses the bit sync 
* information to synchronise the tape input. 
* 
* CASOFF - turn off cassette 
* 
* Register inputs - NONE 
* Registers destroyed A,CC 
* Re-enables IRQ and FIRQ and turns off cassette motor 
* 
* CBOUT - write byte to cassette 
* Register inputs A - byte to be written 
* Registers destroyed Y, B, CC 
* 
* CBIN - read byte from tape 
* 
* Register inputs - NONE 
* Register output A - byte read from tape 
* Registers destroyed A,B,CC 
* 
* BITIN - read a bit from cassette 
* 
* Register inputs NONE 
* Register outputs - bit read is carry bit, CC.C. 
* Registers destroyed B,CC 
* 
* BLKOUT - Output data block 
* 
* Register inputs NONE 
* Registers destroyed ALL 
* WRTLDR must be called before this routine to get 
* the tape up to speed and to write out tape leader. 
* Input parameters are passed in RAM locations 
* $7C - block type 
* $7D - number of data bytes 
* $7E:7F - address in memory of start of block 
* Interrupts remain disabled on exit from this routine 
* 
* BLKIN - read a block from tape 
* 
* Register inputs NONE 



217 

* Register outputs CC.Z = 0 if I/O error 
* CC.Z = 1 if no I/O error 
* Registers destroyed ALL except U and Y 
* CSRDON must be called before this routine to get 
* the tape up to speed and turn on bit sync. 
* Input and output parameters are in RAM locations 
* $7E:7F - 16-bit start address of block to be read 
* $7C - block type read from tape 
* $7D - Number of bytes read from tape 
* $81 - Error indicator. No errors=0, Checksum error=l 
* Memory error = 2 
* On exit, interrupts remain disabled 

The entry points to these routines are held in a direct 
jump table starting at address 8000 and/or in an 
indirect jump table located at address A000. The table 
below shows which routine is located at which address. 

We can illustrate the use of the output routines with 
the following program which writes a data block to the 
cassette. 

CASOFF EQU $8018 
WRTLDR EQU $801B 
DBADR EQU $7E 
BLKTYP EQU $7C 
DBLEN EQU $7D 
BLKOUT EQU $A008 

LDX #BL0CK ; Set up address of 
STX DBADR ; data block 
LDA #$01 ; File type = DATA 
STA BLKTYP 
LDA #255 ; Number of bytes 
STA DBLEN ; is set up 
JSR WRTLDR ; Prior to writing tape 
JSR (BLKOUT) ; Write block 
JSR CASOFF ; Switch off tape 

An input program which reads blocks from the tape and 
displays their contents on the screen is shown below. 
Assume that the equates in the above program have been 
made. 

Routine 
CASON 
CASOFF 
WRTLDR 
CBOUT 
CSRDON 
CBIN 
BITIN 
BLKIN 
BLKOUT 

Direct jump address 
8015 
8018 
801B 
801E 
8021 
8024 
8027 
-
-

Indirect jump address 
-
-

A00C 
-

A004 
-
-

A006 
A008 



218 

CSRDON EQU $8021 
BLKERR EQU $81 
BLKIN EQU $A006 

LDX #$400 ; Screen RAM 
STX DBADR ; as block copy area 

NXTFIL JSR CRDON ; Turn on tape for reading 
NXTBLK JSR (BLKIN) ; Read a block 

BNE BINERR ; Abort on error 
LDA #$FF ; Check for end of file 
CMPA BLKTYP 
BNE NXTBLK ; Not eof, get next block 
BRA NXTFIL ; Otherwise, re-sync and get 

* next file 
BINERR JSR CASOFF 

RTS 

These routines have shown how blocks of data can be 
read from and written to a cassette and the CASON and 
CASOFF routines are generally used in this context. 
However, there may be circumstances where you wish to 
avoid using these routines as they both manipulate the 
interrupt mask bits in the condition code register. 

The relay used to control the cassette motor is 
connected to the CA2 control line output of PIA1 and 
you can switch the cassette motor on and off by setting 
and clearing this bit. To switch on, the bit should be 
set HI; to switch off, the bit should be cleared to LO. 
This can be accomplished with the following BASIC 
statement. 

POKE &HFF21,(PEEK(&HFF21) OR 8) ' Switch on 
POKE &HFF21,(PEEK(&HFF21) AND &HF7) 'Switch off 

8.4.5 Joystick control 
For game playing, where continuous movement is 
required, typing different keys is not really the most 
convenient way of specifying that movement. The 
Dragon's designers have provided an input port which 
can be used to connect joysticks to the system. These 
joysticks can be moved in the X-Y plane to control 
movement and have a button input for firing. Each 
joystick has two potentiometers associated with it 
whose output voltage is related to the X and Y 
coordinates of the stick. These voltages can be 
detected and their variations related to the movement 
of a symbol on the screen. 

The easiest way to read joystick values is to make 
use of Extended Color BASIC'S JOYSTK command. This 
command is a BASIC function which takes as a parameter 
the axis number of a joystick and returns a numeric 
value in the range 0-63 which represents the position 
of that axis. The actual axes specified by JOYSTK are: 

(1) JOYSTK(O) reads right joystick, X-axis (horizon
tal) 
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(2) JOYSTK(l) reads right joystick, Y-axis (vertical) 

(3) J0YSTK(2) reads left joystick, X-axis (horizon
tal) 

(4) J0YSTK(3) reads left joystick, Y-axis (vertical) 

The arrangement of the axes potentiometers is such that 
they return values relating to the screen graphics 
coordinate convention of the top left corner being 0,0. 
Therefore, reading the right joystick at the extreme 
top left of its travel will result in JOYSTK(0) = 0 and 
JOYSTK(1) = 0 and, at the extreme bottom right, the 
readings will each be 63. In fact, these values may 
vary slightly because of slight differences in the 
potentiometers built into the joysticks. 

A feature of the JOYSTK function is that new 
joystick readings are only taken when JOYSTK(O) is 
used. This means that JOYSTK(O) must be used before 
other JOYSTK commands even if J0YSTK(2) and J0YSTK(3) 
are the only values used in the program. 

The reason for this becomes clear when we consider 
how the JOYSTK function is implemented. It actually 
calls a system routine called JOYIN which reads all the 
joystick values and this routine is only activated when 
JOYSTK(O) is used. When other JOYSTK parameters are 
used, the value returned is simply that which was read 
by the previous activation of JOYIN. 

JOYIN can be used by the assembly language 
programmer. It may be accessed through the direct I/O 
jump table at location 8012 or through the indirect 
jump table via location A00A. Its specification for 
the assembly language programmer is as follows: 

* JOYIN - read joystick values 
* 
* Register inputs NONE 
* Registers destroyed ALL 
* JOYIN returns a value in the range 0-63 for each 
* of the joystick potentiometers. 
* These values are returned in RAM 
* locations as follows 
* $15A - X-coordinate of right joystick 
* $15B - Y-coordinate of right joystick 
* $15C - X-coordinate of left joystick 
* $15D - Y-coordinate of left joystick 

The buttons on each joystick are arranged so that, when 
they are pressed, they ground an input line. These 
button outputs are connected to PA0 (right button) and 
PA1 (left button) of P0PDRA. The following BASIC code 
demonstrates how button pushes may be detected. 

10 F0 = PEEK(&HFF00) AND 1 ' Read PA0 button state 
20 F1 = PEEK(&HFF00) AND 2 ' Read PA1 button state 
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30 IF F0 = 0 THEN PRINT "FIRE1" 
40 IF F1 = 0 THEN PRINT "FIRE2" 
50 GOTO 10 

As these button outputs are shared with the first two 
rows of the keyboard matrix, the standard keyboard 
scanning routine must make sure that spurious 
characters are not generated due to the 
misinterpretation of button closures as key closures. 
Unfortunately, the only reliable way to do this is to 
disable the keyboard completely so, even if you write 
your own keyboard scanner, you should not try to use 
the keyboard and joysticks at the same time. 

If you use joysticks, we advise you to use the JOYIN 
routine but for those readers who wish to write their 
own joystick routines, we now describe, very briefly, 
how an analogue voltage input from the joystick is 
converted to a value between 0 and 63. 

Each of the four joystick potentiometers produces a 
voltage between 0V and 5V depending on the position of 
the joystick. The technique used to convert this to a 
digital value involves inputting a known value to the 
DAC (described above) and then comparing the DAC output 
with the potentiometer value. If they are 
approximately the same, the DAC input is taken as the 
digital representation of the potentiometer output 
voltage. If the values are not the same, the DAC input 
value is varied until the values match. 

This simple analogue to digital conversion system 
actually has three components. These are the DAC, an 
analogue multiplexor which can select one of the 
potentiometer, and a voltage comparator to compare the 
DAC and multiplexor outputs. The comparator output is 
connected to PA7 of P0PDRA. If the output from the 
multiplexor exceeds the DAC output, the comparator 
output is HI and if the DAC output is greater, the 
comparator output is LO. 

In performing the conversion, a value at the halfway 
point in the DAC range, namely 32, is written to the 
DAC and the resulting output voltage compared with the 
multiplexor output. If the DAC voltage is higher than 
the multiplexor output, a new DAC input value which is 
half the old value is tried. If the DAC output is 
lower than the multiplexor output, a new DAC value 
which is half as much again as the current value is 
attempted. This process continues until a DAC output 
which is approximately equal to the multiplexor output 
results. 

This technique is called binary search and is often 
used when values have to be compared. It is an 
efficient searching technique which has applications in 
many different kinds of program. The table below 
summarises the approximations resulting from this 
binary search. 
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The four joystick input lines are connected to the 
analogue multiplexor in exactly the same way as the 
multiplexor connection used for the sound source. The 
same PIA lines are used for this connection so the 
sound selection routine described above may be used for 
joystick selection. The association of PIA bit values 
and joystick source is as follows: 

8.4.6 The cartridge expansion port 
The final section in this chapter is devoted to a very 
brief description of the cartridge/expansion port 
fitted to the Dragon. This port is intended for a 
plug-in cartridge containing ROM-based software but the 
40-pin connector does provide access to most of the 
M6809's bus signals. This means that other devices can 
be interfaced to the Dragon via this expansion port. 
It is beyond the scope of this section to discuss such 
interfacing and the interested reader is referred to 
one of the books on this topic listed in the reading 
list. 

The minimum information required to make interfacing 
possible is a description of the signals available at 
the expansion port connector. These are summarised in 
the table below. Some of the signal names are suffixed 
with an asterisk, indicating that these are 'active 
low' signals, meaning that they must go LO (0 volts) 
for action. 

Range 

0-63 
32-63 
32-48 
40-48 
44-48 
44-46 

DAC 
Value 
32 
48 
40 
44 
46 
45 

DAC 
Voltage 
2.53 
3.69 
3.11 
3.40 
3.54 
3.47 

Joystick 
Voltage 

3.5 
3.5 
3.5 
3.5 
3.5 
3.5 

Comparator 
P0PDRA-PA7 

1 
0 
1 
1 
0 
1 

New range 

32-63 
32-48 
40-48 
44-48 
44-46 
45-45 

Joystick select 
PIA0-CB2 

0 
0 
1 
1 

PIA0-CA2 
0 
1 
0 
1 

Right - X-axis 
Right - Y-axis 
Left - X-axis 
Left - Y-axis 

Pin No. 
1 
2 
3 
4 

5 
6 
7 

Use 
+ 12V 
+ 12V 
HALT* 
NMI* 

RESET* 
E 
Q 

Description 
+12V Power supply connection 
As above 
Connected to HALT input of M6809 
Non-maskable interrupt input to 
M6809 
Main reset/power-up signal 
Main M6809 clock 
Quadrature clock, 
leads E by 90 degrees 
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9 
10-17 

18 
19-31 

32 
33 
34 
35 
36 

37-39 
40 

CART 

+5V 
D0-D7 

R/W* 
A0-A12 

CTS* 
GND 
GND 
SND 
P2* 

A13-A15 
DSD* 

Interrupt input for cartridge 
detection 
+5V power supply connection 
Pins 10-17 are connected to the 
M6809's data lines 
M6809 Read/Write signal 
Pins 19-31 and 37-39 are connected 
to the M6809's address lines 
Cartridge select signal 
Signal ground 
Signal ground 
Sound input 
PIA2 address select 
Top three address lines 
Device selection disable interrupt 
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The signals supplied by the expansion port fall into 
one of four categories: 

(1) Power supply 

(2) M6809 bus signals 

(3) Device select signals 

(4) Cartridge I/O signals 

The Dragon power supply provides +5V and +12V and these 
can be used to power the cartridge components. 
However, you must be careful when using these as there 
is not a great deal of spare power available. 

The M6809 bus signals (D0-D7, A0-A15, R/W*, RESET*, 
NMI*, HALT*, E and Q) are fully described in Appendix 1 
and the device select signals are described in Appendix 
2. The function of the other signals is summarised 
below. 

(1) CTS* 
The expansion port occupies the address space 
between C000 and FEFF inclusive. This line is 
pulled LO by the SAM address decode logic whenev
er an address in this range is specified. 

(2) P2* 
There is provision in the address decode logic 
for a third device select signal similar to the 
ones that select PIAO and PIA1. P2* goes LO 
whenever an address is specified in the range 
FF40-FF5F. 

(3) DSD* 
When this signal is pulled LO by suitable car
tridge circuitry, it disables the Dragon's inter
nal device select logic. This has the effect of 
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switching off those devices which are normally 
selected and, as a result, their address space 
may be used by the cartridge hardware. This 
avoids contention problems which can arise when 
two or more devices are activated and try to 
place data on the data bus at the same time. 

(4) CART 
This signal is tied to the CB1 interrupt input 
pin of PIA1. This can be used for an auto-start 
facility where a clock line (normally Q) is con
nected to this line to produce the appropriate 
edge for PIA1's interrupt logic. This is the nor
mal arrangement for games cartridges. 

(5) SND 
This signal is connected to the sound multiplexor 
and allows the cartridge to provide the sound 
source. 



Chapter 9 

Dragon hints and tips 

In a complex system such as the Dragon there are, 
inevitably, many details which cannot be neatly 
packaged under a particular heading. These details are 
often of importance to the programmer who wishes to 
exploit the capabilities of his machine so, in this 
chapter, we present a pot-pourri of Dragon information 
which we hope may be useful to you. We cannot explain 
everything in great detail as this would require a book 
in itself but we do provide enough information to get 
you started with your own experiments. 

In this chapter we describe what happens when you 
switch on your machine, how BASIC programs and data are 
stored, how to pass parameters to assembly code 
programs and how to add new commands to BASIC. We also 
provide tables of BASIC system variables, some of which 
may be altered to tailor the system to your own 
specification. 

9.1 POWER-UP/RESET ACTIONS 

When you switch on your machine a RESET interrupt 
occurs and this causes a transfer to an initialisation 
routine in ROM at address B3B4. The first thing that 
this routine does is to configure the SAM chip as, 
until this is done, RAM cannot be used. Then the PIAs 
are configured to their default settings which, in 
turn, sets up the VDG and I/O devices. The hardware 
initialisation routine may also be accessed via the 
direct jump table and a jump to this routine is stored 
at location 8000. The routine expects the return 
address to be in register Y as RAM is not available. 

Once the hardware is initialised, a software 
initialisation stage is entered which first sets up a 
temporary stack for subroutine calling. The next step 
is to find out whether this is a 'cold-start' or a 
'warm-start' reset and this is determined by the 
contents of the reset flag at address 71 and the 
secondary reset vector at addresses 72:73. If the 
reset flag is $55 and the secondary reset vector points 
to a NOP instruction, a warm-start sequence is 
initiated otherwise a cold-start takes place. 

The software initialisation routine may be accessed 
via the jump table (8003) and has neither input nor 
output parameters. 
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9.1.1 Cold-start initialisation 
When first switched on, the machine's random access 
memory contains random bit patterns as the contents of 
RAM are lost when the power is switched off. 
Therefore, the first action of the cold-start routine 
is to clear RAM to zeros so that system variables, etc. 
have a default value of zero. 

The next step is to clear the text screen and this 
is followed by a RAM-sizing operation which detects the 
top of the useable RAM on the machine. The size of RAM 
can be determined by altering consecutive memory 
locations in turn until an unalterable location is 
detected. This is the start of ROM so the last RAM 
address is the address which immediately precedes this. 

The final step in the software initialisation is to 
set up BASIC'S system variables and these are 
initialised by copying their values from tables in ROM. 

When software initialisation is complete, the reset 
service routine looks for the occurrence of a disk 
controller cartridge by checking if the characters 'DK' 
occupy addresses C000:C001. If a controller is 
present, the disk controller is initialised by jumping 
to an initialisation routine at address C002. 

If there is no disk controller, IRQ and FIRQ 
interrupts are enabled by clearing the appropriate bits 
in the condition code register. This allows an auto-
starting ROM cartridge to interrupt on FIRQ thereby 
transferring control to the cartridge software. If no 
ROM cartridge is present, the secondary reset vector is 
set to point at the warm-start routine and the reset 
flag set to $55. 

Finally, the BASIC system is initiated and the 
system is ready for use. 

9.1.2 Warm-start initialisation 
The warm-start initialisation routine is invoked on a 
manual reset after the initial powering up of the 
machine. The code in this routine is used to re
initialise those variables needed to restart an 
existing program, to clear the text screen and to re-
enable the PIA and processor interrupts. The user's 
BASIC program is left intact. However, if a BASIC 
program or an injudicious POKE has corrupted some vital 
system variables, then the only course of action left 
to the user is to initiate a cold-start initialisation 
by switching the machine off and on. 

The following BASIC statements show how to perform a 
warm-start from BASIC. 

10 EXEC &HB3B4 'Execute the reset routine 
20 PRINT "WE WON'T GET HERE AS STACK IS RESET" 

When run, the above program will exit and display the 
'OK' prompt but the program will remain intact and can 
be listed, run, etc. However, if the statement POKE 
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&H71,0 is added as line 5, this will force a cold-start 
and the full sign-on message will appear. 

9.2 BASIC PROGRAM STORAGE 

When you type in a BASIC program, the system saves it 
in memory and operates on this saved program when you 
type a RUN command. The format of a saved BASIC 
statement is: 

<link><line number><statement>EOL 

The <link> field is a 16-bit field and holds the 
address of the following line. The <line number) field 
is also 16 bits wide and holds the statement's number 
as an unsigned 16-bit integer. This is followed by the 
text of the line and the end of the line is marked by 
EOL which is a null byte. The end of a program is 
indicated as two zero bytes. 

The BASIC program below is a dump program which 
scans a stored BASIC program and prints the stored form 
of that program. In its present form, it actually 
prints the stored form of itself but it may readily be 
modified to print out the internal form of another 
BASIC program. 

10 'DUMP PROGRAM 
15 'Peeks a word (16 bits) 
20 DEF FNW(A)=PEEK(A)*256+PEEK(A+1) 
30 DIM ZZ(2),XX(2,1),ZZ$(2),XX$(2,1) 
40 DIM XY(1,2,3) 
50 'DEFINING VARIABLES BEFORE USE 
60 FOR I=0TO2 
70 ZZ(I)=I:ZZ$(I)=STR$(I) 
80 FOR J=0TO1 
90 XX(I,J)=C:XX$(I,J)=STR$(C) 
100 XY(J,I,0)=C 
110 C=C+1 
120 NEXTJ,I 
130 PS=0 'Program Start 
140 PE=0 'Program End 
150 VS=0 'Variables Start 
160 VE=0 'Variables End 
170 AS=0 'Array Start 
180 AE=0 'Array End 
190 DA=0 'Dump Address 
200 NA=0 'Next Address 
210 DV=0 'Device number 
220 DBYTE=0:AN$="":SBYTE=0 
230 R=0:H3=0:H2=0:H1=0:H0=0 
240 PA=&H19 
250 PS=FNW(PA) '19:1A contain PS address 
260 VS=FNW(PA+2) '1B:1C contain VS address 
270 AS=FNW(PA+4) '1D:1E contain AS address 
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280 PE=VS-1 'Variables are after program 
290 VE=AS-1 'Arrays are after variables 
300 AE=FNW(PA+6)-l '1F:20 holds free space address 
310 CLS 
320 INPUT"OUTPUT TO PRINTER";AN$ 
330 IF AN$ = "Y" THEN DV=-2 ELSE DV=0 
340 PRINT#DV,"PROGRAM START ADDRESS = ";:DBYTE=PS 
350 GOSUB 1000:PRINT#DV 
360 PRINT#DV,"PROGRAM END ADDRESS = ";:DBYTE=PE 
370 GOSUB 1000:PRINT#DV 
380 PRINT#DV,"VARIABLE START ADDRESS = ";:DBYTE=VS 
390 GOSUB 1000:PRINT#DV 
400 PRINT#DV,"VARIABLE END ADDRESS = ";:DBYTE=VE 
410 GOSUB 1000:PRINT#DV 
420 PRINT#DV,"ARRAY START ADDRESS = ";:DBYTE=AS 
430 GOSUB 1000:PRINT#DV 
440 PRINT#DV,"ARRAY END ADDRESS = ";:DBYTE=AE 
450 GOSUB 1000:PRINT#DV 
460 INPUT "DO YOU WISH A PROGRAM DUMP";AN$ 
470 IF AN$<>"Y" THEN GOTO 630 
480 PRINT#DV,"PROGRAM DUMP" 
490 DA=PS 
500 NA=FNW(DA) 
510 IF (NA=0) OR (DA=PE) THEN GOTO 620 
520 PRINT#DV:PRINT#DV 
530 DBYTE=DA:GOSUB 1000 'PRINT CURRENT ADDRESS 
540 PRINT#DV 
550 DBYTE=NA: GOSUB 1000 'PRINT NEXT ADDRESS 
560 DA=DA+2 
570 DBYTE=FNW(DA) : GOSUB 1000 'PRINT LINE NUMBER 
580 DA=DA+2 
590 SBYTE=PEEK(DA): GOSUB 2000 'PRINT LINE CONTENTS 
600 DA=DA+1 
610 IF DA<>NA THEN GOTO 590 ELSE GOTO 500 
620 PRINT#DV 
630 INPUT "DO YOU WANT A VARIABLE DUMP";AN$ 
640 IF AN$ <> "Y" THEN GOTO 690 
650 PRINT#DV:PRINT#DV:PRINT#DV,"VARIABLE DUMP" 
660 FOR DA = VS TO VE 
670 SBYTE=PEEK(DA): GOSUB 2000 
680 NEXT DA 
690 PRINT#DV 
700 INPUT "DO YOU WANT AN ARRAY DUMP";AN$ 
710 IF AN$<'>"Y" THEN GOTO 760 
720 PRINT#DV:PRINT#DV:PRINT#DV,"ARRAY DUMP" 
730 FOR DA = AS TO AE 
740 SBYTE=PEEK(DA): GOSUB 2000 
750 NEXT DA 
760 PRINT#DV:PRINT#DV,"DUMP FINISHED" 
770 STOP 
1000 'PRINT 2 BYTES AS 4 HEX CHARS 
1010 R=DBYTE 
1020 H3=INT(R/4096): R=DBYTE-H3*4096 
1030 H2=INT(R/256): R=R-H2*256 
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1040 H1=INT(R/16): H0=R-H1*16 
1045 HW$=HEX$(H3)+HEX$(H2)+HEX$(H1)+HEX$(H0) 
1050 PRINT#DV, USING "% %"; HW$ 
1060 RETURN 
2000 'PRINT 1 BYTE AS 2 HEX CHARS 
2010 H1=INT(SBYTE/16): H0=SBYTE-H1*16 
2020 PRINT#DV, USING"% %";HEX$(H1)+HEX$(H0); 
2030 RETURN 

If you run this program, you will see that the BASIC 
program is actually stored in a semi-compressed form 
with reserved words (DIM, INPUT, PRINT, etc.) 
represented as a single byte or token. This token 
always has its top bit set to distinguish it from 
normal ASCII characters which all lie in the range 0-
127. You can see this if you modify the above program 
by printing each byte as an ASCII character rather than 
as a pair of hexadecimal digits. The following 
subroutine may be used to do this: 

2000 ' Print 1 byte as a character 
2010 PRINT CHR$(SBYTE); 
2020 RETURN 

If you now run the dump program with this amendment, 
you will see most of the text as it was originally 
typed into the machine. However, all reserved words 
will have disappeared and will have been replaced by 
Semigraphic characters. 

There are two reasons for storing the program in 
this semi-compressed way: 

(1) Space is saved. Rather than reserved words like 
INPUT taking up 5 bytes, only a single byte is 
required to represent that command. 

(2) Program execution speed is increased. The reason 
for this is that the token representing the 
reserved word is used as an index into a jump 
table of routines to carry out the action speci
fied in the command. Therefore, the token 
representing INPUT is a form of indirect address 
to the INPUT routine. 

All tokens representing reserved words have values 
between 128 and 255 because the top bit of the token is 
always set. Unfortunately, Extended Color BASIC has 
more than 127 reserved words, by the time you take the 
names of all system routines into account, so an 
alternative technique is used to encode function names. 

This involves use a 2-byte code for the function 
name where the first byte is always FF. A byte whose 
value is FF means that the following byte is the token 
for a routine and, obviously, the value FF is not 
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itself used as a reserved word token. The table below 
shows some examples of reserved word tokens as single 
and as double bytes. 

The addresses of the routines, called action routines, 
which are used to execute the reserved words are held 
in a table called the dispatch table. This is indexed 
by the reserved word token. A complete list of 
reserved words, associated tokens and dispatch 
addresses is provided in Appendix 7. Obviously, there 
must be separate dispatch tables for the normal 
reserved words and the function reserved words so that 
indices do not clash with each other. 

Reserved words are converted to tokens by the BASIC 
system's input routine which tries to match each input 
character sequence against a reserved word list which 
is a table of reserved words. The token associated with 
each reserved word is taken to be its position in the 
reserved word table plus 80 (hex) to set the top bit. 
Thus the 17th reserved word has token value 91 (hex) , 
the 37th has value A5 (hex), etc. If a match is found, 
the word is replaced by its token. The same table is 
used by the LIST routine which converts tokens into 
reserved words so that the program may be listed. 

The BASIC program statement storage area is 
immediately followed in memory by storage areas devoted 
to simple variables and array variables. Simple 
variables are either numeric or string variables and 
only the first two characters of the variable name are 
used to identify the variable. All others are ignored. 
The variable area is made up of the variable name as a 
pair of ASCII characters followed by a 5-byte 
representation of the number or string. These 
representations are described in section 9.3. 

All names are represented as two characters so 
single character names are made up of the single 
character plus a zero byte. Notice that this does not 
mean that A may be confused with A0 as the ASCII 
character '0' does not have byte value 0. String type 
variables are distinguished from numeric variables by 
setting the top bit of the last character in the 
variable name. 

Array variables are held in a separate storage area 
and array names are distinguished from simple variable 
names by suffixing a '(' to the name. In the array 
storage area, each array is stored as a structure: 

Reserved word 
DIM 
FOR 
= 
STR$ 
PEEK 

Token 
$8C 
$80 
$CB 
$FF8E 
$FF8C 



Address 
$19:1A 
$1B:1C 
$1D:1E 
$1F:20 

Use 
Holds address of start of BASIC program 
Holds address of start of simple variables 
Holds address of start of array variables 
Holds address of start of unused memory 
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<array name><array descriptor><array values> 

The array descriptor provides information about the 
size and number of dimensions of the array. It is 
structured as follows: 

(1) Length of array in RAM - 2 bytes. 

(2) The number of array dimensions - 1 byte. 

(3) For each dimension, a list (2 bytes each) of the 
number of elements in that dimension. 

The array values are held as normal string type or 
numeric type values. 

The BASIC system uses a number of variables to keep 
track of the program, variable and array storage areas. 
These are: 

9.3 BASIC'S INFORMATION REPRESENTATION 

When devising any high-level programming language 
system, the system designer must make some very 
fundamental decisions regarding the way in which 
numeric and character variables are represented in his 
system. BASIC is very flexible in this respect, 
allowing variable length character strings and allowing 
numbers to be either real numbers (numbers with a 
fractional part) or integers. 

If you want to interface assembly language with 
BASIC it is useful, although not essential, to have 
some idea of how the BASIC system represents 
information. Such knowledge also helps you to 
understand some of the limitations of BASIC and why 
some applications are particularly slow to execute. In 
this section, therefore, we describe how numbers and 
string variables are represented in BASIC. 

9.3.1 Number representation 
The original designers of BASIC made a very 
important (and, in our view, a correct) decision that 
no distinction should be made between real numbers and 
integers. A BASIC numeric variable may be either a 
real number or an integer and there is no need for the 
programmer to indicate, in advance, the type of the 
variables which he uses. 

In this respect, BASIC differs from almost all other 
programming languages which treat integers and real 



231 

numbers differently. The reason for this is that 
operations on integers are easier to implement and much 
more efficient than operations on real numbers. If no 
distinction is made between them, the system must 
assume that any number may have a fractional part. As 
a result, integers in BASIC are represented as real 
numbers with a fractional part equal to zero. 

This explains why applications which involve a lot 
of integer arithmetic are relatively slow in BASIC. 
The integer arithmetic involved is actually carried out 
using real number operations and it is not possible to 
take advantage of the M6809's fast integer arithmetic 
facilities. This is one reason why assembly language 
programs which only use integers are so much faster 
than corresponding BASIC programs. 

The representation of real numbers in a computer is 
made up of two parts. These parts are called the 
mantissa, which is the number to be represented held as 
an integer representing a fraction between 0 and 1, and 
the exponent, which is also an integer, representing 
the power to which that fraction is raised in order to 
form the correct real number. 

This is really quite a familiar system. If the 
exponent represents the numbers of powers of 10 to 
which a fraction is to be raised, the table below gives 
some examples of how real numbers might be represented 
using exponent/mantissa notation. 

We have explained this representation in terms of 
powers of 10 because that is the number base with which 
we are most familiar. In the BASIC system, however, the 
exponent represents the power of 2 to which the 
exponent is raised. Therefore, in BASIC, the value of a 
number is computed by multiplying the fraction by 2 
raised to the power specified in the exponent. 

Real number in BASIC are represented using 5 bytes. 
These bytes are used as follows: 

Byte 0 (leftmost byte) Exponent 
Bytes 1-4 Mantissa 

The leftmost bit of the mantissa, that is bit 7 of byte 
1, represents the sign of the mantissa. If it is 0 
this means a positive mantissa, if it is 1 this means 
that the mantissa is negative. The mantissa itself is 
not held as a two's complement number but is 
represented as a positive integer. A mantissa of zero 
means that the number represented is zero. In this 

Real Number 
5.55555 
.0032 

3456789 
234.456 

Exponent 
1 
-2 
7 
3 

Mantissa 
.555555 

.32 
.3456789 
.234456 
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case, the exponent part is ignored by the BASIC system. 
The exponent is held as a positive number between 0 

and 255 which seems to imply that negative exponents 
cannot be represented. However, to get the actual value 
represented by the exponent, 128 must be subtracted 
from it. Therefore, an exponent of zero means that the 
number represented is raised to the power -128, a 
exponent of 128 means that the number is raised to the 
power 0 and an exponent of 255 means that the number is 
raised to the power 127. 

Given this representational system, the smallest 
number which the BASIC programmer may use is 10.14 to 
the power -38 and the largest number is 10.14 to the 
power 38. In many cases, however, the actual number 
represented is an integer between -32768 and 32767. If 
this is the case, the system function INTCNV can be 
called by the assembly language programmer. This 
function returns the integer value of the BASIC number 
in accumulator D. 

INTCNV is designed to convert a real number to an 
integer. If the number to be converted lies outside 
the range of 16-bit integers, INTCNV causes an overflow 
error and control automatically reverts to the BASIC 
system. Similarly, if a string rather than a number is 
passed as a parameter to INTCNV, a type mismatch error 
is signalled and control reverts to BASIC. 

The routine INTCNV uses a so-called floating-point 
accumulator in memory locations 4F-54. The floating-
point accumulator (FAC) gets its name because real 
numbers represented in exponent/mantissa notation are 
sometimes called floating-point numbers. It is a 6-byte 
area organised as follows: 

Byte 0 Exponent of real number 
Bytes 1-4 Mantissa value 
Byte 5 Mantissa sign 

The sign of the mantissa is factored out of the real 
number representation and held as a separate byte on 
its own. The reason for this is that it helps speed up 
internal floating-point computations. As you would 
expect, a byte value of zero means that the mantissa is 
positive and a byte value of FF means that the mantissa 
sign is negative. 

There is no need for the programmer to write code 
which explicitly converts a BASIC numeric variable to 
FAC representation. Rather, there is an in-built 
routine called MOVFM which carries out such a 
conversion. MOVFM uses the system FAC in locations 4F 
onwards and expects the address of a numeric variable 
in the BASIC variable table or anywhere else in memory 
to be in register X. 

A complementary function called GIVABF is used to 
convert an integer held in accumulator D to its 
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floating-point representation in a 6-byte floating 
point accumulator. Again, the system's FAC is assumed 
by this routine. The following example shows an 
assembly code routine which uses INTCNV and GIVABF to 
add 1 to a BASIC numeric variable. 

* 

* Input register X - Address of FAC 
* 
* The value in FAC is incremented by 1 by this routine 
* 
* Registers destroyed D, CC 
* 
ADD1 JSR INTCNV ; Convert to integer 

ADDD #1 ; Add 1 to D 
JSR GIVABF 
RTS 

9.3.2 String representation 
The BASIC system maintains a string storage area where 
the actual characters making up a string are stored and 
holds string variables as references into this area. 
However, rather than store the string length along with 
the string characters, BASIC holds that length along 
with the address, in the string storage area, of the 
string characters. In fact, each string is represented 
by a 5-byte object called a string descriptor. This is 
structured as follows: 

Byte 0 (leftmost byte) String length 
Byte 1 Housekeeping byte 
Bytes 2-3 String address 
Byte 4 Housekeeping byte 

The parts which we are interested in are bytes 0, 2 and 
3. Bytes 1 and 4 are used by the BASIC system to hold 
information which allows it to perform garbage 
collection in the string storage area as discussed in 
Chapter 6. The techniques used for garbage collection 
are not important here and bytes 1 and 4 should not be 
changed by the assembly language programmer. 

The programmer may write assembly code routines to 
manipulate string descriptors and call these routines 
with a USR call. However, the modification of 
descriptors is a dangerous business as it is possible 
to corrupt other system information which could result 
in inexplicable system failure. As the descriptor holds 
the string length, the only really safe operation is to 
shorten the string by modifying the length byte. On no 
account should you try to lengthen the string or change 
the actual string characters addressed by bytes 2 and 3 
of the descriptor. The only safe operation on the 
address field of the string descriptor is to change it 
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to point at some character rather than the first string 
character. You must, naturally, also change the string 
length byte if you modify the address field. 

9.3.3 BASIC variables 
The reader will have noticed that both numbers and 
strings in BASIC are represented as 5-byte objects. 
This means that the construction of a variable table 
for the BASIC interpreter to use is straightforward. 
This table has two components: 

(1) The variable name 

(2) The variable 'value' 

We assume here that the value of a string is actually 
the value of its descriptor. 

The built-in BASIC function VARPTR returns a numeric 
value which is an index to the system's variable table. 
An example, in BASIC, of this is: 

10 A$ = "HERE IS A STRING" 
20 PRINT VARPTR(A$) 

This code would cause the location in the variable 
table of the string A$ to be printed. Note that the 
value returned by VARPTR is a 5-byte BASIC numeric 
variable which always represents an integer. The 
assembly language programmer must therefore convert 
this number using INTCNV before he can use it in his 
program. 

We conclude this section with a table listing the 
conversion routines, their addresses and their 
functions. 

Name 
VALTYP 

INTCNV 

GIVABF 

Address 
$06 

$8B2D 

$8C37 

Function 
This variable holds the type of a 
parameter to a routine initiated by 
a USR call and also the type of the 
result returned to BASIC 

This routine converts a BASIC 
numeric variable to an integer. It 
expects the X register to point at a 
floating-point accumulator holding 
the number to be converted and 
returns its result in register D. 

This routine complements INTCNV in 
that it converts an integer in 
accumulator D to a BASIC numeric 
value. GIVABF also sets VALTYP to 
zero. 
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floating-point number into the 
floating-point accumulator. The 
number to be converted is addressed 
in register X. 
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9.4 PASSING PARAMETERS FROM BASIC TO MACHINE CODE 

We have already shown, in Chapter 6, how the EXEC and 
USR calls may be used to interface machine code 
routines with BASIC programs. The parameter passing 
technique described there involved poking parameter 
values into known memory addresses and peeking the 
results from other addresses. In this section we 
describe how knowledge of BASIC'S internal data 
representation allows parameters to be passed to 
machine code routines via USR calls. 

To help with its 'housekeeping', the BASIC system 
keeps track of the type of parameter being passed to a 
USR function in a memory location called VALTYP. If 
the argument is a number, VALTYP is set to zero. A 
non-zero value assigned to VALTYP means that the 
argument to the USR function is a string. Type 
mismatch errors, resulting in the message '?TM ERROR', 
are caused by the contents of VALTYP and the actual 
operand being incompatible. For example, if VALTYP is 
zero and a string is used as an operand, a type 
mismatch occurs. 

On entry to a USR function (remember this is defined 
by the assembly code programmer), the A accumulator 
register reflects the contents of VALTYP. If A is zero, 
the parameter is numeric, if A is non-zero, the 
parameter is a string. 

According to the BASIC manual, the parameters to a 
USR call may be either a number or a string. However, 
experimentation with this will show that the use of a 
USR call with a string argument results in a type 
mismatch error message 'TM ERROR' being printed. We 
describe below how to pass numeric parameters to a USR 
call and also how to program around the system bug 
which causes an error when string parameters are used. 

9.4.1 Numeric parameters 
As a USR call is a BASIC function it may only take a 
single parameter. When this parameter is a number, the 
USR call sets up the X register to point at the FAC 
holding the number and sets A to zero, indicating that 
the type of the parameter is numeric. Usually, the 
first thing that the assembly language routine does is 
convert this number to an integer using INTCNV. 
Computation may then proceed. 

Because the USR call is considered to be a BASIC 
function, it must return a result to the calling 
program. If the USR call is to initiate a subroutine 
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rather than a function, where the value returned is 
irrelevant, the convention adopted is for the assembly 
language routine initiated by the USR call to return 
its input parameter as a result. This is easily 
accomplished by returning to BASIC using a RTS or 
equivalent instruction with the X register pointing at 
the FAC containing the result. As long as the 
subroutine does not change the X register, the result 
will be the same as the input parameter. 

However, if the USR call initiates a proper 
function, it is possible to return a result which is 
not the same as the routine's input. The result is 
computed as an integer and the routine GIVABF is called 
to convert the contents of accumulator D and load the 
floating-point accumulator. GIVABF also sets the type 
indicator VALTYP to zero to reflect the fact that a 
numeric variable is being returned to the BASIC system. 

Any integer values may be returned in this way even 
when a string is the input parameter to the USR call. 
For example, consider the routine below which accepts a 
single character string as an input parameter and 
returns, as its result, the ASCII code of that input 
character. The X register, on input, points to the 
string descriptor so indirect addressing is used to 
fetch the actual string character. 

USRASC LDB (2,X) ; Fetch first character of string 
CLRA ; Zero most significant byte of D 
JSR GIVABF ; Return ASCII code in FAC 
RTS 

9.4.2 String parameters 
Although the BASIC system signals a type mismatch error 
when a string is passed to a USR call, it is perfectly 
legal to pass a string as a parameter. The error 
occurs when the result is returned rather than when the 
parameter is passed via the USR call. 

When a string is used as a parameter to a USR call, 
the X register is set up to point at the 5-byte 
descriptor for the string and VALTYP is set non-zero. 
The string descriptor format is as described in section 
9.1.2 and the assembly language routine may manipulate 
the string as required. 

The problems arise when an attempt is made to return 
to the BASIC system. BASIC expects a numeric result 
from the USR call so, if a string result is returned, a 
type mismatch error is signalled. The assembly 
language routine must somehow fool the BASIC system 
into thinking that a numeric rather than a string 
result has been returned if the error is to be 
circumvented. 

There are two ways of doing this. The BASIC system 
carries out the type checking by calling a routine to 
check that VALTYP is zero. If the assembly language 
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programmer explicitly clears VALTYP before returning to 
the BASIC system, the return will execute normally 
because the checking routine will see that VALTYP is 
zero. However, this does mean that the result will be 
treated as numeric and cannot, therefore, be assigned 
to a string variable. 

To return a string variable properly, the user must 
cut out the call to the type checking routine by 
discarding the normal return address on the stack. This 
can be done by executing a LEAS 2,S instruction to pop 
it off the stack before a normal RTS instruction. By 
discarding the return address, you avoid a return to 
the point where the checking routine is called. The 
return which is actually executed is a return to the 
statement immediately after the call to the this 
routine. 

The way to return strings from a USR function is 
best illustrated by example. The example chosen is a 
modification of the USRASC routine presented in the 
previous section. The routine shown below accepts a 
string as its parameter and returns the same string 
with the first character incremented. 

USRINC LDB (2,X) ; Fetch first character of string 
INCB ; increment it 
STB (2,X) ; and store it back 
LEAS 2,S ; Discard return address 
RTS 

If this routine is assembled using the standard DREAM 
settings, then the following BASIC program can be used 
to test it. 

10 DEF USRO = 20001 'Default code address 
20 A$ = "123" 
30 PRINT USR00(A$) 
40 STOP 

When this program is run "223" will be printed by line 
30. If the program is then listed, statement 20 will 
be converted to A$ = "223" showing that the string 
descriptor associated with A$ points to the BASIC 
program text area. Because string descriptors may point 
into the text area, you must be very careful when 
modifying strings as such changes can corrupt the 
surrounding BASIC text. 

To avoid string descriptors pointing into the BASIC 
text area, it is possible to force space for the string 
to be allocated in the string storage area. One 
technique makes use of the fact that string catenation 
results in the string descriptor referring to the 
string storage area so catenating the empty string to 
another string ensures that the string descriptor does 
not point to the text area. In the above example, this 



238 

involves changing statement 20 to A$ - "123" + "". 
An alternative technique may be used when it is not 

important what characters are passed as an input string 
as the string will be built up by the USR function and 
then returned. The most convenient method of creating 
a suitable string descriptor is to use BASIC'S STRING$ 
function. For example: 

A$ = USR00(STRING$(" ",255)) 

This creates a descriptor to a string made up of 255 
blanks. If you know the length of the string to be 
returned, you can obviously set it up as required. If, 
however, the length is unpredictable, you should create 
a descriptor for the longest possible string (255 
characters) then modify the length byte to reflect the 
actual string length. This way, you can be sure that 
sufficient space is always available for the actual 
string characters. 

A useful side-effect of using a string as a 
parameter in a function call is that the Y register is 
set up to point at the first character of the string. 
There is therefore no need to extract the address from 
the string descriptor. As a result, the indirect 
reference, (2,X), to the first character of the string 
in USRASC and USRINC can be replaced by a normal 
indexed reference using Y. 

This side-effect also applies to VARPTRed strings so 
there is no need to convert the numeric value to an 
integer with INTCNV to get the string descriptor. 
Therefore, the code sequence: 

JSR INTCNV ; Convert to 16-bit value 
TFR D,X ; and transfer to index register 
LDB (2,X) ; and reference character indirectly 

may be replaced with the single statement LDB ,Y. 

9.5 EXTENDING THE DRAGON'S CAPABILITIES 

One way of extending the Dragon's capabilities is, of 
course, to call your own assembly language subroutines 
from BASIC and we have described how to do this in the 
above section. However, it is also possible to augment 
the BASIC system with new commands which carry out 
functions which are not provided in Extended Color 
BASIC. 

To add new commands to BASIC, you must add new 
reserved words to the language and this involves 
extending the reserved word table described in section 
9.2. Information concerning the reserved word tables is 
contained in an area of RAM called a command 
interpretation vector or 'stub'. This information is 
structured as follows: 
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A number of such command interpretation vector tables 
may be used provided that they are contiguous in RAM 
and that the last used table is followed by a zero 
byte. Extended Color BASIC uses two such tables 
although the second table is simply a dummy stub with a 
zero in its first byte indicating that it is a 
terminator. The first stub occupies RAM space from 
addresses 120-129 inclusive with each entry set up as 
shown in the table below: 

To add new commands, the user must define a new stub 
following the normal BASIC command interpretation 
vector table and this must be followed by a terminator. 
The format of user-supplied stubs differs slightly from 
the standard BASIC stub in that bytes 3 and 4 and bytes 
8 and 9 should contain the addresses of new dispatch 
routines for the added commands rather than the 
addresses of dispatch tables. 

We illustrate the process of extending BASIC by 
showing how two new commands may be added. These 
commands are a HELP command which prints some user-
supplied 'help' information and an OUTPUT command which 
is exactly the same as PRINT. To add these new 
commands requires that the following steps should be 
carried out. 

(1) Set up a new reserved word table. 

(2) Set up a new reserved word dispatch routine. 

(3) Define a new stub with references to this new 
table and associated routine. 

The first step, setting up the reserved word table, is 
straightforward. This table is made up of the 
characters in the word with the last character having 
its top bit set to indicate 'end-of-word'. 

Byte 
0 
1:2 
3:4 
5 

6:7 
8:9 

Use 
Number of normal reserved words 
Address of normal reserved word list 
Address of normal reserved word dispatch table 
Number of function reserved words 
Address of function reserved word list 
Address of function reserved word dispatch table 

RAM byte 
120 

121:122 
123:124 

125 
126:127 
128:129 

Contents 
4E 

8033 
8154 
22 

81CA 
8250 
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NEWRDS FCC /HEL/ 
FCB $D0 ; 'P' with top bit set 
FCC /OUTPU/ 
FCB $D4 ; 'T' with top bit set 

The new reserved word dispatch routine performs similar 
tasks to BASIC'S reserved word dispatch routine. These 
tasks include checking the validity of the new token 
value, calculating the appropriate index into the new 
dispatch table and setting up the base address of the 
new dispatch table. Once this has been done, the new 
dispatch routine can re-enter BASIC ROM at the 
appropriate point to deal with the new command. 

The tokens associated with each reserved word are 
computed by the system by counting the number of 
reserved words scanned, including new reserved words if 
present. As the last normal BASIC reserved word has a 
token value of CD, the values for HELP and OUTPUT are 
CE and CF respectively. We use equates to define the 
first new token value and number of tokens and set up a 
table of dispatch addresses for the new commands. 

NEWTOK EQU $CE ; First new token value 
TOKENS EQU 2 ; Number of new tokens 
NEWTBL FDB HELP ; Address of HELP command 

FDB $903D ; OUTPUT = PRINT 

The new reserved word dispatch routine makes use of 
this information when determining which action routine 
to call. A text input routine called CHRGET is used by 
the system to scan the BASIC text and passes the token 
value to this routine in register A. A suitable 
dispatch routine for these new commands is: 

* NEWDSP - New dispatch routine 

* Register input A - token value 
* 
* This routine checks token validity and invokes the 
* appropriate action routines 
* 

NEWDSP CMPA #NEWTOK ; Check that 
BLO NEWERR ; token given 
CMPA #NEWTOK+TOKENS ; is within range 
BHS NEWERR 

* 
* One of the new commands at this point 
* 

SUBA #NEWT0K ; Convert to table index 
LEAX NEWTBL,PCR ; and set up table base 
JMP ROMCMD ; before jumping to BASIC 

NEWERR JMP SYNERR ; error jump into BASIC 

The HELP routine is very simple and also makes use of a 



241 

ROM routine to perform some of its duties: 

HELP LEAX HELPME-1,PCR ; Point to byte before 

JMP OUTSTR ; string for ROM's OUTSTR 

Notice that the above routines have no explicit RTS 
instructions as the terminate by jumping to ROMCMD, 
OUTSTR, etc. Returns from these routines therefore 
return to the program which called the new dispatch 
routine. These routines also use a number of equates 
which are defined as follows: 

OUTSTR EQU $90E5 ; String output routine 
SYNERR EQU $89B4 ; BASIC syntax error routine 
ROMCMD EQU $84ED ; BASIC dispatch point 

The HELP message is held in an area of store named 
HELPME and is output by a standard output routine 
called OUTSTR. This routine takes as its parameter the 
address of the byte before the string and expects the 
string to be terminated with a zero byte. 

HELPME FCB $0D 
FCC /DON'T ASK ME I'M ONLY A MACHINE/ 
FCB 0 

After defining the dispatch routine, a new stub must be 
set up. Unfortunately, the address of the zero byte 
required to mark the end of stubs clashes with the 
first byte of USR vectors (134). However, this has 
been allowed for in Extended Color BASIC as the USR 
vector is referenced indirectly through the direct page 
location B0:B1 and the USR vector area may be moved 
elsewhere and these locations filled in with its new 
address. 

The following routine sets up a new stub and 
relocates the USR vectors. 

* NEWSET - set up new stub for reserved words 

* Register input NONE 
* Registers destroyed A,X,Y,CC 
* 
NEWSET LDX #STUB1 ; First of all copy 

LDY #STUB2 ; old second stub 
NXTBYT LDA ,X+ ; bytes into 

STA ,Y+ ; third stub 
CMPX #STUB2 
BLO NXTBYT 
LDA #TOKENS ; Number of reserved words 
STA STUB1 ; set up new stub 
LEAX NEWRDS,PCR ; New reserved word list 
STX STUB1+1 ; set up 
LEAX NEWDSP,PCR ; New dispatch routine 
STX STUB1+3 ; set up 
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* No new functions so second part of stub unchanged 
* 

LEAX NEWUSR,PCR ; Relocate the USR 
STX USRPTR ; vectors 
LDY #FCERR ; and initialise 
LDA #10 

NXTVEC STY ,X++ ; them to FC ERROR 
DECA ; continue until all 
BNE NXTVEC ; done 
RTS 

This routine assumes that the following equates and 
declarations have been made: 

STUB1 EQU $12A ; Address of second stub 
USRPTR EQU $B0 ; USR vectors 
FCERR EQU $8B8D ; FCERR entry point 
NEWUSR RMB 20 ; relocated USR vectors. Must be 
* set up before defining any USR 
* addresses 

9.5.1 RAM hooks 
The BASIC system designers allow new commands to be 
added to BASIC so that extra commands needed to support 
a disk version of BASIC may be included. However, some 
of the existing commands such as OPEN and CLOSE also 
need to be enhanced for disk BASIC and so addresses 
have been set up in RAM which allow extra facilities to 
be added to action routines. These addresses normally 
contain an RTS instruction so that a reference to them 
from within an action routine does nothing. The RAM 
addresses are called 'hooks' and the RTS instruction 
may be replaced by a jump to some other routine which 
enhances the capabilities of the action routine. 

There are a total of 25 RAM hooks available at 
locations 15E to 1A8 inclusive. A brief description of 
each is given in the following table. 

Address 
15E 
161 
164 
167 
16A 
16D 
170 
173 
176 
179 

17C 
17F 
182 
185 

Called from 
B829 
B7EC 
B596 
B54B 
B50B 
B624 
B63D 
B65D 
B664 
84DE 

8792 
B77C 
B5C7 
B6FE 

Potential use 
Open device or file 
Check I/O device number 
Return device parameters 
Character output 
Character input 
Check device is open for input 
Check device is open for output 
Close all devices and files 
Close a single device or file 
About to deal with first 
character of new statement 
Disk file item scanner 
Poll for BREAK and special keys 
Read a line of input 
Finish loading ASCII program 
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18B 
18E 
191 
194 
197* 
197* 
19A 
19D 
1A0* 
1A0* 
1A0* 
1A0* 
1A3 
1A6 

B801 
8954 
8344 
8347 
85A5 
8C80 
8424 
849F 
86D7 
BA60 
9EEB 
AAF7 
850F 
8F67 
8F08 

End of file (EOF) function 
Evaluate an expression 
User error trap 
System error routine trap 
RUN statement 
String copy check 
CLEAR statement 
Fetch next statement 
LET string copy check 
CLS statement 
RENUM statement 
PUT/GET statement 
Function assignment 
Compress BASIC line for storage 
Expand BASIC line for listing 
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Starred addresses in the above table mean that several 
hooks share the same address. The only way to 
determine which is used is to check the return address! 

In order to use some of these RAM hooks, you need an 
in-depth knowledge of the BASIC interpreter and, 
therefore, these hooks are not useful to the ordinary 
programmer. However, some of the hooks are very useful 
indeed and can be used to enhance the standard system 
facilities. We shall illustrate this by showing how 
the character output hook ($167) can be used to copy 
all character output to the printer and how the new 
statement hook ($19A) can be used to force a complete 
keyboard scan. 

Our first example involves setting up the character 
output hook with the address of the printer output 
routine. 

LPTOUT EQU $800F ; Printer output address 
HKCHR0 EQU $167 ; Character output hook 
HKUPC0 LDX #LPTOUT ; Set up printer output address 

STX HKCHR0+1 ; hook up to character output 
LDA #$7E ; JMP opcode value 
STA HKCHR0 ; into hook 
RTS 

This example may be set up using BASIC pokes as it 
simply involves replacing the three bytes of character 
output hook with a JMP $800F. However, you must be 
very careful when setting up hooks from BASIC as the 
hook may be called between each POKE statement. This 
means that you must first set up the address in bytes 1 
and 2 of the hook and, as the last step, replace the 
RTS instruction with a JMP instruction. The following 
BASIC statements set up the character output hook. 

POKE &H168,&H80: POKE &H169,&H0F: POKE &H167,&H7E 

It is not easy to find out which registers roust be 
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preserved when a hook is called so you must save all 
registers, including CC, used in the hook routine. We 
didn't do this in the example above as this routine is 
also called by the normal character output routine when 
a PRINT #-2 is used. We therefore assumed that the line 
printer routine preserves the registers itself. 

In our second RAM hook example we show how the new 
statement RAM hook can be used to reset the row state 
byte ($151) to a value which forces a complete keyboard 
scan. The following code is made up of necessary 
equates, the routine used to reset the row state byte 
and a routine to set up the RAM hook. 

HKNWST EQU $19A ; New statement RAM hook 
KBROWS EQU $151 ; Keyboard row state byte 
* 
* RSROWS - reset row state byte 
* 
* Register inputs NONE 
* 
RSROWS PSHS A,CC ; Save registers 

LDA #$7F ; This value forces a scan 
STA KBROWS ; of the keyboard 
PULS A,CC,PC ; Restore and return 

* 
* HKUPNS - set up RAM hook 
* 
HKUPNS LEAX RSROWS,PCR ; Address of hook routine 

STX HKNWST+1 ; reset row state routine 
LDA #$7E ; JMP opcode 
STA HKNWST ; into hook 
RTS 

Setting up this hook means that all key depressions 
will be recognised, even those on the same row. A 
similar technique can be used to disable the BREAK key 
thus stopping the user interrupting a program and to 
provide auto-repeat facilities on some or all keys. 
Both of these additions involve modifying RSROWS above 
so that the appropriate column bytes are modified. 

The BREAK key can be disabled by adding the 
following code to the above program. 

BRKCOL EQU $154 ; Break row byte 
BRKCLR EQU $BF ; To clear BREAK'S bit 

LDA BRKCOL ; Pick up BREAK column 
ANDA #BRKCLR ; Force BREAK bit to 0 
STA BRKCOL ; and store it back 

9.6 BASIC SYSTEM VARIABLES 

In this final section we list the reserved memory 
locations used by the BASIC system and describe, very 
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briefly, what these locations are used for. As these 
are RAM locations, you may modify them using POKE but 
you must be very careful if you do so. If you make a 
mistake or set up an invalid value, you may hang the 
system. This means that you can do nothing except 
switch the machine off and on again to reset it and all 
your work currently in RAM will be lost. 

We start with a list of variables held in the first 
256 bytes of memory and accessed via direct addressing 
with the direct page register set to 00. 

Address 
00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
0A 

0B:0C 
0D:0E 
0F-18 
19:1A 
1B:1C 
1D:1E 
1F:20 
21:22 
23:24 
25:26 
27:28 
29:2A 
2B:2C 
2D:2E 
2F:30 
31:32 
33:34 
35:36 
37-4E 
4F 

50-53 
54 
55 

56-5B 
5C 

5D-60 
61 

62-67 
68:69 
6A-6E 
6F 

Use 
BREAK message flag. If negative print BREAK 
String delimiting character 
Another delimiting character 
General count byte 
Count of IFs seen while looking for ELSE 
DIM flag 
VALTYP - 0=numeric, l=string 
Garbage collection flag 
Subscript allowed flag 
INPUT/READ flag 
Arithmetic use 
String pointer - first free temporary 
String pointer - last used temporary 
Temporary results 
Pointer to start of BASIC text 
Pointer to start of simple variables 
Pointer to start of array variables 
End of storage in use 
Stack base address 
String space base address 
Temporary pointer to new string 
Address of top of RAM used by BASIC 
Last BASIC line number 
Input line number 
Old text pointer 
Another text pointer 
DATA line number 
Pointer for DATA 
Pointer for INPUT 
Evaluation variables 
Floating point accumulator, FAC exponent 
FAC mantissa 
Sign of FAC 
Temporary sign of FAC 
String descriptor temporaries 
Floating point argument, ARG exponent 
ARG mantissa 
Sign of ARG 
Miscellaneous use 
Current line number 
Device parameters used in PRINT 
Device number, 0-console, -l-cassette 
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72:73 
74:75 
76:77 
78 

79 
7A:7B 
7C 

7D 
7E:7F 
80 
81 
82 
83 
84 
85 
86 
87 

88:89 
8A:8B 
8C 
8D 
8F 

90:91 

92 

93 

94 

95:96 
97:98 

99 

9A 

9B 

9C 
9D:9E 
9F:A0 
A1:A2 
A3:A4 
A5-A7 
A8-AA 
AB-AE 
AF 

-2-printer 
End of file flag 
Restart flag ($55 warm, other cold) 
Warm start vector (points to NOP) 
Top of RAM minus 1 
Unused 
Cassette file status (0-closed, 1-input, 
2-output) 
Number of characters in CASBUF 
Cassette buffer pointer 
Block type (0=header, 1=data 
FF=end of file) 
Block length 
Address of cassette buffer 
Block checksum 
Checksum error flag 
Pulse width counter 
Sync bits counter 
Bit phase flag 
Last sine wave value 
Used in SET, RESET, and POINT 
Single character keyboard buffer 
Current cursor address 
16-bit zero 
Sound frequency 
Sound timer 
Cursor blink rate counter. 
Initial value = 32 
Count of number of leader bytes 
Initial value 0080 
Minimum cycle width of 1200Hz 
Initial value = 12 
Minimum pulse width at 1200Hz 
Initial value = 0A 
Maximum pulse width at 1200Hz 
Initial value = 12 
Cassette motor delay value 
Keyboard debounce delay value 
Initial value = 045E 
Line printer comma field width 
Initial value = 10 
Line printer last comma field 
Initial value = 74 
Line printer width 
Initial value = 84 
Line printer head position 
EXEC vector 
INC $A7 ; CHRGET input routine 
BNE $A5 
INC $A6 
LDA >0 
JMP $BB26 
Used by RND 
Program trace flag, 0-trace off 
non 0, trace on 
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B0:B1 
B2 
B3 
B4 
B5 
B6 

B7:B8 
B9 

BA:BB 
BC 

BD:BE 
BF:C0 
C1-DD 
DE 
DF 
E0 
E1 
E2 

E3:E4 
E5 

E6-FF 

Pointer to USR vector base 
Foreground colour 
Background colour 
Active colour 
Active colour 
Graphics mode 
Top of current graphics screen 
Number of bytes in graphics row 
Base address of current graphics screen 
Page number of graphics screen 
Current X position 
Current Y position 
Used by graphics 
MUSIC octave 
MUSIC high volume 
MUSIC low volume 
MUSIC note value 
MUSIC tempo 
MUSIC duration count 
MUSIC dotted note flag 
Unused in Dragon 32 

Address 
100-102 
103-105 
106-108 
109-10B 
10C-10E 
10F-111 
112:113 
114 

115-119 
11A-11F 
120 

121:122 
123:124 
125 

126:127 
128:129 
12A-133 
134-147 
148 
149 

14A-150 
151-159 
15A 
15B 
15C 
15D 

15E-1A8 

Use 
SWI3 secondary vector 
SWI2 secondary vector 
SWI secondary vector 
NMI secondary vector 
IRQ secondary vector 
FIRQ secondary vector 
TIMER value 
Unused 
Random number seeds 
Unused 
Stub 0 - number of reserved words 

address of reserved word table 
address of dispatch table 
number of functions 
address of function table 
address of function dispatch table 

Stub 1 
USR address table 
Auto line feed flag 
Alpha lock flag 0=lower case 
FF=upper case 
Line printer EOL termination sequence 
Keyboard matrix state table 
Right joystick X-value 
Right joystick, Y-value 
Left joystick, X-value 
Left joystick, Y-value 
RAM hooks 

BASIC also uses a number of system variables between 
addresses 100 and 3FF. Their use is summarised in the 
table below. 
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1A9-1D0 
1D1 

1D2-1D9 
1DA-2D8 
1DA-1E1 
1E2 

1E3 

1E4 

1E5:1E6 
1E7:1E8 

2D9-2DC 
2DD-3D8 
3D9-3EA 
3EB-3FF 

String buffer area 
Cassette filename length 
Cassette filename buffer 
Cassette file data buffer 
Cassette filename (in buffer) 
Cassette file type, 0=program 
1=data, 2=machine code 
Cassette ASCII flag, 0=binary 
FF=ASCII file 
Cassette gap flag, 0=continuous 
FF=gaps 
Execution address of machine code file 
Load address for ungapped machine code 
file 
BASIC line input buffer preamble 
BASIC line input buffer 
Buffer space 
Unused in Dragon 32 



Reading list 

This reading list is simply a list of books which may 
be of interest to the Dragon user who wants to follow 
up some of the ideas and techniques introduced in this 
book. As there are literally thousands of books on 
computing available, it does not pretend to be a 
complete list of all relevant books. 

As the Dragon is very similar to the Tandy Color 
Computer, articles on this machine may be of interest 
to Dragon users. Many such articles have appeared in 
'BYTE', a US computing magazine, and back issues of 
this may be available through your local library. 

There are also many other magazines devoted to 
personal computing, including one specifically for 
Dragon users. Readers of this book will probably have 
their favourite periodical but we think that 'Practical 
Computing', 'Personal Computer World' and 'BYTE' are 
amongst the best of these journals. 

1. GENERAL BACKGROUND 

Sommerville I. 1983. 'Information Unlimited'. London : 
Addison-Wesley 

Ullman, J.D. 1976. 'Fundamental Concepts of Programming 
Systems'. Reading, Mass. : Addison-Wesley 

Wirth, N. 1976. 'Algorithms + Data Structures = 
Programs'. Englewood Cliffs, NJ : Prentice-Hall 

Greenfield, J.D. & Wray, W.C. 1981. 'Using 
Microprocessors and Microcomputers - the 6800 Family'. 
New York : Wiley 

Peatman, J.B. 1977. 'Microcomputer-Based Design'. New 
York : McGraw-Hill 

2. ASSEMBLY LANGUAGE PROGRAMMING 

Wakerly, J.F. 1981. 'Micro-computer Architecture and 
Programming'. New York : Wiley. 

Leventhal, L.A. 1981. '6809 Assembly Language 
Programming'. New York : Osborne/McGraw-Hill 
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Zaks, R. & Labiak, W. 1982. 'Programming the 6809'. 
Sybex 

3. DATA STRUCTURES 

Knuth, D.E. 'Fundamental Algorithms'. Reading, Mass. : 
Addison-Wesley 

Shave, M. 1975. 'Data Structures'. Maidenhead, Berks. : 
McGraw-Hill 

4. GRAPHICS PROGRAMMING 

Barden, W. 1982. 'Color Computer Graphics'. Fort Worth, 
Texas : Tandy Corp. 

Foley, J.D. & Van Dam, A. 1979. 'Fundamentals of 
Interactive Computer Graphics'. Reading, Mass. 
Addison-Wesley 

Inman, D. & Inman, K. 1983. 'Assembly Language Graphics 
for the TRS-80 Color Computer'. Virginia : Reston 

5. I/O PROGRAMMING 

Staugaard, J.R. 1981. '6809 Microcomputer Programming 
and Interfacing'. Indianapolis : Sams &, Co. 

Artwick, B.A. 1980. 'Microcomputer Interfacing'. 
Englewood Cliffs, NJ : Prentice-Hall 

Pritty, D.W. & Smeed, D.N. 1984 (to appear). 'Practical 
Electronic Interfacing to Popular Microcomputers'. 
London : Addison-Wesley 

Lesea, A. & Zaks, R. 1978. 'Microprocessor Interfacing 
Techniques'. Sybex 

Witten, I.H. 1980. 'Communicating with Microcomputers'. 
London : Academic Press 

Andrews, M. 1982. 'Programming Microprocessor 
Interfaces for Control and Instrumentation'. Englewood 
Cliffs, NJ : Prentice-Hall 



Appendix 1 

MC6809E data sheet 

Supplied courtesy of Motorola Semiconductors. 

The information here has been carefully checked and is 
believed to be entirely reliable. However, no 
responsibility is assumed for inaccuracies. Motorola 
reserves the right to make changes to any products 
herein to improve reliability, function or design. 
Motorola does not assume any liability arising out of 
the application or use of any product or circuit 
described herein. No licence is conveyed under patent 
rights in any form. When this document contains 
information on a new product, specifications herein are 
subject to change without notice. 
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Appendix 2 

SN74LS783 data sheet 

Supplied courtesy of Motorola Semiconductors. 

The information here has been carefully checked and is 
believed to be entirely reliable. However, no 
responsibility is assumed for inaccuracies. Motorola 
reserves the right to make changes to any products 
herein to improve reliability, function or design. 
Motorola does not assume any liability arising out of 
the application or use of any product or circuit 
described herein. No licence is conveyed under patent 
rights in any form. When this document contains 
information on a new product, specifications herein are 
subject to change without notice. 
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Appendix 3 

MC6847 data sheet 

Supplied courtesy of Motorola Semiconductors. 

The information here has been carefully checked and is 
believed to be entirely reliable. However, no 
responsibility is assumed for inaccuracies. Motorola 
reserves the right to make changes to any products 
herein to improve reliability, function or design. 
Motorola does not assume any liability arising out of 
the application or use of any product or circuit 
described herein. No licence is conveyed under patent 
rights in any form. When this document contains 
information on a new product, specifications herein are 
subject to change without notice. 
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Appendix 4 

MC6821 data sheet 

Supplied courtesy of Motorola Semiconductors. 

The information here has been carefully checked and is 
believed to be entirely reliable. However, no 
responsibility is assumed for inaccuracies. Motorola 
reserves the right to make changes to any products 
herein to improve reliability, function or design. 
Motorola does not assume any liability arising out of 
the application or use of any product or circuit 
described herein. No licence is conveyed under patent 
rights in any form. When this document contains 
information on a new product, specifications herein are 
subject to change without notice. 
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Appendix 5 

The Dragon 64 

The major design aim of the Dragon 64 was to ensure 
upward compatibility with the Dragon 32 and yet provide 
a machine with enhanced facilities. These extra 
facilities are: 

(1) An additional 32K of RAM. 

(2) An RS232 (serial) interface. 

(3) Auto-repeating keys. 

As the Dragon 64 is virtually identical to the Dragon 
32 in most other respects, we confine ourselves to 
describing these extra features and detailing the 
differences between the two machines. 

1. SWITCHING IN RAM 

The SAM chip, described in Appendix 2, can operate in 
two modes called map type 0 and map type 1. This 
allows the chip to map addresses to either a 32K or to 
a 64K RAM address space and this facility means that 
compatibility between the Dragon 64 and the Dragon 32 
can be maintained. 

Unlike the Dragon 32, the 64 can operate in both map 
types provided by the SAM chip and yet still use 
Extended Color BASIC. On power up, the 64 is 
configured like a 32. In other words, it is in map 
type 0 which provides access to 32K of RAM, addressed 
from 0000 to 7FFF, 16K of BASIC ROM, addressed from 
8000 to BFFF, and 16K (minus 256 bytes for I/O devices, 
vectors, etc.) of expansion space addressed from C000 
to FEFF. Switching in the extra RAM involves switching 
to map type 1 which gives a 64K RAM address space (less 
256 bytes) from 0000 to FEFF. 

The extra 32K of RAM therefore 'overlays' the BASIC 
ROM and expansion addresses which means that neither 
the Extended Color BASIC ROM nor the cartridge ROM can 
be accessed. It is therefore necessary to 'bootstrap' 
the machine by first copying a small program into RAM 
which selects a 'new' BASIC ROM and copies its contents 
into map type 1. Naturally, the new BASIC ROM will 
reside in map type 0 and therefore the bootstrap 
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operates by reading a byte (from the ROM) in map type 
0, switching to map type 1, writing the byte, switching 
back to map type 0 to read the next ROM byte and so on. 

Because the new BASIC does not need to reside in the 
same address space as the 'old' BASIC, it can occupy 
the addresses C000 to FEFF. This relocation of the 
BASIC results in 48K of RAM being made available for 
system/user use. Naturally, if the BASIC interpreter 
is not required, e.g. when using the OS-9 operating 
system or machine code programs, the full 64K of RAM is 
available to the programmer. 

The bootstrap procedure is invoked by EXEC on its 
own if no other EXECs have been used. The Dragon 32's 
default entry in the EXEC vector has been replaced by 
the entry point of the Dragon 64's bootstrap routine. 
Alternatively, if an EXEC has been used, EXEC 48000 
calls the bootstrap entry routine directly. 

The 64K mode can be distinguished from the 32K mode 
by the fact that the cursor flashes blue rather than 
black. One point worth noting is that booting into the 
64K mode will not wipe out an existing BASIC program as 
it behaves like a CLEAR command. Subsequent resets 
after the initial 64K coldboot will perform a 64K 
warmboot so that the system remains in 64K mode and 
does not revert to 32K mode. 

Some extra 'housekeeping' bytes which are unused in 
the Dragon 32 are used to keep track of the boot state. 
FLAG64 (11A) indicates whether this is a warmboot or a 
coldboot. A warmboot (FLAG64 = $55) indicates that the 
new BASIC has already been copied into RAM in which 
case a further two bytes (11B:11C) hold a 16-bit 
checksum that was calculated during the BASIC copy 

A checksum is a value that is calculated by adding 
together the values of the bytes in the BASIC area of 
RAM. If one or more of these bytes are changed, the 
value of the checksum will change. Therefore, if the 
BASIC system in RAM is changed, the change can be 
detected because its checksum will not be the same as 
the checksum for the original BASIC system. 

When the system is reset, this checksum is checked 
against a recalculated checksum of the BASIC RAM area. 
If these do not agree then a coldboot, which copies 
BASIC into RAM, is initiated. This avoids the problem 
of users or programs poking the BASIC in RAM thus 
causing the system to crash and then performing a 
warmboot which would not restore the correct BASIC 
system. 

Because the BASIC in the 64K mode resides in RAM, it 
is possible to experiment with it. Obviously, great 
care has to be taken with such experimentation as it is 
all to easy to accidentally crash the system. The 
restoration of the original BASIC can be avoided if the 
checksum is recalculated from the 'experimental' BASIC 
so that it appears that the BASIC system is unchanged. 
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A routine which carries out this recalculation is shown 
below. 

* RECSUM - re-checksum the BASIC RAM and 
* update the system checksum(CSUM64) 
* 
* Register inputs NONE 
* 
CSUM64 EQU $11B ; System checksum 
RECSUM PSHS X,D ; Save registers 

LDX #$C000 ; Base of 64K BASIC 
LDD #$0 ; Zero running total 

NXTADD ADDD ,X++ ; Add to checksum 
CMPX #$FF00 ; until end of 
BLO NXTADD ; BASIC reached 
STD CSUM64 ; Update system checksum 
PULS X,D,PC ; Restore and return 

The original BASIC can be restored by clearing FLAG64 
and then resetting the machine. 

The 64K mode bootstrap is contained in the 'old' 
BASIC ROM at address BF49 onwards. The ROM part of the 
bootstrap copies the RAM part of the bootstrap into the 
cassette buffer since this will not be used during a 
boot, and then jumps into the RAM part to complete the 
boot sequence. Once loaded, the secondary reset vector 
(72:73) is set up to point to the 64K mode bootstrap so 
that subsequent resets will invoke the bootstrap 
automatically. 

Once in 64K mode, there is no easy way to return to 
the 32K mode since a reverse bootstrap has not been 
provided. Whilst expanding into extra RAM (the 64K 
bootstrap) holds no danger, trying to contract back to 
32K of RAM may cause the existing program/variables to 
be overwritten. It may appear that a safe reversion 
technique, which works with programs contained wholly 
in the bottom 32K of RAM is as shown below: 

CLEAR 200,32766 'Default 32K settings 
POKE &H72,&HB4 ' Restore normal 32K 
POKE &H73,&H4F ' secondary reset vector 

In fact, a reset after these statements does not cause 
reversion to 32K mode. To revert requires resetting the 
interrupt vectors and changing various other addresses 
and pointers. 

2. THE RS232 INTERFACE 

An RS232 serial interface (via a 7 pin DIN connector) 
is provided as standard with the Dragon 64 and can be 
used in both the 32K mode and the 64K mode. This 
facility supports the additional commands DLOAD and 
DLOADM which enable BASIC programs, in ASCII format, 
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and machine code programs to be downloaded into the 
Dragon 64 from a host computer. These extra commands 
are very similar in operation to their cassette file 
equivalents CLOAD and CLOADM. However, DLOAD and 
DLOADM are limited to loading files of a particular 
format and cannot be used for more general inter
computer communication. 

The download facility of the Dragon 64 is supported 
by three low-level routines, the entry points of which 
are contained in the I/O jump tables. These routines 
are, in actual fact, of more general use for serial I/O 
and a brief description of each is given below. 

* SERIN - Read a byte (8 bits) from the serial port 
* 
* Register inputs NONE 
* Register outputs A - returns byte read 
* Registers destroyed NONE 
* 
* SEROUT - Send a byte (8 bits) to the serial port 

* Register inputs A - byte to be output 
* Registers destroyed NONE 
* 
* SERSET - set up serial port baud rate 
* 
* Register inputs B - baud rate select byte 
* Register outputs CC.C = 0 if select byte OK 
* CC.C = 1 if select byte out of range 
* Registers destroyed B,X,CC 
* 
* The routine supports 7 baud rate select values: 
* B = 0 -> 110 baud 
* B = 1 -> 300 baud 
* B = 2 -> 600 baud 
* B = 3 -> 1200 baud 
* B = 4 -> 2400 baud 
* B = 5 -> 4800 baud 
* B = 6 -> 9600 baud 
* The default baud rate on power-up is 1200 baud 

The entry points in the I/O jump table for these 
routines are: 

802A SERIN 
802D SEROUT 
8030 SERSET 

2.1 Using an RS232 terminal with a Dragon 64 
The above routines can be used in conjunction with the 
character input/output RAM hooks described in section 
9.5.1, to replace the normal Dragon keyboard and screen 
with an RS232 terminal. In this example, we show how 
the character input RAM hook at 16A may be used to 
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redirect input to SERIN and the character output hook 
at 167 to redirect output to the SEROUT routine. 
However, these RAM hooks are also called for cassette 
and printer I/O so you must inspect DEVNUM (6F) to 
avoid redirecting their I/O. 

The following program demonstrates this technique: 

* 
* Redirect console I/O to RS232 terminal 
* 
* Program equates 
* 
HKCHRO EQU $167 ; Character output hook 
HKCHRI EQU $16A ; Character input hook 
SERIN EQU $802A ; Serial input entry point 
SEROUT EQU $802D ; Serial output entry point 
DEVNUM EQU $6F ; Device number location 

ORG $4E21 
* 
* SETIO - set up console I/O redirection 
* Register inputs NONE 
* Registers destroyed A,X,CC 
* 
SETIO LEAX INCH,PCR ; Set up address of input 
* routine 

STX HKCHRI+1 ; and redirect console input 
LEAX OUTCH,PCR ; Do the same for 
STX HKCHRO+1 ; console output 
LDA #$7E ; Opcode for JMP 
STA HKCHRI ; placed in I/O 
STA HKCHRO ; RAM hooks 

* Use a call to SERSET here for baud rate setting 
* if not a 1200 baud device 

RTS ; Return 
* 
* INCH - input a character from RS232 port 
* Register inputs NONE 
* Register outputs DEVNUM = 0 -> A contains character 

DEVNUM <> 0 -> A unaffected 
* 
INCH TST DEVNUM ; Is this console input 

BNE INXIT 
JSR SERIN ; Yes, read RS232 

* 
* At this point, we have input the character from 
* the RS232 port and therefore wish to avoid returning 
* the code which will input from the normal keyboard. 
* Simplest solution is to remove the return address 
* from the stack 
* 

LEAS 2,S ; Remove latest return 
INXIT RTS ; Return 
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* OUTCH - output a character to RS232 port 

* Register inputs A - contains character 

OUTCH TST DEVNUM ; Is this console output 
BNE OUTXIT 
JSR SEROUT ; Output to RS232 
LEAS 2,S ; Remove return address 

OUTXIT RTS ; Return 

2.2 Using a serial printer with the Dragon 64 
The RS232 port can also be used as the standard printer 
interface instead of the Centronics (parallel) 
interface. Which of these two options is selected is 
determined by location PRNSEL (3FF). A 0 (default) 
value in this location selects the parallel interface, 
non-0 selects the serial interface. Therefore: 

POKE &H3FF,1 'Selects serial printer 
POKE &H3FF,0 'Selects parallel printer 

In addition to this printer select byte, there are two 
other bytes (3FD:3FE) which specify an end-of-line 
delay period since some printers (especially serial) 
require this. The time delay is in increments of 10 
milliseconds. For example: 

POKE &H3FE,100 

will provide a delay of 100*10 milliseconds = 1 second. 
The minimum delay (default) is 0 and the maximum delay 
is 655.35 seconds. 

2.3 Configuring the RS232 interface 
The pinout of the RS232 connector is shown in Figure 
A5.1. The device that drives this interface is an 
R6551 Asynchronous Communication Interface Adapter 
(ACIA) which, like the PIA, is a programmable device. 
In its default configuration, this device is programmed 
to produce 1 start bit, 8 data bits and 2 stop bits 
with no parity at a baud rate of 1200 baud. 

Fig. A5.1 RS232 Pin out connections 
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Like all I/O devices in the Dragon 64, the ACIA is 
memory-mapped and occupies the following address space: 

Address Register 
FF04 Transmit data register (on write cycle) 
FF04 Receive data register (on read cycle) 
FF05 Status register 
FF06 Command register 
FF07 Control register 

Because the ACIA is a sophisticated device with many 
options, it is not possible to cover the operation of 
this chip in detail here. In most instances, it is 
easier to configure hardware (printers, terminals, 
etc.) to the default configuration since this is a once 
and for all operation compared to configuration by 
software as this is necessary every time the Dragon is 
switched on. However, we do provide the following 
BASIC statement which can be used to select the baud 
rate of the device. 

POKE &HFF07,((PEEK(&HFF07) AND &HF0) OR B) 

The variable B holds a value which specifies the baud 
rate of the device connected to the RS232 interface. 
Possible values are: 

3. THE KEYBOARD AUTO-REPEAT FACILITY 

This facility is provided in the 64K mode only and is 
not implemented when the Dragon 64 is operating in 32K 
mode. The reason for this is to maintain compatibility 
with existing software, such as the DREAM assembler, 
which provide their own auto-repeat facilities. 

The auto-repeat makes use of the 50Hz (60Hz) 
interrupt as the timing reference which determines the 
delay before repeating the key and which also controls 

B-value 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Baud rate 
50 
75 
110 
135 
150 
300 
600 
1200 
1800 
2400 
3600 
4800 
7200 
9600 
19200 
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the rate of repeat. A byte location, REPDLY (11F) in 
RAM contains the inter-repeat delay value. The default 
value of REPDLY is 5 giving an auto-repeat of 10 
characters per second. The same value is also used to 
control the delay before starting the repeat but, in 
this case, its value is multiplied by 8 giving a normal 
delay of 0.8 seconds before auto-repeat starts. By 
altering the value in REPDLY with a POKE statement, you 
may increase or decrease the auto-repeat rate/delay. 

Auto-repeat is incorporated in the 64K mode by 
redirecting the secondary interrupt IRQ vector to an 
additional piece of code (entry point FE18) which is 
dedicated to updating the keyboard delay value. After 
executing this code, a jump is made to the normal 
interrupt service routine. Therefore, the auto-repeat 
facility can be disabled by reinstating the normal 
interrupt service routine entry point (DD3D) into the 
secondary IRQ vector as described in section 8.2.3. 
Conversely, auto-repeat can be incorporated into the 
32K mode by altering the secondary IRQ vector to jump 
to the normally unused keyboard delay update code 
located at BF20 in the 'old' BASIC ROM. 

There are two further 'housekeeping' bytes which are 
also used in the keyboard repeat process. These are 
LSTKEY (11D) which keeps a copy of the last key code 
returned by the keyboard polling routine and CNTDWN 
(11E) which contains the updated delay value which, 
when it reaches zero, triggers the code which resets 
the keyboard rollover table thus causing the current 
key depressing to be recognised as a new depression. A 
mechanism to do this has already been described in 
Chapter 8. 

4. DRAGON 64/32 DIFFERENCES 

The most important differences between these two 
machines have already been covered in the previous 
sections in this appendix. However, there are a few 
other minor differences and these are summarised below. 

4.1 Differences in BASIC 
The only differences between the two machines in terms 
of Extended Color BASIC is that DLOAD and DLOADM are 
implemented in the Dragon 64 and that the USR call bug 
described in Chapter 5 has now been corrected. Recall 
that this bug meant that USR calls 1 to 9 were not 
recognised without a padding character so that USR1 had 
to be written as USR01 , USR2 as USR02, etc. Now, you 
must write these as USR1, USR2, etc. as USR01, USR02, 
etc. are all (correctly) taken to be syntax errors. 

Another slight difference is that the functions 
VARPTR and MEM have been altered so that they return an 
unsigned 16-bit value. Previously, if these functions 
were used with an argument which was greater than 32767 
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they returned a negative result because negative 
integers are represented in two's complement notation 
and have values from 32768 to 65535. Now a positive 
result is always returned. 

4.2 RAM usage 
The Dragon 64 in 64K mode provides an extra 16K bytes 
for user/variable storage with 16K bytes used by the 
BASIC and I/O space. The BASIC RAM area can also be 
used for those applications which do not need a 
resident BASIC interpreter such as the OS-9 operating 
system and machine code programs. In addition, some 
unused bytes in the system pages of the Dragon 32 are 
now used by the Dragon 64. These are locations 11A to 
11F inclusive and 3FD to 3FF inclusive. 

4.3 ROM usage 
There are very few differences between the BASIC ROM 
entry points in the Dragon 32 and the Dragon 64 when in 
32K mode. All the dispatch addresses given in Appendix 
7 remain the same. However, there are a number of ROM 
patches to previously unused areas of ROM in the Dragon 
64 which repair some of the bugs in the Dragon 32. 
More major differences apply to the area of ROM which 
contains I/O driver code as, obviously, additions have 
been made to support the RS232 interface, the latent 
auto-repeat facility and the 64K mode bootstrap. 

In the 64K mode, the entry points to the system 
routines are now in RAM in the address space C000 to 
FEFF so, obviously, old entry addresses are completely 
incompatible. However, throughout most of this address 
space there is a simple relationship between the old 
ROM entry points and the new ROM entry point since they 
are offset by 4000 (hex) bytes. In other words, the 
direct jump table is located at C000 onwards, the 
indirect jump table at E000 onwards, etc. This simple 
relationship is maintained until the area of RAM that 
corresponds to the old ROM initialisation sequence 
(B39B/F39B) from which point the relationship no longer 
holds. 

The reason for this is that RESET automatically 
selects map type 0 and therefore enters the 32K mode 
ROM where the initialisation code (RESET service 
routine) resides. This code is not duplicated in the 
BASIC RAM area. 



Appendix 6 

The ASCII character set 

The table below shows the characters in the ASCII 
character set and their associated values. Notice that 
the character values are given in octal (base 8) rather 
than decimal notation. Each octal digit represents 3 
bits from 000 to 111 and the octal representation means 
that the bit pattern of each character may be readily 
deduced. 
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000 
006 
014 
022 
030 
036 
044 
052 
060 
066 
074 
102 
110 
116 
124 
132 
140 
146 
154 
162 
170 
176 

nul 
ack 
np 
dc2 
can 
rs $

 

* 
0 
6 
< 
B 
H 
N 
T 
Z 
\ 
f 
1 
r 
X 

~ 

001 
007 
015 
023 
031 
037 
045 
053 
061 
067 
075 
103 
111 
117 
125 
133 
141 
147 
155 
163 
171 
177 

soh 
bel 
cr 
dc3 
em 
us 
% 
+ 
1 
7 
= 
C 
I 
0 
u 
[ 
a 
g 
m 
s 
y 

del 

002 
010 
016 
024 
032 
040 
046 
054 
062 
070 
076 
104 
112 
120 
126 
134 
142 
150 
156 
164 
172 

stx 
bs 
so 
dc4 
sub 
sp 
& 
, 
2 
8 
> 
D 
J 
P 
V 
\ 
b 
h 
n 
t 
z 

003 
011 
017 
025 
033 
041 
047 
055 
063 
071 
077 
105 
113 
12 1 
127 
135 
143 
151 
157 
165 
173 

etx 
ht 
si 
nak 
esc 
! 
' 
-
3 
9 
? 

E 
K 
Q 
W 
] 
c 
i 
o 
u 
{ 

004 
012 
020 
026 
034 
042 
050 
056 
064 
072 
100 
106 
114 
122 
130 
136 
144 
152 
160 
166 
174 

eot 
nl 
dle 
syn 
fs 

" 

( 
. 
4 
J 

@ 
F 
L 
R 
X 
^ 
d 
j 
P 
V 

| 

005 
013 
021 
027 
035 
043 
051 
057 
065 
073 
101 
107 
115 
123 

131 
137 
145 
153 
161 
167 
175 

enq 
vt 
dcl 
etb 
gs 
# 
) 
/ 
5 
9 

A 
G 
M 
S 
Y 

e 
k 
q 
w 
} 



Appendix 7 

Dragon-specific tables 

This appendix is made up of detailed, Dragon-specific 
information collected together in a tabular form. 
Rather than include such information in the text, we 
have collected a number of tables together in this 
appendix. First, we summarise the functions and 
connections of the individual bits in the Dragon's PIA 
registers. 

1. PIA SUMMARY 

(1) P0DDRA - A-side data direction register PIA0 
All bits in this register DA0-DA7 are set to 0 
meaning that the corresponding bits in the PDR 
are inputs. 

(2) P0PDRA - A-side peripheral data register PIA0 
Bits PA0-PA6 are connected to keyboard rows 0 to 
6. Bits PA7 is a joystick comparison input and 
bits PA0 and PA1 are connected to the right and 
left joystick buttons respectively. PA0 and PA1 
are also shared by keyboard rows 1 and 2 thus the 
keyboard must be disabled when joysticks are 
used. 

(3) P0CRA - A-side control register PIA0 
The table below shows the functions of the bits 
in this register. 

CRA0 CA1 control, 0->disable IRQA, l->enable IRQA 
CRA1 CA1 control, 0->set IRQA1 on HI to LO, l-> 

set IRQA1 on LO to HI. 
CRA2 0->P0DDRA, 1->P0PDRA 
CRA3 CA2 control, 0->CA2 LO, 1->CA2 HI 
CRA4 1 -> CA2 in CRA3 in bit follow mode 
CRA5 as above 
CRA6 IRQA2 flag, not used 
CRA7 IRQA1 flag 

(4) CA1 - Horizontal sync interrupt input (63.5 mi
croseconds) 

(5) CA2 - LSB of two analog multiplexor select lines 
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(6) P0DDRB - B-side data direction register PIAO 
All bits in this registers are set to 1 thus con
figuring the corresponding bits in P0PDRB as out
puts. 

(7) P0PDRB - B-side peripheral data register PIAO 
This register is shared by the keyboard input and 
printer data lines. Bits PB0-PB7 are either con
nected to keyboard matrix columns 0 to 7 or are 
printer data bits 0 to 7. 

(8) P0CRB - B-side control register PIA0 
The table below summarises the functions of the 
bits in this register. 

CRB0 CB1 control 0 -> disable IRQB, 
1 -> enable IRQB 

CRB1 CB1 control 0 -> set IRQB1 on Hi to LO, 
1 set IRQB1 on LO to HI 

CRB2 0 -> P0DDRB, 1 -> P0PDRB 
CRB3 CB2 control, 0 -> CB2 LO, 1 -> CB2 HI 
CRB4 =1 CB2 in CRB3 bit follow mode 
CRB5 =1 CB2 in CRB3 bit follow mode 
CRB6 IRQB2 flag, not used 
CRB7 IRQB1 flag 

(9) CB1 - field sync interrupt (20ms, 50Hz) 

(10) CB2 - MSB of analog multiplexor select lines 

(11) P1DDRA - A-side data direction register PIA1 
Bit 0 in this register is 0 thus configuring bit 
0 in the peripheral data register as an input. 
All other bits are 1, configuring associated 
peripheral data bits as outputs. 

(12) P1PDRA - A-side peripheral data register PIA1 
Bits 2 to 7 in this register correspond to bits 
0-5 of a 6-bit DAC input value. Bit 0 is a 
cassette data bit input and bit 1 is the printer 
strobe output. 

(13) P1CRA - A-side control register PIA1 
The functions of the bits in this register are 
summarised in the table below. 

CRA0 CA1 control, 0->disable IRQA, 
1 -> enable IRQA 

CRA1 CA1 control, 0->set IRQA1 on HI to LO, 
1 -> set IRQA1 on LO to HI 

CRA2 0 -> P1DDRA, 1->P1DDRA 
CRA3 CA2 control, 0->CA2 LO, 1->CA2 HI 
CRA4 =1 -> CA2 in CRA3 bit follow mode 
CRA5 =1 -> CA2 in CRA3 bit follow mode 
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CRA6 IRQA2 flag, not used 
CRA7 IRQA1 flag 

(14) CA1 - printer acknowledge interrupt input, not 
used 

(15) CA2 - cassette motor control, 0 -> off, 1 -> on 

(16) P1DDRB - B-side data direction register PIA1 
Bits 0 to 2 in this register are 0, configuring 
associated bits as inputs. Bits 3-7 are 1, con
figuring associated bits as outputs. 

(17) P1PDRB - B-side peripheral data register PIA1 
Bits 3 to 7 in this register are VDG control 
lines. Bit 0 is a printer busy input, bit 1 is 
used for single bit sound and bit 2 is a RAM type 
detect bit. If it is 0, available RAM is 32K or 
64K type. If it is 1, available RAM is 16K type. 
In the Dragon 64, bit 2 is programmed as an out
put to select between the 32K mode BASIC ROM (bit 
2 = 1 , default) and the 64K mode BASIC ROM (bit 2 
= 0). 

(18) P1CRB - B-side peripheral control register PIA1 
The table below summarises the functions of the 
bits in this register. 

CRB0 As P0CRB 
CRB1 As P0CRB 
CRB2 0->P1DDRB, 1->P1PDRB 
CRB3 CB2 control, 0->CB2 LO, 1->CB2 HI 
CRB4 =1 CB2 in CRB3 bit follow mode 
CRB5 =1 CB2 in CRB3 bit follow mode 
CRB6 IRQB2 flag, not used 
CRB7 IRQB1 flag 

(19) CB1 - ROM cartridge interrupt detect 

(20) CB2 - sound source enable 

2. RESERVED WORD TABLE 

The following tables list the reserved words of 
Extended Color BASIC, their internal tokens and the 
addresses of associated action routines. 

Reserved word 
FOR 

GO(TO/SUB) 
REM 

' 

ELSE 

Token 
80 
81 
82 
83 
84 

Dispatch address 
8448 
85B9 
8616 
8616 
8616 



IF 
DATA 
PRINT 

ON(GOTO/SUB) 
INPUT 
END 
NEXT 
DIM 
READ 
LET 
RUN 

RESTORE 
RETURN 
STOP 
POKE 
CONT 
LIST 
CLEAR 
NEW 
DEF 
CLOAD 
CSAVE 
OPEN 
CLOSE 
LLIST 
SET 

RESET 
CLS 

MOTOR 
SOUND 
AUDIO 
EXEC 
SKIPF 
DELETE 
EDIT 
TRON 
TROFF 
LINE 
PCLS 
PSET 

PRESET 
SCREEN 
PCLEAR 
COLOR 
CIRCLE 
PAINT 
GET 
PUT 
DRAW 
PCOPY 
PMODE 
PLAY 
DLOAD 
RENUM 

85 
86 
87 
88 
89 
8A 
8B 
8C 
8D 
8E 
8F 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
9B 
9C 
9D 
9E 
9F 
A0 
A1 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
AA 
AB 
AC 
AD 
AE 
AF 
BO 
B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
BA 

8647 
8613 
903D 
8675 
872B 
8532 
8829 
8A8B 
8777 
86BC 
85A5 
8514 
85F3 
8539 
8E9D 
8560 
8EAA 
8571 
8415 
9C81 
B6D5 
B683 
B829 
B64D 
8EA4 
B9D3 
BA04 
BA60 
B982 
BA9B 
BADF 
B771 
B81F 
9D61 
9965 
9AD9 
9ADA 
A749 
A8C0 
A6EF 
A6F3 
A9FE 
AA19 
A8D4 
B238 
AC87 
AAF0 
AAF3 
B051 
AABE 
A9AF 
ADBD 
A049 
9DFA 
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The tokens which have a dispatch address 'N/A' are 
normally handled by other action routines and are not 
the first word of a BASIC statement. For example, the 
MOTOR action routine looks for OFF or ON, the FOR 
action routine looks for STEP and arithmetic and 
logical operators are handled by an expression 
evaluation routine. 

This evaluation routine uses its own dispatch table 
to initiate actions for each operator and intrinsic 
function. 
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TAB( 
TO 
SUB 
FN 

THEN 
NOT 
STEP 
OFF 
+ 
-
* 
/ 
© 

AND 
OR 
> 
= 
< • 

USING 

BB 
BC 
BD 
BE 
BF 
C0 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
CA 
CB 
CC 
CD 

N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 

Operator/Function 
+ 
-
* 
/ 
© 

AND 
OR 
SGN 
INT 
ABS 
POS 
RND 
SQR 
LOG 
EXP 
SIN 
COS 
TAN 
ATN 
PEEK 
LEN 
STR$ 

Token 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
FF80 
FF81 
FF82 
FF83 
FF84 
FF85 
FF86 
FF87 
FF88 
FF89 
FF8A 
FF8B 
FF8C 
FF8D 
FF8E 

Dispatch address 
910E 
9105 
9275 
933C 
96A0 
8A12 
8A11 
9425 
9499 
943E 
9ADE 
9772 
9697 
923C 
9713 
97D1 
97CB 
9816 
9877 
8E96 
8DC7 
8C40 



VAL 
ASC 
CHR$ 
EOF 

JOYSTK 
FIX 
HEX$ 
LEFT$ 
RIGHT$ 
MID$ 
POINT 
INKEY$ 
MEM 

VARPTR 
INSTR 
TIMER 
PPOINT 
STRING$ 

USR 

FF8F 
FF90 
FF91 
FF92 
FF93 
FF94 
FF95 
FF96 
FF97 
FF98 
FF99 
FF9A 
FF9B 
FF9C 
FF9D 
FF9E 
FF9F 
FFA0 
FFA1 

8E5C 
8DE6 
8DD2 
B801 
BB0D 
9956 
A00E 
8DF1 
8E0E 
8E15 
BA45 
B797 
8C31 
9AF4 
9BB4 
9D59 
A6C7 
9B84 
9D1D 

Address 
8000 
8003 
8006 
8009 
800C 
800F 
8012 
8015 
8018 
801B 
801E 
8021 
8024 
8027 
802A 
802D 
8030 

Routine 
Hardware initialisation 
Software initialisation 
Keyboard input 
Cursor blinking 
Screen output 
Printer output 
Joystick input 
Cassette on 
Cassette off 
Write leader to cassette 
Byte output to cassette 
Cassette on for reading 
Byte input from cassette 
Bit input from cassette 
Read a byte from another computer 
Send a byte to another computer 
Select baud rate of communication line 

Address 
A000 
A002 

Routine 
Keyboard input 
Character output routine 
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3. I/O JUMP TABLES 

As we have indicated in the text, system I/0 routines 
may be accessed via a direct jump table starting at 
address 8000 and an indirect jump table at address 
A000. The routines accessible through the direct jump 
are listed below: 

The routines accessible via the indirect jump table 
are: 



Almost all of these routines have been described in the 
text. Those which we have not described are the three 
routines used when the Dragon is set up to communicate 
with another machine and support the DLOAD/DLOADM 
features of Extended Color BASIC. These features are 
not supported in the Dragon 32 but are available in the 
Dragon 64. 

The character output routine which may be accessed 
through indirect jump address A002 is a general-purpose 
routine which can output a character to either the 
screen, the printer, or the cassette. The character to 
be output should be in register A and location 6F 
(DEVNUM) should be set up with a device number. To 
output to the screen, DEVNUM should be 0, to the 
cassette, DEVNUM should be -1 and if output to the 
printer is required, DEVNUM should be -2. 
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A004 
A006 
A008 
A00A 
A00C 

Cassette on for reading 
Block input from tape 
Block output to tape 
Joystick input 
Write leader to cassette 



Address 
600-604 
605-609 
60A 
60B:60C 
60D:60E 
60F:610 
611 
612 
613 
614 
615:616 
617:618 
619 
61A:61B 
61C-621 
622-627 
628-62D 
62E-633 
634-63A 
63B-641 

Usage 
Temporary storage 
Controller variables 
Default drive number 
Address of FWRITE buffer 
AUTO, current line number 
AUTO, current increment 
RUN/LOAD flag 
FREAD/FLREAD flag 
AUTO flag, 00=OFF, FF=ON 
ERROR falg, 00=OFF, FF=ON 
ERROR destination line number 
Line number in ERROR 
ERROR type 
Address of start of statement in ERROR 
Drive 1 details 
Drive 2 details 
Drive 3 details 
Drive 4 details 
Disk buffer 1 details 
Disk buffer 2 details 

Appendix 8 

The disk operating system 

The internal workings of the Dragon's disk operating 
system (DOS) are too complicated for us to describe in 
detail here. Therefore, we restrict ourselves to a 
brief description of the differences between the normal 
Dragon 32 system requirements and the system 
requirements of the DOS. 

1. DOS WORK SPACE 

The Dragon's DOS reallocates the memory area normally 
occupied by the first graphics page, 600 to BFF, for 
its own use. This means that the graphics pages and 
BASIC program/variable areas are offset by 1536 
(decimal) bytes from their normal position as shown in 
Figure 1.3. Fortunately, Extended Color BASIC has been 
designed with this in mind so it has no effect on 
existing BASIC programs other than reducing the free 
space available to them by 1.5K. 

This 1.5K DOS work space is used for variables, 
buffers, etc. and a breakdown of its organisation is 
provided in the table below. 
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In addition to the workspace area 600 to BFF, the DOS 
makes use of some of the base page locations which are 
unused by Extended Color BASIC. These are: 

2. DOS LINKS WITH BASIC 

The Dragon's DOS extends the facilities of Extended 
Color BASIC using the same techniques as described in 
section 9.5. Most of these extended facilities are 
directly associated with floppy disk file management 
such as SAVE, LOAD, BACKUP, etc. However, there are a 
number of other commands which extend the BASIC itself 
such as AUTO, ERROR, GOTO, WAIT, etc. These disk and 
BASIC commands are described in detail in the booklet 
supplied wth the DOS and we do not describe them 
further here. Rather, we concentrate on the details of 
how these new commands are linked to the existing BASIC 
system. 

As we described in section 9.1.1, part of the 
initial power-on/reset sequence is to look for a disk 
controller cartridge and, if it is present, jump to its 
initialisation routine (entry point C002). The DOS 
initialisation routine sets up a second command 
interpretation vector table (stub) from 12A-133 
inclusive with each entry point set up as shown in the 
table below. 

642-
649-
650-
683-
697-
6Ab-
6BD-

7F3-
800-

-648 
-64F 
-682 
-696 
-6AA 
-6BC 
-7F2 

-7FF 
-BFF 

Disk buffer 3 details 
Disk buffer 4 details 
Current drive information 
USR vector table (relocated from 134-
Drive descriptor table 
Directory sector status 
File control blocks (10) 
Each FCB is 32 bytes long 
Temporary variables 
Disk buffers (4) 
Each disk buffer is 256 bytes long 

-147) 

Address 
EA 
EB 
EC 
ED 

EE:EF 
F0 
F1 
F2 
F3 
F4 
F5 
F6 

Use 
Disk command byte 
Drive unit number 
Track number 
Sector number 
Address of disk buffer area 
Disk status byte 
Current file control block number 
Number of bytes in disk buffer area 
Number of bytes to transfer to/from buffer 
Record length flag, 00=don'tcare, FF=do care 
Read/write flag, 00=read, 01=write, FF=verify 
IRQ time out flag, 00=check for time out 
Non-00=skip time out check 



Address 
12A 
12B:12C 
12D:12E 
12F 
130:131 
132:133 

Contents 
1A 
DED4 
C64C 
07 
DEBB 
C667 

Use 
Number of DOS reserved words 
Address of DOS word list 
Address of DOS word dispatch routine 
Number of DOS functions 
Address of functions list 
Address of functions dispatch routine 

Reserved word 
AUTO 

BACKUP 
BEEP 
BOOT 
CHAIN 
COPY 

CREATE 
DIR 

DRIVE 
DSKINIT 
FREAD 
FWRITE 
ERROR 
KILL 
LOAD 
MERGE 

PROTECT 
WAIT 

RENAME 
SAVE 
SREAD 
SWRITE 
VERIFY 
FROM 

FLREAD 
SWAP 

Function 
LOF 
FREE 
ERL 
ERR 

HIMEM 
LOC 
FRE$ 

Token 
CE 
CF 
DO 
D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
DA 
DB 
DC 
DD 
DE 
DF 
E0 
E1 
E2 
E3 
E4 
E5 
E6 
E7 

Token 
A2 
A3 
A4 
A5 
A6 
A7 
A8 

Dispatch address 
DADC 
C520 
DB90 
DC03 
D503 
D332 
D725 
DA35 
DC3C 
C397 
D7FB 
D8A5 
DC49 
D774 
D4A7 
D3E5 
D781 
DBC1 
D7A5 
D53F 
DC79 
DCC8 
DD36 
89B4 
D7C7 
DBD5 

Dispatch address 
DD88 
DDA3 
DDBB 
DDC1 
DDC7 
DD7A 
DDCB 
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The third stub acts as the terminator and occupies RAM 
at 134-147. This means that the USR vector table which 
normally occupies that address space has to be 
relocated into the DOS workspace (683-696). 

The following tables list the reserved 
words/functions of the DOS, their internal tokens and 
the addresses of associated action routines. 

In addition to these new reserved words and functions, 
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some of the existing BASIC commands such as CLOSE and 
RUN now relate to the DOS. Such commands are linked 
into the DOS via the RAM hooks described in section 
9.5.1. There are several new entries in the RAM hooks 
as summarised in the table below. 

Ram hook 
15E-160 
167-169 
176-178 
17C-17E 
182-184 
188-18A 
191-193 
194-196 

Jump address 
D902 
D8FA 
D917 
D960 
D720 
DD4D 
C69E 
D490 



Index 
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A register, 22, 23 
A-D conversion, 220 
accumulator offset indexed 

addressing, 34 
action routines, 229 
add instructions, 47 
alphanumeric display modes, 

159 
analogue multiplexor, 208, 

220 
and instructions, 52 
animation, 180 
animation delay, 182 
arithmetic expression 

evaluation, 86 
arithmetic instructions, 46 
arithmetic shift 

instructions, 54 
arrays, 107 
ASCII, 7 
assembler directives, 75 
assembler facilities, 69 
assembler memory map, 76 
assembler program counter, 

77 
assembly code, 

hand-translation, 39, 75 
assembly language program 

development, 67 
assembly language 

programming 
advantages, 66 
disadvantages, 66 

assignment statements, 84 
auto increment/decrement, 

11, 24, 73 
auto increment/decrement 

indexed addressing, 33 

B register, 22, 23 

BASIC 
adding new commands, 

239 
array descriptors, 230 
array storage, 229 
dump program, 226 
graphics display, 158 
I/O routines, 146 
information 

representation, 230 
largest number, 232 
number representation, 

230 
program storage, 226 
reserved words, 228 
smallest number, 232 
system variables, 

244-248 
text display, 152 
variable storage, 229 
variables, 234 

binary arithmetic, 4 
binary numbers, 3 
binary search, 220 
bit test instructions, 55 
BITIN, 216 
BLKIN, 216 
BLKOUT, 216 
branch instructions, 57 
BREAK key, disabling of, 

244 
bus, 1, 37 

connections, 222 
byte test instructions, 56 
byte, 4 

cartridge expansion port, 
221 

CASOFF, 216 
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CASON, 215 
cassette control, 213 
cassette routines, entry 

points, 217 
CBIN, 216 
CBOUT, 216 
Centronics interface, 205 
character input routine, 

102 
character output routine, 

103 
character representation, 7, 

159 
character strings, 132 

fundamental operations, 
133 

manipulation routines, 
137-142 

representation 
techniques, 134 

storage area, 133 
checkerboard pattern, 162 
CHKHP, 137 
CHRGET, 240 
clear instructions, 49 
clear screen, 173 
CLOADM statement, 149 
clock, 1 
CLS, 173 
CMPSTR, 140 
cold-start initialisation, 

225 
colour conversion program, 

179 
colour graphics 

1 mode, 163 
2 mode, 163 
3 mode, 164 
6 mode, 164 
display modes, 161 

colour set, 154, 162 
selection, 172 

command interpretation 
vector 

defining new, 241 
(stub), 239 

comments field, 74 
compare instructions, 56 
complement arithmetic, 5, 6 
complement instructions, 53 
compound conditional 

expressions, 94 
computer architecture, 2 

condition code (CC) 
register, 11, 26, 40, 
124 

conditional constructs, 89 
constant offset indexed 

addressing, 34 
C0PY1B, 181 
C0PY2B, 177 
CPSTR, 137 
CSRDON, 216 
CSS, 172 
cursor 

addressing, 160 
blinking, 160 

D register, 23 
DAC, 213, 220 
DACOUT, 210 
data highway, 1 
data movement instructions, 

41 
decimal adjust instruction, 

50 
decimal arithmetic, 8, 9 
decimal system, 3 
DELAY, 182 
digital-to-analogue 

conversion, 210 
direct addressing, 28, 72, 

78, 147 
dispatch table, 229 
DP register, 25 
Dragon block diagram, 15 
Dragon logo, 175 

animation, 182 
colour data table, 180 
data table, 176 
flame data table, 181 
grid pattern, 176 
repetition, 178 

Dragon memory map, 17 
Dragon memory organisation, 

16-19 
DREAM assembler, 70 
dynamic RAM, 16 

EQU directive, 77 
exchange instructions, 43 
EXEC statement, 148 
EXEC vector, 148 
extended addressing, 27, 72 
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FCB/FCC directive, 78 
FDB directive, 79 
FIB, 131 
Fibonacci numbers, 130 
FILLER, 178 
FIRQ, 190 
floating point accumulator 

(FAC), 232 
for loops, 97 
FREESP, 135, 136, 139 
frequency shift keying, 213 
FULL6R, 172 

garbage collection, 135 
general purpose register, 

10 
GETSP, 135, 136, 138 
GIVABF, 232, 234 
GMODE, 171 
goto statements, 101 
graphics 

display hardware, 152 
hardware setup, 170 
modes, 153 
page selection, 173 
segment size, 156 
symbol design, 175 
symbols, 174 
test rig, 158 
utilities, 169 

heap, 135 
hexadecimal notation, 7, 8 
hexadecimal system, 3 
high-level language 

programming, 65 

I/O hardware diagram, 187 
I/O programming techniques, 

193 
Iliffe vectors, 109 
immediate addressing, 27, 

72, 144 
index registers, 23-24 
index registers for array 

accessing, 108 
indexed addressing, 31, 72 
indirect addressing, 29, 30, 

73 
input and output, 101 

instruction format, 26, 27, 
74 

INTCNV, 232, 234 
integer representation, 5 
interrupt handling 

instructions, 62, 191 
interrupt mask, 188 
interrupt priority, 189, 

191 
interrupt processing, M6809, 

general, 189 
interrupt service routine, 

188, 197 
interrupt vector, 188, 190, 

193 
interrupt-driven I/O 

transfer, 195 
interrupts, 188 

adding new service 
routines, 196 

Dragon-specific, 192 
software, 191 

INV control bit, 161 
IRQ, 189, 197 
IRQSET, 198 

JOYIN, 219 
joystick 

buttons, 219 
control, 218 
I/O, 194 
selection, 221 
values, 219 

JOYSTK, 218 
jump instructions, 63 
jump tables, 80, 145 

direct, 146 
indirect, 146 
initialisation of, 147 

keyboard 
auto-repeat, 204 
conrol, 201 
matrix, 201 
scanning, 202, 220, 

244 
state bytes, 203 

label field, 71 
load effective address 

instructions, 44 
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load instructions, 42 
local variables, 129 
logic instructions, 51 
logical shift instructions, 

54 
LOGOTL, 177 
loop constructs, 96 
low-level language 

programming, 65 
LPOUT, 206 

M6809 programming model, 21 
M6809 registers, 21 
machine code loader, 82 
machine code monitor, 

111-120 
machine instructions, 11, 

12, 38 
MAXMIN, 129 
memory addresses, notation, 

41 
memory-mapped input/output, 

36 
mnemonic field, 71 
MOVFM, 232, 235 
multi-armed conditionals, 

93 
multiplication and division 

88 
multiply instruction, 49 

negate instructions, 50 
NEWDSP, 240 
NEWSET, 241 
NMI, 190 
no-operation instruction, 

63 
number conversion, 232 
numerals, 3 

operand field, 72 
optimisation, 68, 91, 93, 

98, 100, 106 
or instructions, 52 
ORG directive, 80 

PAGEX, 173 
parameter passing 

in registers, 123 

using parameter area, 
125 

using stack, 125 
PATGEN, 162 
PC-relative addressing, 143 
PCLS, 158 
PEEK and POKE, 88 
PIA, 155, 193, 198 

control lines, 199 
control register, 199 
data direction 

register, 199 
data register, 199 
equate table, 201 

PIAs, Dragon-specific, 200 
PMODE, 157 
polled I/O transfer, 194 
position-independent code, 

35, 78, 142 
postbyte, 27, 31, 32 
power-up/reset actions, 224 
print routine, 243 
printer control, 205 
printer control lines, 205 
printer routine parameters, 

206 
problem solving, 121 
processor architecture, 9 
program counter, 12 
PULL, 14 
pull instructions, 46 
PUSH, 14 
push instructions, 45 
PUT directive, 81 

R32C0L, 174 
RAM hooks, 242-244 
read-only memory, 16 
real number representation, 

231 
recursion, 125, 130, 131 
register addressing, 29, 72 
register, 9, 10 
relative addressing, 35 
relative branch 

instructions, 143 
repeat loops, 100 
RESET, 190 
resolution graphics 

1 mode, 165 
2 mode, 165 
3 mode, 166 
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6 mode, 166 
modes, 164 

return instruction, 64 
returning results on the 

stack, 128 
RMB directive, 80 
rotate instructions, 54 

SAM chip, 156 
SAM control register, 156 
SAMMOD, 170 
SAMSET, 172 
SCREEN, 157 
SEM18, 172 
Semigraphics 

4 mode, 167 
6 mode, 167 
8 mode, 168 
12 mode, 166 
24 mode, 166 
character organisation, 

167 
display modes, 166 

shift instructions, 53 
sign bit, 5 
sign extend instruction, 50 
signed conditional branch 

instructions, 59 
simple conditional branch 

instructions, 59 
single-armed conditionals, 

90 
SNDSEL, 209 
sound control, 207 
sound output generation, 

211 
sound source selection, 209 
sound source, single bit, 

212 
sound sources, 208 
special purpose register, 

10 
SQUARE, 123, 126, 128 
stack, 12, 13 
stack frame, 126, 127 
stack pointer, 13 
stack pointer registers, 24, 

25 
STINIT, 136 
store instructions, 43 
STRCAT, 140 
string descriptor, 233 

string representation, 233 
subroutines, 105, 121 

assembly language, 122 
call sequence, 129 
disadvantages of BASIC, 

121 
entry/exit sequence, 

129 
parameter passing, 106 
register conventions, 

106 
SUBSTR, 141 
subtract instructions, 48 
synchronous address 

multiplexor, 14 

tape file format, 214 
tape leader 

format, 214 
length, 215 

tape verification, 215 
test instructions, 55 
transfer instructions, 43 
two's complement, 6 
two-armed conditionals, 92 
two-dimensional arrays, 108, 

110 
TXPCH, 207 

unconditional branch 
instructions, 58 

unconditional I/O transfer, 
194 

unsigned conditional branch 
instructions, 60 

USR calls, 149, 235 
bugs, 149 
numeric parameters, 

235 
string parameters, 236 
string results, 237 

USRASC, 236 
USRINC, 237 

VALTYP, 234 
VARPTR, 234 
VDG, 153, 159 

control lines, 154, 
155 

VDG/SAM addresses, 169 



VDGMOD, 170 
video RAM, 155 

warm-start initialisation, 
225 

while loops, 99 
word, 4 

X register, 23 

Y register, 23 

zero offset indexed 
addressing, 34 
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