

Inside the
Dragon
Duncan Smeed
Dragon Data Ltd

Ian Sommerville
University of Strathclyde

Addison-Wesley Publishing Company
London • Reading, Massachusetts • Menlo Park, California • Amsterdam
Don Mills, Ontario • Manilla • Singapore • Sydney • Tokyo

© 1983 Addison-Wesley Publishers Ltd.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of the publisher.

Set by the authors in Bookface Academic using NROFF, the UNIX
text processing system, at the University of Strathclyde, Glasgow

Cover design by David John Rowe

Printed in Finland by OTAVA. Member of Finnprint.

British Library Cataloguing in Publication Data
Smeed, Duncan

Inside the Dragon.
1. Dragon 32 (Computer)
I. Title II. Sommerville, Ian
001.64'04 QA76.8.D77

ISBN 0-201-14523-5

ABCDEF 89876543

Contents

Chapter 1 Introducing the Dragon 1
1.1 Information representation 3
1.2 Processor architecture 9
1.3 The organisation of the Dragon 14

Chapter 2 The architecture of the M6809 20
2.1 The M6809 register set 21
2.2 Addressing modes on the M6809 26
2.3 Memory-mapped input/output 36

Chapter 3 The M6809 instruction set 38
3.1 Data movement instructions 41
3.2 Arithmetic instructions 46
3.3 Logic instructions 51
3.4 Test instructions 55
3.5 Branch instructions 57
3.6 Interrupt handling instructions 62
3.7 Miscellaneous instructions 63

Chapter 4 Introducing assembly language 65
4.1 The assembler program 69
4.2 Assembler directives 75
4.3 Example programs 81

Chapter 5 From BASIC to assembly code 84
5.1 Assignment statements 84
5.2 Conditional statements 89
5.3 Loop constructs 96
5.4 Goto statements 101
5.5 Input and output 101
5.6 Subroutines 105
5.7 Arrays 107
5.8 A machine code monitor 111

Chapter 6 Subroutines and strings 121
6.1 Assembly language subroutines 122
6.2 Character strings 132
6.3 String manipulation routines 137
6.4 Position-independent code 142
6.5 Combining assembly language with BASIC 148

Chapter 7 Graphics programming 151
7.1 Graphics display hardware 152

7.2 Integrating BASIC and assembly code
graphics 157

7.3 Alphanumeric display modes 159
7.4 Colour graphics display modes 161
7.5 Resolution graphics display modes 164
7.6 Semigraphics display modes 166
7.7 Graphics utilities 169
7.8 Designing and implementing graphics

programs 174

Chapter 8 Input/output programming 186
8.1 Interrupts 188
8.2 Input/output programming techniques 193
8.3 The peripheral interface adaptor - PIA 198
8.4 Input/output devices 201

Chapter 9 Dragon hints and tips 224
9.1 Power-up/Reset actions 224
9.2 BASIC program storage 226
9.3 BASIC'S information representation 230
9.4 Passing parameters from BASIC to machine

code 235
9.5 Extending the DRAGON's capabilities 238
9.6 BASIC system variables 244

Reading list 249

Appendix 1 MC6809E data sheet 251

Appendix 2 SN74LS783 data sheet 286

Appendix 3 MC6847 data sheet 312

Appendix 4 MC6821 data sheet 322

Appendix 5 The Dragon 64 333

Appendix 6 The ASCII character set 342

Appendix 7 Dragon-specific tables 343

Appendix 8 The disk operating system 350

Index 354

Preface
The advent of the microchip has resulted in the
invention of a product which, ten years ago, was
completely unthinkable. This product is the personal
computer and there are now millions of families who own
their own computer. This book is about one such
machine, the Dragon.

The Dragon is a second-generation personal computer.
In contrast to early personal machines which were slow,
had small memories and low-resolution monochrome
displays, the Dragon offers a fairly large memory,
high-resolution colour graphics, sound synthesis and a
professional-quality keyboard. There are two versions
of the Dragon available, the Dragon 32 and the Dragon
64, and the material in this book is relevant to both
of these machines.

Personal computers are remarkable value for money.
Most of them are more powerful than machines of the
early 1960's which cost hundreds of thousands of pounds
or dollars. Furthermore, personal machines are well-
built and reliable, much more so than early large
computers. However, the weakest aspect of most
personal machines is the descriptive documentation
provided with the machine. Whilst this is no real
hardship to those who only use their machine for game
playing, the hobbyist who wishes to make the most of
his machine has a tough time finding out technical
details of his system.

This book is intended for such readers and for those
readers who have explored the BASIC programming
capabilities of their machine and now want to go
further. We do not assume any technical knowledge of
computing apart from an ability to write and understand
BASIC programs. Inevitably, this means we must include
some introductory material which can be skipped by
readers with experience in computing.

When this book was written, the only Dragon
available was the Dragon 32. As a result, the material
here was written for that machine but most of the
examples are equally relevant to the Dragon 64. Time
has not permitted us to include Dragon 64 details in
the text, but we have provided an appendix (Appendix 5)
summarising the differences between the Dragon 32 and
the Dragon 64. We have also included an appendix

(Appendix 8) which covers details of the Dragon's disk
operating system.

Many readers will be aware that the Dragon and the
Tandy Color Computer make use of the same M6809
processor chip and the same BASIC system developed by
Microsoft. As a result, much of the material here is
also relevant to the Tandy machine and users of that
system may be able to pick up useful hints and tips
from it.

The book is about the internal workings of the
Dragon rather than about programming. We describe the
M6809 processor which is used in the Dragon and show
how machine code programs for that processor can be
written in assembly language. We also describe the
graphics system and the input/output system on the
Dragon and, finally, we provide bits and pieces of
technical information which may be valuable to the
assembly code programmer.

It is impossible for us to be comprehensive in our
discussions of assembly code programming, graphics,or
whatever. Rather, we provide Dragon-specific details
rather than an extensive discussion of general
techniques. We hope to encourage the reader to delve
further into these application areas and we provide a
reading list which will help you get more information
about specific techniques.

Printing programs in a book like this can sometimes
be very untidy. Accordingly, we have taken some
liberties with program commenting and have used lower
case letters for commenting in all of our programs. We
may also have made some other minor changes to the
program layouts so that they are easier to read but the
actual program code has not been changed.

There are many people who have contributed in one
way or another to the ideas and techniques presented in
this book anongst them our colleagues at the Department
of Computer Science, University of Strathclyde. We
would also like to express our gratitude to those at
Dragon Data Ltd., in particular to Tony Clarke, Richard
Wadman and Derek Williams. Permission to use the
Dragon logo in our examples was kindly granted by
Dragon Data Ltd.

Finally, special thanks must go to our families
especially our wives Pauline Smeed and Anne Sommerville
for their support, encouragement and tolerance of lost
evenings and weekends throughout the writing of this
book.

Ian Sommerville
Duncan Smeed
August 1983

Chapter 1

Introducing the Dragon

Every computer, be it mainframe, minicomputer or
microcomputer, is made up of a very large number of
electronic components which can be viewed at greater or
lesser levels of detail. At the highest level, the
computer can be considered as an organised collection
of devices namely:

(1) A processor.
This is the device which actually carries out the
computations (add, multiply, compare etc.) on
elements of data.

(2) A store.
This is the device which is used to store infor
mation so that it may be readily accessed by the
processor. This information can be transferred
to and from other system devices.

(3) One or more peripheral controllers.
Every computer needs some way of getting informa
tion from and passing information to the outside
world. This is accomplished through peripheral
devices such as floppy disks, printers, key
boards, video displays, etc. Each of these dev
ices needs a controller built into the computer
system to ensure that information is properly
transferred to and from the processor and memory.

(4) A clock.
This is not a clock to tell the time but is real
ly a pulse generator which ensures that the
operation of all the other devices making up the
system is synchronised.

There are various different ways of connecting these
devices together so that they operate as a computer.
One of the most common interconnection techniques,
particularly in minicomputer and microcomputer systems,
is to connect all the system devices to a common data
highway. This connection is sometimes called a bus. A
diagram of such an interconnection is shown in Figure
1.1 where P1, P2 , and P3 are peripheral controllers.

1

Fig. 1.1 Microcomputer organisation

Notice that the clock has a separate connection to
the other system components and that some of the
peripheral devices are 'one-way' devices. For example,
a printer is a write-only device - you can only
transfer information to it, and a keyboard is a read-
only device - you can only transfer information from
it.

On microcomputer systems (like the Dragon), the
processor is built onto a single microchip as are each
of the peripheral controllers. The memory is normally
built as a number of connected microchips.

These chips are bonded into holders which have a
number of pins sticking out of each edge. Some of
these pins are connections to the data highway and
others are connections to control lines (like the clock
connection). The number of pins on a chip depends on
the type of information which must be transferred and
the number of control signals input and output.
Normally, more complex chips, like microprocessor
chips, have more pins than (relatively) simple
peripheral controller chips.

The next level down from the computer organisation
is sometimes called the computer architecture. In the
same way as a building has an architecture which is an
overall structure tailored to the building's users, so
too does a computer. In the case of a computer,
however, the architecture is the structure as seen by
computer programs running on the machine. Just as
building architecture is seen as an organisation of
rooms, corridors, walls, etc. rather than an
organisation of elementary components such as bricks,
floorboards and pipes, computer architecture is not
concerned with basic electronic logic components.
Rather, it is the collection of these components into
larger functional units.

The computer architect is mostly concerned with the
design of the processor and how it can be set up to
transfer information to and from other system
components. The most important of these is the store.

2

3

Therefore, a major part of the architect's job is to
design the processor so that it makes optimum use of
the system's memory.

In this chapter, we introduce basic ideas of how
information is represented in a computer and we
describe, in general terms, the principles of computer
architecture. We then go on to describe the Dragon's
hardware organisation and the chapter concludes with a
description of how the Dragon's memory is used.

1.1 INFORMATION REPRESENTATION

At their most fundamental level, all the components of
a computer are fabricated out of electronic switches
which can only be in one of two states - they can be on
or off. This means that the ideal way to represent
information in a computer is as a binary pattern, a
pattern of 1s and 0s. These patterns can represent
numbers, characters, states of a device, colours, etc.
As long as the interpretation of a pattern is known in
advance, any information can be encoded in binary form.

The most common use of binary patterns in a computer
is to represent numbers. Binary numbers are numbers
whose base is 2 and digits in a binary number represent
powers of 2. For example, the binary number

10010111

can be converted to our more familiar decimal notation
by considering it to be:

l(27)+0(26)+0(25)+l(24)+0(23)+l(22)+l(21)+l(20)

If we carry out these multiplications and additions, we
find that the above binary number represents the
decimal number 151. Starting from the right, each
place in a binary number represents an increasing power
of 2. This is a familiar idea which is the basis of
all modern number systems. Decimal numbers, numbers
whose base is 10, are organised so that each place
represents a power of 10. Therefore, the number 3506
can be considered as:

3(103) + 5(102) + 0(101) + 6(10°)

The number of distinct numerals needed to represent any
number depends on the base of that number system. In
general, if the number system base is m, m-1 distinct
numerals plus zero are needed. Therefore, for the
decimal system we need the numerals 1, 2, 3, 4, 5, 6,
7, 8, 9, 0. For a hexadecimal system, whose base is
16, these must be extended with extra symbols
representing 10, 11, 12, 13, 14, 15 and the numeral set
is 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 0. The

4

binary system has a base of 2 so only a single digit,
1, plus 0 is needed in the representation of any binary
number.

Normal arithmetic operations such as subtraction,
addition, multiplication, and division can be carried
out on binary numbers in exactly the same way as on
decimal numbers. The following sums show examples of
binary arithmetic.

11001101 10011001
+01101101 -00010111

100111010 10000010

The rules to remember are that 1 + 1 is 0 carry 1 and
that 0 - 1 is 1 borrow 1.

The other computations (0 + 0 = 0 , 1 + 0 = 1 , 1 - 1 =
0, 1 - 0 = 1) are as you would expect and have no
associated carry or borrow.

Binary arithmetic is tedious and error prone for
humans but, fortunately, is very straightforward for
computers. It is relatively easy to build logic
circuits which add binary numbers and, as we shall see
later in this section, these are all that are required
to implement all the arithmetic operations of add,
subtract, multiply, and divide.

Normally, when we write down numbers their length is
unbounded. That is, each number can have as many
digits as we like. The designer of a computer memory,
however, doesn't have this flexibility. Computer memory
is made up of many distinct cells each of which can
store a fixed number of binary digits or bits.
Normally, each cell stores 8 bits (a byte) and the
number of bits used to represent a number must be a
multiple of 8. Combinations of 2 or more bytes used to
store numbers are usually called a machine word.

The bytes in the computer's memory each have a
unique address which distinguishes that byte from all
others. Addresses are simply numbers which start at
zero and increase by 1 for each byte. On a
microcomputer like the Dragon there are 32768 bytes in
user memory so addresses range from 0 to 32767. For
convenience, memory bytes are divided into blocks of
1024 (called 1K) so we say that the Dragon has 32K or
64K bytes of store.

An analogy can be drawn between a computer's memory
and the lockers in a sports stadium. Each locker has a
number (its address) which distinguishes it from all
other lockers and items can be stored in the locker.
The locker number doesn't affect what's stored in it
nor does the memory address in a computer. The byte
with address number 23456 can have any number in it.
Just as the lockers in a stadium can have names
associated with them as well as numbers (John Brown's

5

locker, Mary Jones's locker etc.) so too can memory
bytes. Names are often more convenient than numbers
when referring to memory bytes and we shall see in a
later chapter how this facility can be used.

On most microcomputers, the number of bits used to
represent an integer (a number without a fraction) is
16, with 32 bits used to represent real
numbers (numbers with fractions). This means that
integers occupy 2 memory bytes and real numbers occupy
4 memory bytes. This size limitation restricts the
magnitude of numbers which can be directly stored and
manipulated by the computer and it is very important
that the computer user bears this in mind when using
his machine for numeric computations.

However, the restriction on the number of digits in
a number has a hidden advantage. It allows us to
represent negative numbers in such a way that the
operation of subtraction can be carried out by adding
the numbers concerned. This representation of negative
numbers is called two's complement representation.

Complement arithmetic, which depends on numbers
having a fixed, maximum number of digits, works with
numbers of any base. The numbers involved, however,
must have a special binary tag, called a sign bit,
which indicates whether the number is positive or
negative. Negative numbers have a sign bit of 1,
positive numbers a sign bit of 0.

We illustrate the principles of complement
arithmetic using decimal numbers rather than clumsy
binary numbers but we assume that the maximum length of
a number is 3 digits. That is, we place the
restriction on our number system that only numbers from
0 to 999 may be represented. Say we want to carry out
the subtractions 327 - 104 and 96 - 297. These are, of
course, equivalent to the additions 327 + (-104) and 96
+ (-297). The results of these additions are, in the
first case, 223 and in the second -201.

Positive numbers in complement notation are
represented by the number itself with an associated
sign bit of 0. Therefore, 327 is 0327 and 96 is 0096.
The value of negative numbers in complement notation is
formed according to the following formula:

(maximum possible number)+l-(absolute number value)

Therefore, where 999 is the maximum possible number,
-104 and -297 have the following complement
representations:

(999 + 1 - 104) = 1896
(999 + 1 - 297) = 1703

Notice that we have added a sign bit (=1) to the left
of the number to indicate that it is a negative number.

6

The subtractions above can now be carried out by adding
the numbers in complement form. In the first case,
0327 + 1896 = 2223. However, because the sign bit is
always binary, 2 is actually '10' so we get an answer
of '10'223. Because the length of the number is
restricted, we throw away the 1 in the leftmost
position to get the correct answer 0223.

Similarly, 96 - 297 is 0096 + 1703 = 1799. This is
a negative number (sign bit = 1) , so we must convert it
back to our more conventional representation using the
same formula as was used to convert to complement form.
The conversion therefore is:

-(999 + 1 -799) = -201

This whole business might seem to be a bit of a fiddle
with digits being discarded in an apparently arbitrary
fashion and with binary and decimal numbers being mixed
up in the sign bit and the number itself. However, it
can be mathematically proven that complement arithmetic
always works. The proof isn't relevant here - what is
relevant is that two's complement works very well on
computers and that it is very easy to form the two's
complement of any binary number.

To form the two's complement of a binary number, all
the 1 bits are changed to 0 and all the 0 bits to 1.
This operation is called complementing. One is then
added to the number to get the two's complement
representation. For example, the binary numbers
01101100 and 00101101 have two's complements 10010100
and 11010011 respectively. The leftmost bit is the
sign bit and operations on it fit in naturally with
other binary arithmetic.

Notice, however, that the need for a sign bit
reduces the maximum and minimum numbers that can be
represented on a computer. On a machine which uses 16
bits to represent integers, the leftmost bit must be
the sign bit so only 15 bits are used for the number
representation. This means that the largest positive
integer on such a machine is 32767 and the largest
negative integer is -32768. It is left as an exercise
for the reader to work out why there is one extra
negative number.

Normally, microprocessors are only equipped with
hardware units which allow them to add numbers
together. Subtraction is implemented as described
above and multiplication and division are implemented
in software as sequences of repeated additions for
multiplications and subtractions for division.

So far, we have concentrated on the representation
of numbers in a computer but character processing is at
least as important as numeric computation for most
microcomputer users. As we said at the beginning of
this section, anything can be represented as a binary

7

pattern as long as we know how to interpret it so
characters are normally held in a memory byte as an 8-
bit binary pattern.

There exist a number of different conventions
governing which patterns represent which characters but
the most commonly used representation on microcomputers
is the ASCII (standing for American Standard Characters
for Information Interchange) representation. Under
this system, 7 bits are used for character
representation and the 8th (leftmost) bit is always
zero. As well as codes for the upper and lower case
letters, 'A'-'Z', 'a'-'z', the digits, '0'-'9', and
punctuation characters the ASCII system also defines
special unprintable characters meaning 'end of
transmission', 'ring a bell', 'please acknowledge',
etc. A table of characters and their associated ASCII
values is provided in Appendix 6.

1.1.1 Hexadecimal notation
The sequences of 1s and 0s which make up binary numbers
are very awkward for people to use. Because the
numbers are so long, it is very easy to miss out a
digit or to interchange a 1 and a 0. Naturally, this
changes the value of the number and this can completely
change the meaning of a computation.

Ideally, it is best to work in terms of decimal
numbers and names because these are the types of symbol
that we learn to manipulate at an early age. However,
it is, unfortunately, sometimes necessary to talk in
the computer's terms, that is, in binary. A shorthand
notation for binary numbers allowing us to write down
binary equivalents in as few digits as possible reduces
the number of errors which we make. Hexadecimal
notation is one possible shorthand for binary numbers.

Hexadecimal numbers are numbers whose base is 16.
This means that the rightmost hexadecimal (hex for
short) digit represents 0-15, the next digit represents
the number of 16s to the power 1, the next the number
of 16s to the power 2 and so on. As discussed earlier,
we need 15 digits plus zero for a number system whose
base is 16. The hexadecimal digits are:

0 1 2 3 4 5 6 7 9 A B C D E F

The number 10 is represented by A, 11 by B, 12 by C, 13
by D, 14 by E and 15 by F. Some examples of
hexadecimal numbers and their associated decimal values
are:

9 9
1F 31 (16 + 15)
23 35 (2(16) + 3)
C7 199 (12(16) + 7)
FF 255 (15(16) + 15)
5BE 1470 (5(256) + 11(16) + 14)

8

It is very easy to convert from binary numbers to
hexadecimal numbers and vice versa. Hexadecimal
numbers represent values from 0 to 15 and this is
exactly 2 to 2 - 1. We need 4 binary digits to make
a hexadecimal digit so converting from binary to
hexadecimal involves chopping the binary number into
groups of 4 bits and then writing down the associated
hexadecimal digit. For example:

10110111010110111 16EB7
1110011011011100 E6DC

Conversion from hexadecimal to binary is equally easy
as long as you memorise the binary patterns for the
digits from 0 to F. These are:

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

These patterns can be calculated very easily but after
using binary and hexadecimal numbers for a while, you
will find that you have, in fact, memorised them. Some
examples of hexadecimal binary translations are:

A1C4 1010000111000100
4FFF 010011111111
5670 0101011001110000

As you read through the book, you will see lots more
examples of hexadecimal numbers as we always use them
in preference to binary when discussing particular
representations. In particular, we always use
hexadecimal numbers to refer to memory addresses so
when you see an address of 433, say, this is
hexadecimal 433 which is decimal 1075.

1.1.2 Decimal arithmetic
One of the problems which arise when binary arithmetic
is used in a computer, where 16-bit words are used to
store integer numbers, is that the maximum integer
which can be represented is 32767 and the minimum
integer is -32768. One way round this is to use so-
called 'decimal notation' where numbers are represented
as a sequence of digits rather than in absolute binary
form.

From the table above, it is clear that the
representation of the digits 0-9 requires that 4 bits
be set aside for each digit. Therefore, each memory

9

cell can hold 2 digits. The table below shows examples
of numbers represented in both decimal and binary form.

Number Binary representation Decimal representation
2 00000010 00000010
55 00110111 01010101
438 000110110110 010000111000
2583 101000010111 0010010110000011

There is a marked difference between the decimal and
the binary representation of a number so special
routines are required to perform decimal arithmetic.
Although decimal numbers take up more space than their
binary equivalents, they have the advantage that it is
easier to write special routines to perform arithmetic
on large decimal numbers than it is to write such
routines for binary numbers whose representation
requires more than 16 bits. The Dragon has an in-built
instruction, called Decimal Adjust, to help the
programmer in writing such routines.

Although decimal arithmetic is very important for
commercial applications programs, the hobbyist and
scientific computer user has no real need of it. We
have introduced it here for completeness but we do not
use it in this book. Rather, we assume that all
numbers may be represented as integers in the range
-32768 to 32767.

1.2 PROCESSOR ARCHITECTURE

The central device in a microcomputer system like the
Dragon is the microprocessor chip. The processor is
that device which carries out all data transformations.
That is, given input information, the processor can
manipulate this and transform it to the output required
by the programmer. The function of a computer program,
be it in BASIC or some other programming language, is
to define how the processor should transform its input
into the appropriate output.

The processor has an internal structure, its
architecture, which consists of lower level components
and their interconnections. As far as the programmer
who wants to get the most out of his machine is
concerned, the most important of these components are
the processor registers.

A register is simply an electronic device which can
be used to store information. Usually, its width (the
number of bits it can hold) is equal to or some
multiple of the basic memory cell size. In the
Dragon's processor, register widths are either 8 or 16
bits and they can therefore hold 1 or 2 memory bytes.

There are two important distinctions between a
register and an ordinary memory byte or word:

10

(1) The processor can access information in a regis
ter more quickly than it can access information
in a memory cell. The reason for this is partly
due to the way in which registers are constructed
and partly due to the fact that a bus transfer
between processor and memory is not required.

(2) Registers may be connected, via an internal pro
cessor bus, to other processor components which
can transform information held in registers or
which can recognise particular data patterns in
the register. These patterns can be used to
trigger corresponding actions by other processor
components. The most important of these com
ponents, which are present in every processor,
are the arithmetic and logic unit (ALU) and the
control unit. These are discussed later in this
chapter.

Registers in a processor may be classified as either
general-purpose registers or as special-purpose
registers. General-purpose registers may simply be
thought of as extensions of the computer's memory.
Normally, information which is accessed very frequently
is held in such registers. It is up to the programmer
to transfer frequently accessed information to
general-purpose registers before it is accessed and to
save it in memory when the register is needed for other
purposes.

Special-purpose registers may also be used to store
frequently accessed information. However, instead of
general information, that is, anything the programmer
wants, being stored in such registers particular items
of information are always held there. Other types of
special-purpose register are accumulator registers and
condition-code registers which are used as ALU input
and output registers.

The notion of an arithmetic and logic unit has
already been introduced. This is a component whose
function is to carry out arithmetic operations such as
add, negate, etc. and logical operations such as
compare, complement, etc. The particular operations
available on the Dragon are described in a later
chapter - you don't need to know these details to
understand the general purpose of an ALU.

Accumulator registers are those registers which may
act as ALU inputs and outputs. It is not usual to
connect all registers to the ALU. Rather, only one or
two accumulator registers are directly connected to
this unit and all traffic to and from the ALU must pass
through these accumulators.

When some arithmetic and logical operations take
place, particular conditions resulting from these
operations must be 'remembered' for subsequent

11

operations. For example, if two values are compared
for equality, it must be remembered whether they are
equal or not. Similarly, if an addition produces a
carry, this must be remembered. It is the function of
the condition-code register (CCR) to hold this kind of
information for subsequent use by the programmer. The
exact conditions noted in this register differ from
machine to machine - the details of the Dragon's CCR
are described in the following chapter.

Although general arithmetic operations must all take
place through the accumulator registers in a processor,
it is sometimes possible to perform very limited
addition and subtraction operations in other special-
purpose registers. These operations can take place
automatically before or after the contents of a
register are accessed. Typically, this auto
increment/decrement facility allows 1 or 2 to be added
or subtracted from the value in the register. This is
particularly useful when using so called index
addressing where a register contains the address of a
memory location. Indexed addressing is fully described
in the next chapter of this book.

We have already introduced the idea that a computer
program specifies how program input is transformed to
the appropriate output. Writing a program in BASIC,
say, is a convenient way for the user to specify this
transformation but, at the processor level, a BASIC
program can't be directly executed.

Rather, a translation process must take place where
the BASIC program is converted to a sequence of
primitive machine instructions. This sequence
specifies the information transfers between the
computer's memory and the processor and the
operations (add, compare, etc.) to be carried out on
this information.

Within the processor, the machine instructions
always make use of the processor's registers. Some
instructions are dedicated to data movement to and from
memory, some to arithmetic and logical operations, and
some to controlling the order of execution of the
instruction sequence.

Each instruction has a unique operation code (op
code) which distinguishes that instruction from all
others. This op-code is simply a binary number which
is used by the control unit in the processor to
determine which operation to carry out. As binary
numbers (or even hexadecimal numbers) are alien to
humans, we normally refer to instructions by means of a
mnemonic related to the function of the instruction.
Typical instruction mnemonics are:

LD Transfer (LoaD) information into a register
CLR Set a register to zero (CLeaR)
INC Add 1 (INCrement) the contents of a register.

12

As well as an op-code, each instruction may have one or
more address fields which specify the registers and/or
memory locations used by the instruction. These address
fields specify where the instruction can find the data
on which it operates (its operands). They can be
specified in a number of different ways (addressing
modes) and an understanding of these addressing modes
is vital for the programmer who wishes to write his own
machine language programs. Because, they vary so much
from machine to machine, addressing modes are not
discussed further here but those of the Dragon's
processor are covered in the following chapter.

The machine instructions making up a program are
themselves stored in the computer's memory and are
fetched, one by one, from the memory to the processor.
Each instruction may occupy one or more memory cells -
in the Dragon, for example, instructions may take up 1,
2, 3, 4 or 5 bytes.

The processor control unit fetches instructions from
memory, identifies each instruction and initiates those
components which actually carry out the specified
operations. In every processor there is a special-
purpose register called the program counter (PC) which
holds the memory address of the next instruction to be
executed by the processor.

There is no direct way for the programmer to affect
the operation of the processor's control unit in its
fetching and decoding of the machine instructions.
However, the address in the PC register can be changed
by the programmer thus allowing him to modify the order
in which instructions are executed. This facility means
that it is possible to repeat groups of instructions
(loops) and to skip over one or more instructions if
some particular condition holds (conditions). To the
BASIC programmer, the familiar forms of these are FOR
statements and IF statements.

1.2.1 Stacks
The machine instructions for a particular program are
normally held in a linear sequence of cells in the
computer's memory. This sequence may be accessed in any
order by modifying the value of PC so that the
instruction to be executed is the next one fetched by
the processor's control unit.

Sometimes it is also convenient to store and access
data in the same way. You may normally access the data
sequentially using a register to hold the address of
the next data item to be selected. By modifying the
value in this register, you can change this sequential
data access pattern and get to any item of data which
you need.

On other occasions, however, it is convenient to
restrict the way in which data is accessed.
Restrictions of this sort are not arbitrary but are a

13

safety feature which reduces the chance of the
programmer making mistakes. There are various
different ways in which restrictions can be applied and
the particular technique chosen must depend on the
application being programmed. For a full discussion of
these data structures the reader must look at the
specialised texts on this topic such as those suggested
in the reading list. However, one of these data
structures is so important that you must understand it
if you are to understand the rest of the book. This
structure is the stack.

Arranging data in a stack is a technique of limiting
data storage and access so that the last data item
placed on the stack is the only item which may be
removed from the stack. Once this item has been
removed, we can then get to the item below it, remove
it, and so on.

This can be imagined by comparing the data on the
stack to a pile of plates in a restaurant kitchen.
Assume that a dishwasher is adding plates to this pile
after cleaning them and that a waiter is removing
plates for serving food. The plate which the waiter
takes from the pile is always the last plate put on the
pile by the dishwasher. Like a data stack, the pile of
plates is a last-in, first-out (LIFO) structure. Items
are removed in the inverse order to that in which they
are placed on the stack.

Stacks are easily implemented in a computer system
by reserving an area of memory for the stack and by
associating a special-purpose register called a stack
pointer (SP) with this memory area. The stack pointer
always holds the address of the last item placed on the
stack, that is, the top of the stack. When an item is
added to the stack, the SP register is incremented and
the item placed at this address. When an item is
removed from the stack, the item pointed to by SP is
first copied to a register and SP is then decremented
to point at the new top stack element.

In the traditional stack model, the base of the
stack is at a low memory address and the stack grows
upwards so that elements placed on the stack have
increasing memory addresses. However, this is an
arbitrary convention and it is equally straightforward
to implement a stack which grows downwards in memory.
This means that push in element on the stack involves
decrementing the stack pointer and popping an element
from the stack involves incrementing the stack pointer.

Stacks in the Dragon are implemented in this way so
that the base of the stack is at a high memory address
with stack elements in successively lower addresses.

We shall see in later chapters how stacks can be
extremely useful to the programmer. They are so
important that many processors (including the one built
into the Dragon) provide special instructions to add

14

information to and remove information from the stack.
These instructions are:

PUSH This instruction copies one or more
registers onto the stack and moves
the stack pointer 'up' by the
number of register bytes copied.

PULL (or POP) This instruction copies one or more
items from the stack into registers
and moves the stack pointer 'down'
by the number of bytes copied.

The provision of instructions like these is one of the
features of the Dragon which makes it such a powerful
computer.

1.3 THE ORGANISATION OF THE DRAGON

We now move on from generalities and general principles
of computer organisation to details of the organisation
of the Dragon itself. Every microcomputer is inherently
complex and the Dragon's hardware is made up of about
20 microchips and their interconnections plus a power
supply, peripheral device connectors, etc. The usual
way of describing system hardware is by means of a
block diagram showing the various hardware components
and their interconnections. Figure 1.2 is such a block
diagram of the Dragon's hardware organisation.

As we suggested above, the hardware on a
microcomputer system can be considered as being
composed of three interacting subsystems. These are:

(1) The processor

(2) The memory

(3) The input/output system

The processor built into the Dragon is a single
microchip which is designated the M6809E or, simply,
the M6809. This is an advanced 8-bit processor which
means that its data highways are 8-bits wide but it
also makes provision for operations on 16-bit data
elements. We shall not discuss any details of this
system here as both Chapter 2 and Chapter 3 are devoted
to the architecture of the M6809 processor.

There is no explicit clock component shown in the
block diagram although we explained in the previous
section that the clock was an inherent part of every
computer system. In fact, the box labelled
'Synchronous address multiplexor' is a multi-function
chip which includes a clock and which acts as the
interface between the processor and the random-access
memory.

15

16

The M6809 processor is designed to operate with data
addresses of 16 bits so the maximum memory size which
can be built into the Dragon is made up of 2 1 6 or 65536
bytes. The term 1K is used to mean 1024 bytes so the
maximum memory size on the Dragon is 64K bytes. The
Dragon 32 actually has 48K of inbuilt memory with the
capability to expand this to 64K using the cartridge
slot. The Dragon 64 has 80K of in-built memory but
only 64K may be in use at any one time.

In the block diagram of the hardware, the units
marked '32K Dynamic RAM' and '8K ROM' make up the
memory of the Dragon. The two ROM (read-only memory)
units hold the BASIC system and, because this memory is
read-only, it is impossible to change any information
stored in these units. However, you can read
information stored there and we shall describe later
how to make use of some of the BASIC system facilities
by calling them directly from assembly code.

The dynamic RAM on the Dragon 32 is the user's
memory area which is used for the storage of BASIC and
machine code programs, user data, etc. As the name
implies, the Dragon 32 has 32K bytes available for this
purpose whereas the Dragon 64 has twice as much
available to the user. For many applications, 32K
bytes is a perfectly adequate amount of memory but when
complex disk operating systems are used, you really
need 64K to get the most out of your machine. The way
in which the use of memory is organised is very
important and we describe the logical memory
organisation of the Dragon 32 in a separate section
below.

The Dragon's input/output system controllers are the
units labelled PIA0, PIA1, and VDG. These have
associated peripheral interfaces to the keyboard,
display, cassette, etc. The complexity of the I/O
system is such that we cannot describe it adequately
here so we have devoted a complete chapter to the I/O
system (Chapter 8) later in the book.

1.3.1 Memory organisation
In a system like the Dragon, the memory is not simply
considered as a single homogenous chunk to be used in
some arbitrary way by the user or the BASIC system.
Rather, decisions have to be made about which areas of
memory are to be dedicated to which function and these
decisions have to be clearly communicated to the
system's programmers so that they know how to organise
their own programs and data.

The usual way to communicate this information is by
means of a memory map which is simply a schematic
diagram of how the system's memory is used. Like any
map, this can be presented at greater or lesser levels
of detail and the overall memory map of the Dragon 32
is shown as Figure 1.3.

17

18

The 64K bytes of memory which is potentially available
on the Dragon 32 can be looked at as being partitioned
into eight distinct areas.

(1) System variables
This is the area of 1K bytes in RAM from address
0000 to address 3FF. It holds various data values
and I/O buffers used by the BASIC system. As
these are in RAM, you may modify variables in
this area but this must be done with care as in
cautious modification can cause the BASIC system
to fail and require that the machine be reset.

(2) Text screen
This is the 512 byte area from address 400 to ad
dress 5FF whose contents are reflected on the
user's display when graphics are not being used.
The use of this area is described in Chapter 7.

(3) Graphics screens
The area of memory from address 600 to address
3600 is used by the BASIC graphics system to im
plement its graphics commands. Again, we
describe the use of this area in Chapter 7. If
graphics are not used or, if only limited graph
ics are used, all or part of this area may be
used for the storage of the user's BASIC program
and its variables.

(4) Program and variable store
The area of memory from address 3600 to address
7F36 is used for the storage of the user's BASIC
program and its variables.

(5) BASIC string store
When character strings are used in a BASIC pro
gram, the string characters are held in a
separate storage area. This area extends from
address 7F36 to the top address in the dynamic
RAM, 7FFF.

(6) The BASIC interpreter
The 16K of memory required by the BASIC inter
preter is provided as ROM on the Dragon 32 and is
addressed from 8000 to BFFF.

(7) Cartridge memory
Memory addresses from C000 to FEFF are allocated
to the cartridge slot on the Dragon 32. When you
plug in a cartridge, this contains its own read-
only memory and this is addressed via these ad
dresses .

19

(8) Input/output area
The Dragon's I/O system is a 'memory-mapped' sys-
tem where reference to specific memory locations
cause I/O operations to take place. Therefore,
it is necessary to dedicate some memory locations
to input/output and, in the Dragon 32, this I/O
area is a 256 byte area at the very top of memory
from address FF00 to address FFFF. Broadly, this
area is partitioned into three separate parts.
Addresses FF00 to FF5F are reserved for the use
of peripheral controllers, addresses FFC0 to FFDF
are used to control the synchronous address mul-
tiplexor and addresses FFF2 to FFFF are reserved
for interrupt vectors. The other addresses in I/O
area are unused and reserved for future system
expansion. More details of the function of these
I/O-dedicated addresses are provided in Chapter
8.

Chapter 2

The architecture of the M6809

The microprocessor used in the Dragon has been given
the code number M6809 by its designers at Motorola
Semiconductors. The M6809 processor developed from an
earlier Motorola microprocessor, the M6800, and it
shares some of the features of this earlier system. In
fact, one of the design criteria for the M6809 was that
it should be possible to run programs written for the
M6800 on the M6809 processor.

The M6809 is called an 8-bit processor, indicating
that its data highways are 8 bits wide. This means
that a simultaneous transfer of 8 bits of information
can be made from the processor to and from memory and
peripheral controllers. However, the M6809 also
includes a number of instructions which operate on 16
bits rather than 8 bits of data and this considerably
increases the power of the processor.

Such 16-bit instructions provide extra power because
8-bit data manipulation is inadequate in many cases.
For example, consider integer arithmetic. If only 8-bit
representation is allowed this limits the range of
integers to 0-255. This is clearly unacceptable in
most cases so 16-bit arithmetic operations have to be
simulated on an 8-bit machine by using combinations of
8-bit instructions. Naturally, this slows down the
execution of programs.

The provision of many 16-bit operations of the M6809
means that programs can be written using fewer
instructions. Therefore, these programs execute more
quickly. Because of these extra instructions and
because of the variety of ways in which memory can be
accessed, the M6809 is sometimes called a second-
generation microprocessor or, more extravagantly, the
'programmer's dream machine'.

In this chapter and in the following chapter we
describe those aspects of the M6809 machine
architecture which are of importance to the programmer
who wishes to write machine language programs for his
Dragon. This chapter covers the register organisation
of the M6809, the multitude of ways in which machine
memory may be addressed (addressing modes), and
introduces some of the machine instructions available
to the M6809 programmer. A description of all the M6809
machine instructions is provided in Chapter 3.

20

21

2.1 THE M6809 REGISTER SET

In the previous chapter we introduced the idea of a
register as a fast storage element built into the
processor. The M6809 has nine such registers, all of
which may be considered as special-purpose registers
rather than general-purpose registers. Figure 2.1 is
the so-called 'programming model' of the M6809. It
shows, diagrammatically, the M6809's registers and
their comparative sizes.

Fig. 2.1 The programming model of the M6809

The names of the M6809 registers, their width in
bits, and a very brief description of their functions
are listed below:

(1) A register (8 bits) - accumulator register

(2) B register (8 bits) - accumulator register

(3) X register (16 bits) - index register

(4) Y register (16 bits) - index register

(5) U register (16 bits) - stack pointer register

22

(6) S register (16 bits) - stack pointer register

(7) DP register (8 bits) - direct page register

(8) PC register (16 bits) - program counter register

(9) CC register (8 bits) - condition code register

The bits in an M6809 register are numbered from right
to left starting at 0. This means that bit 0 is the
rightmost bit and, for 16-bit registers, bit 15 is the
leftmost bit. Different machines have different
conventions in this respect. Some processors number
bits from left to right others, like the M6809, from
right to left.

2.1.1 The A and B registers
The A and B registers are accumulator registers which
are used to hold the operands and results of arithmetic
operations. There are a variety of machine
instructions which make use of these registers and
examples of these are given below.

The instruction examples in this chapter are set out
according to the following general format:

<machine code> (mnemonic) <operand> (comment)

We use diamond brackets <> to mean 'an instance of' so
(mnemonic) means any instruction mnemonic may replace
the character string (mnemonic). We also use the
notation MEM((address)) when referring to particular
addresses in memory so MEM(A0E4) means the memory
location whose address, in hexadecimal, is A0E4 and
MEM(FRED) means the memory location whose symbolic
address is FRED. All memory addresses are given in
hexadecimal or are symbolic addresses unless explicitly
stated otherwise.

The machine code, in hexadecimal, is provided for
each instruction example in this chapter. This is the
actual code loaded into the M6809 memory whereas the
instruction mnemonic and operand is a form of the
instruction which is more understandable to the
programmer. Most examples also have a brief
descriptive comment explaining the function of that
instruction.

Examples of instructions which use the A and B
registers are:

860A LDA #10 ; A = 10

1E89 EXG A,B ; Tmp = A: A = B: B = Tmp

F7F1C5 STB $F1C5 ; MEM(F1C5) = B

23

5F CLRB ; B = 0

8B02 ADDA #2 ; A « A + 2

F0F1C5 SUBB $F1C5 ; B = B - MEM(F1C5)

The A and B registers are both 8-bit registers which
means that only a limited range of values, from 0 to
255, may be stored in them. For many arithmetic
operations we need to operate on larger or smaller
values than can be represented in 8 bits so the
designers of the M6809 have provided instructions which
allow the register pair A:B to be considered as a
single register. When the registers are catenated in
this way, they are called the D register.

Effectively, the A register makes up the leftmost 8
bits of the D register (bits 8-15). This is sometimes
called the hi-byte. The B register forms the rightmost
8 bits of D (bits 0-7). This is called the lo-byte.

Many of the machine instructions which operate on
the A and B registers have counterparts which operate
on the D register. However, rather than 8-bit
operations which take place automatically when A and B
are used, the use of the D register or, indeed, any
16-bit register automatically results in 16-bit
operations taking place. The address in the instruction
refers to the leftmost (most significant) byte when
16-bit operations are specified. For example:

CC1000 LDD #4096 ; D = 4096

F31E62 ADDD $1E62 ; D = D + MEM(1E62)

FD0056 STD $56 ; MEM(56) = D
* MEM(56) = hi-byte of D
* MEM(57) = lo-byte of D

We shall look at more instructions which operate on the
A, B, and D registers when we describe the M6809
instruction set in detail in Chapter 3.

2.1.2 The X and Y index registers
The X and Y registers in the M6809 may be used as
general-purpose registers to store data but, more
commonly, they act as special-purpose registers called
index registers.

The information which is normally held in an index
register is the address in memory of some other data
item which may represent anything at all, even another
memory address. The M6809 has several ways of
accessing memory which makes use of these index
registers to determine the address in memory which is
being used.

Index registers are a particularly efficient way of

24

determining data addresses when data items stored in
consecutive locations are to be accessed and processed
in turn. The X and Y registers in the M6809 each have
an associated auto-increment/decrement facility which
means that a memory location can be accessed and,
without additional instructions, the index registers
can be updated to refer to the next item to be
processed.

This means that the most important use of the X and
Y index registers is for array processing. The index
register is set up to refer to the first item of the
array and the auto increment/decrement facility used to
select succeeding items in turn.

The index registers may also be used as stack
pointer registers if the user needs more than two
stacks. The U and S registers are provided as stack
pointer registers but the auto increment/decrement
facilities of the X and Y registers means that they can
also function efficiently in this role.

Examples of instructions which use these index
registers are:

A684 LDA ,X ; A = MEM(X)

A680 LDA ,X+ ; A - MEM(X): X = X + 1

A682 LDA ,-X ; X = X - 1: A = MEM(X)

ECA012C LDD 300,Y ; D = MEM(300 + Y)

E7A6 STB A,Y ; MEM(A + Y) = B

There are a number of other variants of index
addressing available on the M6809. These will be
discussed later in section 2.2.6.

2.1.3 The U and S stack pointer registers
The U and S registers are 16-bit registers which may
act as index registers in exactly the same way as the X
and Y registers described above. However, in many
applications, these registers are best used as
special-purpose stack pointer registers. Push and pull
instructions are available to the programmer which
assume that these registers are being used for this
purpose.

In practical use, the S register is almost always
used as a stack pointer register referring to the so-
called S-stack or hardware stack. The hardware stack
is used when calling subroutines and when swapping
control from program to program. The state of the
program which is interrupted is saved on this stack and
restored when that program is restarted. This use of
the hardware stack is described later in the book when
interrupt-driven programming is described.

25

The U register may be used as a stack pointer to the
so-called U-stack or user stack. However, the
programmer may not need this facility in which case the
U register may be used as an index register in exactly
the same way as the X and Y registers.

The M6809 stack convention is that stacks grow
downwards in memory. That is, when an element is pushed
onto the stack, the stack pointer is decremented before
the push operation so that that element has a lower
memory address than the previous top stack element. The
stack pointer registers S and U always point at the top
byte on the stack. In this respect, the M6809 is
different from some other stack-based systems where the
stack pointer refers to the next available location on
the stack.

Some examples of how the U and S registers may be
used are:

3602 PSHU A ; U = U - 1: MEM(U) = A

3436 PSHS A,B,X,Y ; S=S-1: MEM(S)=Y: S = S-2
* MEM(S)=X: S=S-2: MEM(S)=B
* S=S-1: MEM(S)=A

3536 PULS A,B,X,Y ; A=MEM(S) : S=S+1 : B=MEM(S)
* S=S+2: X=MEM(S): S=S+2
* Y=MEM(S): S=S+1

3704 PULU B ; B=MEM(U): U=U+1

The push and pull instructions for stack manipulation
are described in more detail in Chapter 3.

2.1.4 The DP register
The M6809's DP (Direct Page) register is an 8-bit
register which always contains the address of the start
of a 256 byte chunk (page) of memory. This register is
used exclusively in the so-called direct addressing
mode. In this mode, the contents of the register are
added to an 8-bit value specified by the user as part
of the machine instruction to form the effective memory
address. For example:

96E9 LDA $E9 ; A = MEM(DP + E9)

D710 STB $10 ; MEM(DP+10) = B

2.1.5 The PC register
The PC register is the M6809's program counter. It a
16-bit register which always contains the address in
memory of the next machine instruction to be executed
by the M6809.

26

2.1.6 The CC register
The CC register is an 8-bit condition code register
where individual bits mark the occurrence of particular
conditions. The bits in the register have the
following functions:

Bit 0 carry bit, set in arithmetic operations
Bit 1 two's complement overflow bit
Bit 2 zero bit, set when result of an operation or

data transfer is zero
Bit 3 negative flag, set when result of an

operation or data transfer is less than zero
Bit 4 normal interrupt mask, used by M6809

interrupts
Bit 5 half-carry flag, used to indicate a carry

from bit 3 to 4
Bit 6 fast interrupt mask, used by M6809 interrupts
Bit 7 entire state saved flag, used by M6809

interrupts

The above descriptions of the flags in the CC register
are very sketchy indeed but it is not appropriate to go
into more detail here of what each flag means. Rather,
we describe the role of individual condition code flags
along with those machine instructions which set and
test these flags.

2.2 ADDRESSING MODES ON THE M6809

One of the features of the M6809 architecture which
distinguishes that microprocessor from earlier
microprocessors is the variety of ways in which the
address of a data item may be computed. In all, there
are 19 distinct ways of representing an
address (addressing modes) and the flexibility and
power of these modes means that some applications may
be coded very efficiently indeed on the M6809.

The use of the various addressing modes is
illustrated in Chapters 4 and 5. In this section we
confine ourselves to a description of those modes and
present examples of instructions which use these
various modes.

Before going on to look at addressing modes in
detail, however, we must look at the structure of a
machine instruction and examine how operand addresses
are represented within instructions. Instructions in
the M6809 may be 1, 2, 3, 4, or 5 bytes long depending
on the particular instruction and on the addressing
mode which is being used. Each instruction has two
fields:

(1) The op-code (1 or 2 bytes)

(2) The operand address specifier (0, 1, 2 or 3
bytes)

27

Notice that, in some cases, the operand address
specifier may be empty, that is, it doesn't explicitly
exist. For example, the instruction CLRA clears the A
register - the inherent operand address in this case is
the A register and may never be anything else.

Most instructions, however, do have an address field
which has the following general structure:

(1) Postbyte (0 or 1 byte)

(2) Value field (0, 1 or 2 bytes)

The address field, called the 'postbyte', is not needed
by all the M6809 addressing modes and it will be
described along with those addressing modes which make
use of it. Simpler addressing modes only need the
'value' field to construct an operand address and some
modes only require the postbyte field.

2.2.1 Immediate addressing
The simplest addressing mode on the M6809 is the
immediate addressing mode where the instruction operand
is a constant whose value is 'built in' to the machine
instruction. When programming, immediate addressing is
specified by preceding the constant to be included in
the instruction with the symbol #. Some examples of
immediate addressing are:

C680 LDB #128 ; B = 128 (decimal)

CC0400 LDD #1024 ; D = 1024 (decimal)

108EFF00 LDY #$FF00 ; Y = FF00 (hex)

Notice that a hexadecimal value is specified by
preceding the immediate value with a $ sign. The #
symbol must also be included to specify immediate
addressing as a $ on its own has a completely different
meaning.

Although the instruction operand in immediate
addressing mode must be an absolute hexadecimal
constant, this can be generated by the assembler. Most
assemblers allow the association of symbolic names with
constants and also allow symbolic labels representing
addresses. These may be used as immediate operands.

2.2.2 Extended addressing
In the extended addressing mode, the contents of the 2
bytes following the instruction op-code are taken as
the absolute address in memory of the instruction
operand. Extended addressing is specified by preceding
a numeric address (usually in hex) with the symbol $
or, alternatively, by writing the symbolic address of
the operand being accessed.

A symbolic address is simply a name given to a

28

particular address location. This idea was introduced
in section 1.1.2 and it is by far the most convenient
way to refer to actual addresses in the Dragon's
memory. When a symbolic address is encountered in an
instruction, the assembler replaces it with its actual
numeric memory address. The assembler also handles the
conversion of mnemonics to machine code, the conversion
of decimal and hexadecimal numbers to binary, etc.

Examples of the M6809 extended addressing code are
given below along with their corresponding machine code
representations. Assume that the symbolic names CHAR1
and PNTR have addresses A000 and A008 respectively.

B7A000 STA CHAR1 ; MEM(CHAR1) = A

BEA008 LDX PNTR ; X = MEM(PNTR)

BB03A2 ADDA $03A2 ; A = A + MEM(03A2)

2.2.3 Direct addressing
Recall from our description of the M6809 registers that
the processor has an 8-bit register called the Direct
Page or DP register which always contains the address
of the start of a 256 byte chunk (page) of memory. This
register is used in the direct addressing mode.

In this mode, the address of an operand is computed
by taking the value contained in the instruction
itself (00-FF) and using this as the lo-byte of the
operand address. The hi-byte is taken as the value of
the DP register. Direct addressing is used whenever the
address lies in the range 00 to FF since the DP
register normally contains 00. Direct addressing can
be forced by preceding the address with a '<' symbol in
which case it it is essential that the DP register is
set up with the address of the starting byte of the
memory 'page' being accessed.

Registers are normally assigned values using load
instructions but there is no load instruction which
assigns a value to the DP register. Rather, some other
8-bit register must be assigned a value and its
contents then to the DP register using a TFR
instruction. For example:

8610 LDA #$10 ; A = 10 (hex)

1F8B TFR A,DP ; DP = A

Examples of the use of direct addressing are:

DD20 STD $20 ; MEM(1020) = D

9000 SUBA $00 ; A = A - MEM(1000)

The use of direct addressing means that instructions

29

are short (mostly 2 bytes) and this means that programs
are efficient in both execution speed and in the
storage required for the program. There are also
advantages in using this mode of addressing when
implementing programming languages like Pascal where
global variables may be stored in a page by themselves
and accessed via the DP register.

2.2.4 Register addressing
Register addressing is an addressing mode where the
instruction operands are always in registers with a
postbyte used to identify the registers involved. There
are only two instructions which make use of this
addressing mode. These are the transfer register
instruction (TFR) and the exchange register instruction
(EXG) . The address field is simply a postbyte which is
split into two parts. Bits 0-3 of the postbyte
identify the destination register and bits 4-7 identify
the source register. The identification value, in
hexadecimal, for each register is:

0 D register 5 PC register
1 X register 8 A register
2 Y register 9 B register
3 U register A CC register
4 S register B DP register

Using the TFR and EXG instructions, it is only possible
to transfer and exchange registers of like size (8 or
16 bits). Examples of instructions using the register
addressing mode are:

1F12 TFR X,Y

1E89 EXG A,B ; Tmp = B: B = A: A = Tmp
* where Tmp is some temporary register
* hidden from the M6809 user

2.2.5 Indirect addressing
Some kinds of programming are made easier if you can
refer indirectly to information which you want to
manipulate. That is, you don't include the address of
the instruction operands in the instruction but the
address reference in the instruction is to a location
which holds the actual operand address.

Normally, the address part of a machine instruction
directly refers to its operand. For example:

LDD MAXVAL

loads the data stored at symbolic address MAXVAL into
register D. With indirect addressing, however, the
address part of the machine instruction holds the
address of the address of the instruction operand.

30

Address computation is therefore a two-stage process.
First, compute the address as specified in the machine
instruction. Secondly, use this to locate the operand
address then use this address to fetch the operand
itself.

This is illustrated in Figure 2.2.

Fig. 2.2 Indirect addressing

It is important to remember that the use of indirect
addressing means that the two-stage process described
above always takes place. The effect of an instruction
using indirect addressing is exactly the same as the
same instruction using direct addressing inasmuch as
the operand value, not its address, is manipulated by
that instruction.

Indirect addressing can be used with a number of the
M6809 addressing modes but, of the modes which we have
described so far, it is only possible with extended
addressing. In this case, and in all other cases where
indirect addressing is allowed, indirect addressing is
specified by surrounding the address part of the
instruction with square brackets. For example, say a
value 00E4 is stored at address 32F0. Furthermore,
assume the symbolic address MAXADD has a value of 10A4
and is set up to refer to the value 00E4. The
instruction

CC9F10A4 LDD [MAXADD]

specifies that the value in MAXADD is actually the
address of the value to be loaded into the D register.
Therefore, the effect of LDD [MAXADD] would be to copy
00E4 into register D. The actual address reference in
the instruction is to address 10A4 which holds the
value 32F0 - the location where 00E4 is stored.

This has illustrated how indirect addressing is used
in conjunction with the extended addressing mode but it

31

may also be used with indexed addressing which is
described below. In indexed addressing, where a
postbyte is an inherent part of the address, bit 4 of
the postbyte is used to indicate whether the address
reference is direct or indirect. If bit 4 is set, the
address is taken as in indirect reference to the
instruction operand.

2.2.6 Indexed addressing
We have already described how some of the registers in
the M6809 may be used as index registers where the
address is computed by adding or subtracting some value
from the value in the index register. There are a
variety of different types of indexed addressing
available to the M6809 programmer and these are all
described in this section.

The format of an address in an instruction using
indexed addressing is:

(1) Postbyte (1 byte)

(2) Offset (0, 1 or 2 bytes)

The postbyte is set up to indicate which register is
the index register, whether that register is to be
automatically incremented or decremented and to specify
the form of the offset to be added to the value in the
index register.

The forms of indexed addressing which we shall
describe here are:

(1) Zero offset indexed addressing

(2) Constant offset indexed addressing

(3) Accumulator offset indexed addressing

(4) Auto increment/decrement indexed addressing

Before describing these addressing modes in detail,
however, let us look at the structure of the postbyte
which determines the actual addressing mode used and,
in some cases, holds the offset which modifies the
index register value.

Bit 7 (the leftmost bit) of the postbyte specifies
whether an offset is stored as part of the postbyte.
If this bit is unset, bits 0-4 are taken as a 5-bit
signed offset in two's complement form. This means
that values between -16 and 15 may be held as part of
the postbyte and automatically added to the index
register.

If bit 7 of the postbyte is set, this means that a
5-bit offset is not part of the postbyte and that bits
0-4 have a completely different meaning. In this case,

32

bits 0-3 are used to specify which type of indexed
addressing is to be used and bit 4 is used to select
direct or indirect indexed addressing. The
correspondance between addressing modes and associated
values of bits 0-3 is set out in the table below.

Bit 4 is the indirect select bit. If it is unset,
this indicates that the computed address is the address
of the instruction operand. If it is set, this means
that the computed address is to be taken as the address
of the address of the instruction operand.

In all types of indexed addressing, bits 5 and 6 of
the postbyte are used to specify which index register
is being used. Each value of this bit pair specifies a
different index register as follows:

X Bit 6 = 0 , Bit 5 = 0
Y Bit 6 = 0 , Bit 5 = 1
U Bit 6 - 1 , Bit 5 = 0
S Bit 6 = 1 , Bit 5 = 1

When bit 7 is 1, bits 0-3 of the postbyte select the
addressing mode to be used. The values of these
bits (in hexadecimal) and their corresponding
addressing modes are shown in the table below:

0

1

2

3

4

5

6

7

Auto increment (+1)

Auto increment (+2)

Auto decrement (-1)

Auto decrement (-2)

Zero offset

ACCB offset

ACCA offset

Not used

The index register is
incremented by 1 after
the address is computed.

As above, increment is 2.

The index register is
decremented by 1 before
the address is computed.

As above, decrement is 2.

The address in the index
register is the operand
address.

The address is computed
by adding the contents of
register B to the index
register contents.

As above, but the
contents of register A
are added to the index
register.

8

9

A

B

C

D

E

F

8-bit signed offset

16-bit signed offset

Not used

ACCD offset

PC relative,

PC relative,

Not used

Extended indirect

The value of the byte
following the postbyte is
added to the index
register to compute the
address.

As above, but the
following 2 bytes are
added to the index
register.

The value of accumulator
D (A:B) is added to the
index register.

The PC acts as an index
register, with the
address computed by
adding an 8-bit offset to
its value.

As above with 16-bit
offset.

The following 2 bytes are
the address of the ad
dress of the instruction
operand.

33

We have already covered extended indirect addressing
and addressing using the program counter PC will be
discussed in section 2.2.7. Now let us look in more
detail at the possible indexed addressing modes.

Auto increment/decrement indexed addressing
This addressing mode allows 1 or 2 to be automatically
added or subtracted from the index register value. No
additional add or subtract instruction is necessary to
accomplish this. When using auto increment addressing,
the value is added to the index register after the
effective address has been computed. In auto decrement
mode, the value is subtracted from the index register
and the effective address then computed.

Examples of instructions using this addressing mode
are:

A7C0 STA ,U+ ; MEM(U) = A: U = U + 1

ECA1 LDD ,Y++ ; D=MEM(Y): Y = Y + 2

34

AB82 ADDA ,-X ; X = X - 1 : A = A + MEM(X)

A3E3 SUBD ,--S ; S = S - 2 : D = D - MEM(S)

Auto increment/decrement indexed addressing is
particularly efficient when a number of data elements
have to be processed in sequence. The index register
is set up to point at the beginning or the end of the
sequence in memory and, after each element is fetched,
the register is incremented or decremented so that it
points at the next element in the sequence.

Zero offset indexed addressing
Using this addressing mode, the value in the index
register is taken to be the address of the instruction
operand. Nothing is added to or subtracted from it.
For example:

A684 LDA ,X ; A=MEM(X)
EDF4 STD [,S] ; MEM(MEM(D)) = D
* Note [] meaning indirect addressing

Constant offset indexed addressing
In this case, a positive or negative constant is added
to the value in the specified index register to compute
the address of the instruction operand. The range of
possible offsets is from -32768 to 32767 (decimal) and
the assembler works out whether the offset is to be
stored as part of the postbyte (-16->15), as an 8-bit
quantity (-128->127) or as a 16-bit quantity (-32768-
>32767). If the offset is not stored in the postbyte,
it immediately follows the instruction postbyte in
memory.

Although a constant value is added to the index
register value to compute the operand address, this
modified value is not stored in the index register.
The addition is purely temporary and the index register
value is not changed by the use of constant offset
addressing. Examples of instructions using this
addressing mode are:

EC7A LDD -6,S ; D = MEM(S-6).
* Note offset stored in postbyte
* in two's complement form

AB8816 ADDA 22,X ; A = A + MEM(X + 22)
* Offset stored as a 1 byte value

AB89012C ADDA 300,X ; A = A + MEM(X + 300)
* Offset stored as a 2 byte value

Accumulator offset indexed addressing
This addressing mode is similar to constant offset
indexed addressing but, rather than the offset being a

35

constant, the value of an accumulator register is added
to the index register to compute the address. The
advantage of this is that the offset can be calculated
and loaded into the accumulator just before it is
required. The programmer need not know the offset in
advance as in constant offset indexed addressing.

Examples of this addressing mode are:

E7A6 STB A,Y MEM(A + Y) = B

ECB8 LDD D,X D = MEM(D + X)

2.2.7 Relative addressing
Another mode of address computation in the M6809 is
relative addressing where the address of an operand or
of another instruction is computed by adding an offset
to the program counter register. This offset may be a
positive or negative, 8-bit or 16-bit value. We shall
look first at how instruction operands are accessed
using this addressing mode and then at the relative
addressing of instructions themselves.

Relative addressing of instruction operands makes
use of the postbyte in the same way as does indexed
addressing. If bits 0-3 of the postbyte are C or D
while bit 7 is set this specifies that the addressing
is PC relative. For example:

AE8C08 LDX 8,PCR ; X = MEM(PCR + 8)

DD8D0400 STD 1024,PCR ; MEM(PCR + 1024) - D

A very important advantage of using PC relative
addressing is that it simplifies the writing of
position independent code. Position independent code
is code which works in exactly the same way
irrespective of where that code is placed in memory.
Such code must make extensive use of relative and
indexed addressing because extended addressing means
that the instruction operands must always be at the
address 'built in' to the code.

With position dependent code, you must always load
the program into exactly the same memory locations as
were used previously. This is not necessarily
convenient or even possible so it is good programming
practice to write all programs in a position-
independent way.

Relative addressing of the instructions in a program
is accomplished by means of so-called 'branch
instructions'. The effect of these branch instructions
is to modify the program counter register. Thus the
next instruction executed is not necessarily the
instruction following the branch instruction but some
other instruction whose address is computed by adding
the specified offset to the value of PC. The relative

36

addressing of instructions is different from the
relative addressing of operands inasmuch as the value
stored in PC is modified whereas in operand addressing
the value of PC is used but is unchanged by the address
computation.

The computation of relative instruction offsets is a
tedious and error-prone task. Usually, it is left to
the assembler to work out the appropriate value to be
added to PC. You may mark instructions with a name (a
label) and use this name as part of the branch
instruction. The assembler knows the number of bytes
occupied by each instruction so it can work out the
appropriate offset to allow a transfer of control to
the labelled instruction.

This can be illustrated by a short assembly code
sequence which is equivalent to the following BASIC
statement:

IF VL > MAX THEN MAX = VL

Assume that VL and MAX are 16-bit quantities held at
addresses A000 and A002 respectively. The assembly
code equivalent to the above BASIC conditional is:

FCA000 LDD VL ; D = MEM(VL)
10B3A002 CMPD MAX ; Compare D with MEM(MAX)
2F03 BLE NEXT ; If VL<=MAX goto NEXT
FDA002 STD MAX ; MEM(MAX) = D
NEXT

The branch instruction in the above sequence, BLE,
modifies the value of PC if and only if VL is less than
or equal to MAX. Notice that the value in the PC
modification field is 3, the number of bytes in the STD
instruction. It is not the number of bytes in the BLE
instruction plus the number of bytes in the STD
instruction. The reason for this is the PC always
points to the next instruction in the instruction
sequence rather than the instruction which is being
executed.

There are many branch instructions available to the
M6809 programmer. They are discussed in detail in
section 3.5 of the following chapter.

2.3 MEMORY-MAPPED INPUT/OUTPUT

We have seen, in Chapter 1, that a computer
organisation includes a number of units which are set
up as peripheral control devices to allow information
to be transferred to and from the processor and memory
units. Obviously, the processor must have access to
these controllers in order to initiate data transfers
to and from the outside world. In this section we
describe, in very general terms how this is done.

37

However, as it is such an important topic we devote a
complete chapter to details of input and output later
in the book.

Recall, from Figure 1.2, that the M6809 processor,
memory and peripheral controllers all have access to a
common data highway or bus. On M6809-based systems
such as the Dragon, this bus is 24 bits wide. This
means 24 bits of information can be simultaneously
transferred from device to device. Of these 24 bits,
16 bits are reserved for the data address and 8 bits
are used to transfer the data itself.

In the same way as all memory locations have a
unique address, so too must input/output (I/O) devices
connected to this shared bus. On some systems, the bus
has an extra line indicating that the address on the
bus is a peripheral rather than a memory address but
this is not the case on M6809 systems. Rather, the
addresses of I/O devices have exactly the same form as
memory addresses with specific addresses reserved for
these I/O devices. These memory addresses may not be
used for straightforward data storage as they are
allocated to particular I/O devices.

This is not a severe handicap as there are usually
only a few I/O devices on any system. On the Dragon,
there are 256 memory bytes reserved for use by the I/O
system. These are at the top end of memory between
FF00 and FFFF. If we access one of these addresses
which is allocated to an I/O device, the effect of the
access is to initiate a data transfer to or from that
peripheral unit. The synchronous address multiplexor
examines addresses on the bus and detects those which
refer to I/O controllers. The data is then routed to
these devices for input or output.

This type of I/O organisation where peripherals are
associated with specific memory addresses is called,
for obvious reasons, memory-mapped I/O. It is a
conceptually elegant way of carrying out input and
output as there is no need for specific instructions to
initiate peripherals and all instructions which
reference memory may be used to access the system's I/O
devices. Full details of the Dragon's I/O system are
provided in Chapter 8 and in the appendices.

Chapter 3

The M6809 instruction set

In Chapter 2 we described the general features of the
M6809 architecture and introduced, without a great deal
of explanation, some of its machine instructions. A
thorough knowledge of the machine instruction set is
vital for the machine code programmer so this chapter
is completely dedicated to a description of the M6809
instruction set.

At this point, we must emphasise the distinction
between machine instructions and assembly language
mnemonics. Machine instructions are the actual binary
op-codes executed by the processor as it runs a
program. Assembly language instructions are the
mnemonics and names used by the programmer to symbolise
these machine instructions because It is much easier
for us to think in symbols and names rather than
numbers.

There is not necessarily a one-to-one correspondence
between machine instructions and assembly language
instructions. For example, on the M6809 there are
over 1400 distinct machine instructions when we take
into account all the different combinations of op-code
and postbyte that are permitted. Fortunately, however,
there are only 59 distinct instruction mnemonics which
must be remembered by the assembly language programmer
along with the register names and the symbolism
associated with the different M6809 addressing modes.
Combinations of these allow all possible machine
instructions to be represented.

The reason for the enormous discrepancy between the
numbers of assembly language and machine code
instructions is that many assembly language
instructions have variants for each of the machine
registers and for each addressing mode allowed with
that instruction. For example, the instruction
specifying that a register is to be loaded with an
immediate value has the form:

LD<register> <value>

This is all that need be remembered by the assembly
language programmer. However, there are seven distinct
machine language op-codes associated with this
instruction, one for each register that may be directly

38

39

loaded. The assembly code mnemonics for these are LDA,
LDB, LDD, LDX, LDY, LDU, and LDS. These have
associated op-codes of 86, C6, CC, 8E, 108E, CE, and
10CE.

All of these load instruction mnemonics have a
different op-code associated with each permitted
addressing mode. For example, if immediate addressing
is used with an LDA instruction the op-code is 86. If
direct addressing is used, the op-code is 96, for
indexed addressing the op-code is A6 and for extended
addressing B6. Instructions which load the other
registers also have distinct op-codes for each
addressing mode so, in all, the LD instruction mnemonic
has 28 distinct machine instructions which may be
derived from it. If we consider postbytes to be part of
the instruction, this gives many more machine language
derivations from an assembly language load instruction.

It is practically impossible to program directly in
machine language because of the enormous number of op
codes that must be remembered by the programmer.
Normally, an assembler is used to carry out the
tedious task of translating mnemonics to op-codes,
working out relative offsets and constructing
postbytes. At worst, if an assembler is not available,
the programmer should write his program in assembly
code as if an assembler is at hand and then translate
manually to machine code. Attempting to program
directly in machine code inevitably leads to
frustration, boredom and many errors.

A complete table of assembly language mnemonics and
their associated machine op-codes is provided in
Appendix 1. It must be emphasised, however, that hand
translation from assembly code to machine code is not
recommended for anything apart from very short
programs.

The instructions available to the M6809 programmer
can be considered under seven distinct headings. These
are:

(1) Data movement instructions
Instructions which transfer information to and
from registers and memory.

(2) Arithmetic instructions
Instructions used to implement arithmetic opera
tions such as add and subtract.

(3) Logic instructions
Instructions used to execute logic operations
such as or and shift.

(4) Test instructions
Instructions which set flags in the condition
code register depending on operand values.

40

(5) Branch instructions
Instructions which affect the normal sequential
flow of control in a program by modifying the
value of PC.

(6) Interrupt handling instructions
Instructions used to handle so-called interrupts
which usually arise from peripheral devices in
the system. Interrupts are described in Chapter
8.

(7) Miscellaneous instructions
Any other instructions which don't fit under the
above headings.

Many data movement, arithmetic, logic and test
instructions have the effect of setting or unsetting
particular bits in the condition code (CC) register. In
particular, if the result of executing an instruction
is zero, the zero (Z) flag in CC is always set. If the
result is negative, the negative (N) flag in CC is
always set.

Arithmetic, logic and test instructions may also
change the value of the carry (C) flag, the half-
carry (H) flag and the overflow (V) flag in the
condition code register. Some of these are described
later in this chapter under the appropriate headings.
This description is not complete - full details of how
instructions affect CC flags are provided in Appendix
1.

In the following description of the M6809 assembly
code instructions, it is sometimes necessary to refer
to particular CC flags. We use a dot notation,
CC.<flag letter>, to make these references. Thus CC.N
is the negative flag, CC.V is the overflow flag, etc.
When we say a flag is set this means that its value is
1, when unset the flag value is zero.

In the remainder of this section and in subsequent
chapters, we sometimes use BASIC statements to explain
the meaning of assembly language instructions. We have
done this informally until now but, from now on, we
will use the following conventions.

(1) Registers are indicated by BASIC variables with
the same name as the register. Therefore, the
names of the registers are A, B, D, X, Y, U, S,
DP, CC, and PC.

(2) The use of some other BASIC name refers to the
location in memory which has that symbolic name.
Therefore an assembly code instruction, LDD XVAL,
might be commented with the BASIC statement, D =
XVAL.

41

(3) When an absolute address in memory is referenced,
we consider memory as a one-dimensional array
called MEM and use the absolute address as an ar
ray index. Therefore, MEM(A034) refers to the
memory location whose address, in hexadecimal, is
A034. We also use the same notation when refer
ring to an indexed address. The register name
plus or minus any offset is stated as an index
into MEM. Thus, MEM(X +10) means the memory lo
cation whose address is computed by adding 10 to
the contents of register X. In all cases, con
stant values used as indices to MEM are hexade
cimal constants.

Operations using a 16-bit register result in 2 bytes
being loaded or stored from memory whereas 8-bit
register operations result in a single byte being
loaded or stored. We do not explicitly distinguish
between 1 and 2 byte memory operations in the comments
accompanying the assembly code examples.

The examples provided are intended to illustrate the
assembly code instructions so no machine code
equivalents are given in this chapter.

3.1 DATA MOVEMENT INSTRUCTIONS

The function of data movement instructions in the M6809
is to transfer information, without change, from
register to register, from register to memory, and from
memory to register. In all cases, apart from the EXG,
register exchange instruction, and some instances of
the LEA, load effective address instruction, the data
movement is implemented as a copy operation. That is,
immediately after the data movement instruction has
been executed, the source operand and the destination
operand as specified in the instruction have the same
value. The value of the source operand is not destroyed
by the execution of the instruction.

Data movement instructions have the following form:

<op-code mnemonic><register specifier> <parameter>

The instruction parameter may take different forms
depending on the particular data movement instruction.
These will be described along with the individual
instructions.

There are a total of 7 types of data movement
instructions:

(1) Load instructions
Instructions which move data from memory to a
register.

42

(2) Store instructions
Instructions which move data from a register to
memory.

(3) Transfer instructions
Instructions which move data from one register to
another.

(4) Exchange instructions
Instructions which exchange the contents of one
register with another.

(5) Load effective address instructions
Instructions which compute an operand address and
load it into an index register.

(6) Push instructions
Instructions which push register values onto a
stack.

(7) Pull instructions
Instructions which pull values stored on a stack
into registers.

3.1.1 Load instructions
Load instructions in the M6809 are used to load data
values into a register from memory or as immediate
operands from the instruction itself. The general form
of these instructions is:

LD<register> <address or immediate operand>

Registers A, B, D, S, U, X, and Y may be used in load
instructions. If the instruction specifies a 16-bit
register (D, U, S, X, T) , the effect of the load
instruction is to move the addressed memory byte into
the hi-byte of the register and to load the following
memory byte (address + 1) into the lo-byte. That is, 2
memory bytes or a 16-bit immediate operand is moved
into the register. If an 8-bit register is specified,
the addressed byte or 8-bit immediate operand is moved
into the register.

Four classes of addressing mode are allowed with
load instructions. These are immediate addressing,
direct addressing, indexed addressing and extended
addressing. Depending on the addressing mode used and
on the particular instruction op-code, load
instructions are 2, 3, 4, or 5 bytes in length.

Some examples of load instructions, in assembly
code, are:

LDA #10 ; A = 10

43

LDD MAXVAL ; D = MAXVAL

LDS 10,X ; S = MEM(X + 10)

LDB $50 ; B = MEM(DPR + 50)

3.1.2 Store instructions
Store instructions are the converse of load
instructions. They are used to transfer information
from the machine registers to memory. The general form
of store instructions is:

ST<register> <address>

As with load instructions, the allowed registers are A,
B, D, X, Y, U and S. The use of a 16-bit register name
results in 2 bytes being moved from the register to
memory, an 8-bit name results in a single byte being
moved.

Allowed addressing modes are direct addressing,
indexed addressing, and extended addressing. For
obvious reasons, immediate addressing is not meaningful
in store instructions.

Some assembly code examples of store instructions
are:

STA I ; MEM(I) = A

STX ,Y ; MEM(Y) = X

STD $30 ; MEM(DP + 30) = D

Like load instructions, store instructions can have
lengths between 2 and 5 bytes depending on the op-code
and addressing mode used.

3.1.3 Transfer instructions
Transfer instructions move the contents of one register
to another. Any registers may be specified as long as
they are of like size, that is, both operands must be
either 16-bit registers or 8-bit registers. The
mnemonic for a transfer instruction is TFR and the only
permitted addressing mode is register addressing.
Transfer instructions are always 2 bytes in length.

Examples of transfer instructions are:

TFR A,DPR ; DPR = A

TFR X,Y ; Y = X

3.1.4 Exchange instructions
The exchange instruction, whose mnemonic is EXG, is
similar to the transfer instruction described above.
However, rather than the value of the source register

44

being copied to the destination register, the values of
the source and destination register are swapped.

Again, register addressing is the only addressing
mode which may be used with exchange instructions. For
example:

EXG A,DPR ; Temp = A: A = DPR: DPR = Temp

EXG S,U ; Temp = U: U = S: S = Temp

3.1.5 Load effective address instructions
The purpose of the load effective address instructions
is to set up one of the index registers (S, U, X, Y) to
hold the absolute address of an operand in memory.
Because address computations in the M6809 can be fairly
complex, and hence time consuming, it is sometimes
useful to carry out this computation once only and then
use this computed value in subsequent instructions.

Load effective address instructions have the form:

LEA<index register> <address>

The specified address must be an indexed address. LEA
instructions are either 2, 3, or 4 bytes long depending
on the particular type of indexed addressing which is
used. Examples of these instructions are:

LEAS 10,X ; S = X + 10

LEAX D,X ; X = D + X

It is clear from the BASIC representations of the
instruction functions that, in many cases, the LEA
operation involves an addition to an index register.
This means that a subsidiary use of this operation is
to allow addition and subtraction operations on the
index registers without requiring that their contents
be transferred to the accumulator register. For
example:

LEAS 10,S ; S = S + 10

LEAX -20,X ; X = X - 20

The above operations can, of course, be accomplished
using the accumulator registers:

TFR S,D ; D = S
ADDD 10 ; D = D + 10
TFR D,S ; S = D

However, the single LEA instruction executes more
quickly and takes up fewer memory bytes than these
instruction sequences.

45

3.1.6 Push instructions
The function of push instructions is to copy the
contents of one or more registers onto a stack in
memory whose top is addressed by the U or the S
register. Push instructions have the form:

PSH<U or S> <register list>

The PSH can move the contents of up to 8 registers (CC,
A, B, DPR, X, Y, S or U, PC) onto the memory stack.

Push instructions have a postbyte indicating which
registers have actually to be pushed onto the stack.
Individual registers are indicated by bits in the
postbyte as follows:

Bit 0 CC
Bit 1 A
Bit 2 B
Bit 3 DPR
Bit 4 X
Bit 5 Y
Bit 6 S or U
Bit 7 PC

Push instructions are always 2 bytes in length. Some
examples are:

PSHS A,B ; Push A and B onto the S-stack

PSHU A,B,Y,X,PC,CC,DPR ; Push all registers apart
* from U onto the user stack

The order in which the user specifies the registers in
the push instruction is not necessarily the order in
which they are pushed onto the stack. Registers are
always pushed onto the stack in the following order:

PC, U/S, Y, X, DPR, B, A, CC

If all registers are pushed, CC is on top of the stack,
A is the second top location, B is the third top
location and so on. If only a subset of the registers
are pushed onto the stack, the order above is
maintained although, obviously, only the specified
registers are actually stacked.

For example, after executing the instruction PSHU
A,X,B, the top of the stack is a copy of register A,
the second top is a copy of register B and the third
top is a copy of register X although this was not the
order specified in the instruction. In general, this
automatic ordering of stacked registers saves the user
having to care about stacking order. If, however, a
particular stacking order is required this must be
achieved by using separate push instructions for each
register.

46

3.1.7 Pull instructions
Pull instructions are the converse of push
instructions. They move information from stacks in
memory to specified registers. The form of pull
instructions is:

PUL<S or U> <register list>

Pull instructions, like push instructions, use a
postbyte to specify which registers are to be pulled
from the stack. Some examples of pull instructions,
which are always 2 bytes long, are:

PULS A,B ; Copy the top 2 locations of the
* hardware(S) stack to A and B.
* Adjust the stack pointer accordingly

PULU A,B,DPR,PC,X,Y,S,CC ; Copy values of all
* registers from the
* user stack

The order in which register values are pulled from the
stack is again independent of the order in which they
are specified in the instruction. Therefore, CC is the
first register pulled, A the next register, B the third
register and so on.

3.2 ARITHMETIC INSTRUCTIONS

The arithmetic instructions available on the M6809
operate on the accumulator registers and, in some
cases, directly on memory locations. In all cases when
an instruction operates on a register one of its
operands is the value of that register and the result
of the operation is placed in that register. Therefore,
after an arithmetic operation on a register the
previous contents of that register are destroyed.

There are twelve arithmetic operations available to
the M6809 programmer which we shall consider in seven
groups:

(1) Add instructions

(2) Subtract instructions

(3) Clear instructions

(4) The multiply instruction

(5) Negate instructions

(6) The sign extend instruction

(7) The decimal adjust instruction

47

As a side effect of executing most of these arithmetic
instructions, flags in the condition code register are
set. Particular settings are described under the
appropriate heading below.

3.2.1 Add instructions
There are four kinds of add instruction provided on the
M6809. These have the forms:

ABX X = X + B

ADC<A or B> Add memory to A or B with CC.C

ADD<A, B, or D> Add memory location to accumulator

INC<A or B> Add 1 to register or memory location

The ABX instruction is the simplest add instruction.
This instruction takes the contents of B to be an
unsigned 8-bit value (0-255) and adds it to X leaving
the result in X. The condition code flags are not
affected. This instruction is similar in effect to the
instruction LEAX B,X but there are important
distinctions. Firstly, the value of B in an LEA
instruction is taken as an 8-bit two's complement
number so may take a value between -128 and 127. The
value of B in an ABX instruction can range between 0
and 255. Secondly, ABX is a 1-byte inherent
address (this means that the instruction operands are
always the same) so it is shorter than the
corresponding LEA instruction. The provision of this
instruction allows certain kinds of indexed addressing
to be implemented in a very efficient way.

The add with carry or ADC instruction operates on
either accumulator A (ADCA) or accumulator B (ADCB).
This instruction adds the contents of the register plus
the carry bit CC.C to the specified memory location
leaving the result in the register. The memory
location may be addressed using direct, indexed or
extended addressing or may be an immediate value.

ADC instructions are used when multiple-byte
arithmetic is implemented where it is necessary to take
a carry from a previous arithmetic operation into
account. The ADC instruction affects the C, N, V, Z,
and H bits of CC.

Examples of ADC instructions are:

ADCA #35 ; A = A + CC.C + 35

ADCB ,X ; B = B + CC.C + MEM(X)

Add instructions operate on registers A, B, and D and
their function is to add an immediate operand or a
memory location to one of these registers. Like ADC

48

instructions, the C, N, V, Z, and H bits in the
condition code register are affected by an ADD
instruction.

Examples of add instructions are:

ADDA SVAL ; A = A + MEM(SVAL)

ADDB #5 ; B = B + 5

ADDD ,--Y ; Y = Y - 2 : D = D + MEM(Y)

The INC instructions are special purpose add
instructions which are used to add one to the single
byte accumulators A and B or to a specified memory
location. Although this operation can be implemented
in other ways, the 'add 1 to something' operation is so
common that it is worth providing it as a separate
machine instruction.

The instructions INCA and INCB are 1-byte
instructions with no address field whereas the memory
increment instruction INC may use direct, indexed or
extended addressing. For example:

INCA ; A = A + 1

INCB ; B = B + 1

INC FRED ; MEM(FRED) = MEM(FRED) + 1

The INC operation affects the N, Z and V bits of the
condition code register.

3.2.2 Subtract instructions
There are three types of subtract instruction available
to the M6809 programmer which are the converse of ADC,
ADD and INC. These are the instructions SBC (subtract
with carry), SUB (subtract), and DEC (decrement by 1).

The function of these instructions is to subtract an
immediate operand or the value of a memory location
from a register, leaving the result in that register.
The operands for this operation must be in two's
complement form.

All the subtract operations set the overflow flag
CC.V if the result is too small to be held in the
specified register or memory location. They also
affect the N and Z flags in CC and the instructions SUB
and SUBC set the carry flag in the event of a borrow
occurring in the last place of a subtraction.

The SBC instructions operate on registers A and B
and subtract CC.C as well as an immediate value or a
memory location value from the specified register. For
example:

SBCA J ; A = A - MEM(J) - CC.C

49

SBCB 4,Y ; B = B - MEM(4 + Y) - CC.C

The subtract instruction SUB operates on registers A,
B, or D. For example:

SUBA #4 ; A = A - 4

SUBB $30 ; B = B - MEM(30)

SUBD POINTER ; D = D - MEM(POINTER)

The decrement instruction, DEC, subtracts 1 from an 8-
bit value held in either A, B or a memory location.
For example:

DECA ; A = A - 1

DECB ; B = B - 1

DEC CVAL ; MEM(CVAL) = MEM(CVAL) - 1

3.2.3 Clear instructions
The function of clear instructions (CLR) is to set
register A or B or a 1-byte memory location to zero,
that is, to clear it of its previous value. The CLRA
and the CLRB instructions are 1-byte instructions with
no address field whereas the CLR instruction may use
direct, indexed or extended addressing.

Examples of clear instructions are:

CLRA ; A = 0

CLRB ; B = 0

CLR A,X ; MEM(A + X) = 0

3.2.4 The multiply instruction
On most 8-bit microprocessors multiply instructions do
not exist. Multiplication is implemented by a software
routine which performs a sequence of repeated additions
to multiply two numbers. The reason for this is that
multiplication is a relatively complex operation whose
result is always twice as long as its operands. To
include this in an 8-bit architecture increases the
complexity of that architecture as provision must be
made for a 16-bit result.

The implementation of multiplication by repeated
addition obviously makes it a relatively slow process
compared to addition and subtraction. Furthermore, it
is a fairly common operation when accessing elements of
two-dimensional arrays or matrices. As the M6809 is a
hybrid microprocessor whose architecture includes 8-bit
and 16-bit features, the designers of that chip have
included a limited form of multiply instruction. The

50

multiply instruction, which has the op-code MUL, is a
1-byte instruction which takes the contents of
accumulators A and B as its operands and leaves the
result of the multiplication in accumulator D. As D is
a catenation of A and B, the original operands are
destroyed.

The MUL instruction takes the values in A and B to
be unsigned 8-bit values rather than two's complement
numbers. The reason for this is that the use of
unsigned multiplication makes it easier for the
programmer to write multi-byte multiplication routines
for multiplication and that the array element
computation referred to above generally uses only
positive array indexes.

An example of a multiply instruction is:

MUL ; D = A * B

3.2.5 Negate instructions
Negate instructions operate on 8-bit two's complement
values held in register A, register B or in memory.
They are written as NEGA, NEGB, or NEG <address>. NEGA
and NEGB negate the contents of registers A and B
respectively whereas NEG may use direct, extended or
indexed addressing.

Examples of negate instructions are:

NEGA ; A = -A

NEGB ; B = -B

NEG SVAL ; MEM(SVAL) = -MEM(SVAL)

3.2.6 The sign extend instruction
The sign extend instruction, SEX, is a 1-byte
instruction whose function is to convert an 8-bit two's
complement number held in accumulator B into a 16-bit
two's complement number in accumulator D. In essence,
it takes the sign bit of B and extends it so that it
becomes the sign bit of D. The value of the hi-byte
of D is set up to be the same as the sign bit of B.
This means that if the number is positive, sign bit =
0, accumulator A is cleared. If the number in B is
negative, accumulator A is filled with 1s.

3.2.7 The decimal adjust instruction
The decimal adjust instruction is used when decimal
arithmetic, described in section 1.1.4, is used on the
M6809. The use of decimal arithmetic entails holding
two 4-bit digits in an 8-bit register rather than an
8-bit binary number.

When an add operation is performed on such a value,
a binary addition takes place so that the numbers held
in each of the 4-bit register fields need not

51

necessarily be correct. For example, say the numbers
27 and 53 are added. When represented in 4-bit decimal
notation these have binary values 00100111 and 01010011
respectively. When a binary addition is performed, the
result is 01111010 which cannot be represented as
decimal as the first digit is 7 and the second is
hexadecimal A. Clearly, the result of the addition
should be 80 which in binary form is 10000000.

The decimal adjust instruction examines register P.
and also the carry bits CC.H and CC.C. It checks to
see if an incorrect decimal value is stored in that
register. If so, it adjusts the decimal digits so that
the correct value is restored. In the above example,
it would check bits 0-3 of the number, see that they
were an impossible decimal number and would convert
this to the correct number by adding 6 to it. This
results in a carry into bits 4-7 thus increasing the
decimal value stored there to 8. The correct number is
then represented in the register.

The need for the half-carry bit CC.H now becomes
clear. If bits 0-3 of the decimal numbers are such
that an addition generates a value which cannot be
stored in 4-bits, the half-carry bit is set. The
decimal adjust instruction recognises this and adjusts
the decimal digits accordingly.

3.3 LOGIC INSTRUCTIONS

Like the M6809's arithmetic instructions, the logic
instructions are almost exclusively concerned with
operations on the A and B registers and with individual
memory bytes. The two exceptions to this art
instructions which operate on the condition code
register and which provide a generalised mechanism for
setting and unsetting individual flag bits in that
register.

Logic operations manipulate the individual bits in
their operands and look upon these operands as simple
groups of bits (bitstrings) rather than as numeric
values. For the reader who is unfamiliar with logic
operations we describe the actual operation as well a:
the instruction format along with each class of logic
instruction.

Logic instructions may be looked upon as falling
into one of five classes:

(1) And instructions

(2) Or instructions

(3) Complement (not) instructions

(4) Shift instructions

52

(5) Rotate instructions

Individual instructions are described under the
appropriate heading below.

3.3.1 And instructions
The logical and operation takes 2 bits as its operands
and returns a value of 1 if, and only if, both of its
operands are 1. All possible operands and results for
this operation are therefore:

0 AND 0 -> 0
1 AND 0 -> 0
0 AND 1 -> 0
1 AND 1 -> 1

The M6809's and instructions operate on 8-bit data so
therefore repeat the above operation for all 8-bits in
the operand register. The registers A, B, and CC may
take part in and operations.

The instructions ANDA and ANDB perform a logical and
on the contents of the named register and a byte in
memory or an immediate operand. Direct, indexed or
extended addressing may be used to reference a memory
byte.

The ANDCC operation, on the other hand, may only use
immediate addressing. Its function is to and the CC
register with the immediate byte provided leaving the
result in CC.

Examples of and instructions are:

ANDA #$F0 ; Ands A with (hex) F0.
* Note that the effect of this is
* to clear bits 0-3 in A
* and to leave bits 4-7 unchanged

ANDB MASK ; Ands B with MEM(MASK)

ANDCC #$00 ; Ands CC with (hex) 00
* This clears CC

The reader will have gathered from these examples that
one of the most important functions of the and
operations is to clear specific bits in a register
whilst leaving the other bits unchanged. Anding a 0
with a 1 bit always clears it whereas anding a 1 with
either a 1 or a 0 always leaves that value unchanged.

3.3.2 Or instructions
There are two types of or instructions provided on the
M6809. These are so-called inclusive or and exclusive
or which have mnemonics OR and EOR respectively.

These operations can be defined by their effect on
bit values:

53

0 OR 0 -> 0 0 EOR 0 -> 0
1 OR 0 -> 1 1 EOR 0 -> 1
0 OR 1 -> 1 0 EOR 1 -> 1
1 OR 1 -> 1 1 EOR 1 -> 0

Like the and instructions, or instructions are provided
which operate on registers A, B, and CC. However,
there is no EORCC instruction - only EORA and EORB are
available to the programmer.

Examples of OR and EOR instructions are:

ORA #$0F ; Or (hex) OF with register A
* Note the effect of this is to
* set bits 0-3 of A whilst leaving
* bits 4-7 unchanged

EORB ,X ; Exclusive or B with MEM(X)

ORCC #$03 ; Or (hex) 03 with CC thus setting
* bits 0 and 1 in that register

Just as and instructions can be used to clear specific
bits in a register, or instructions may be used to set
specific bits. Oring with a 1 bit always sets the
corresponding register bit whereas oring with a 0
always leaves that bit unchanged.

3.3.3 Complement instructions
Complement instructions simply switch the bits in a
register or memory byte. That is, all 1 bits are set to
0 and all 0 bits are set to 1. For example, if B holds
the bitstring 10010011, executing a COMB instruction
results in the bitstring 01101100 being stored in B.

Single byte instructions are available to complement
registers A and B as is a memory complement instruction
which may use direct, indexed or extended addressing.
An alternative name which is sometimes used for the
complement operation is the 'not' operation.

Examples of complement instructions are:

COMA ; Complement register A

COM B,X ; Complement MEM(B + X)

The complement operation is not the same as the NEG
arithmetic operation. The NEG operation forms the two's
complement of a number whereas the COM operation forms
the so-called one's complement value.

3.3.4 Shift instructions
The purpose of shift instructions is to move all the
bits in a register along one place to the left or to
the right with the leftmost or rightmost bit 'falling
off the end' and being discarded. For example, if a

54

register holds the binary value 10110001 and is shifted
left, the resultant value is 01100010. If a right
shift is executed, the resultant value is 01011000.
Notice that 0s are filled in on the left when a right
shift is executed and on the right when a left shift
takes place. The M6809's shift instructions fall into
two classes:

(1) A r i t h m e t i c s h i f t i n s t r u c t i o n s
Arithmetic shift instructions consider bit 7 of
the register being shifted to be the sign bit.
This bit does not take part in arithmetic shift
right instructions and its value is preserved.
The bit is shifted during arithmetic shift
left (ASL) instructions. For example, if a re
gister value is 10010011 and an ASL instruction
using that register is executed, the resultant
value is 00100110. However, with ASR bits 0-6 are
shifted with the sign bit propagated into the
lower bits. The resulting value is 11001001.

(2) Logical shift instructions
Logical shift instructions do not recognise the
sign bit and their operands are shifted to the
left or to the right as described in the intro
duction to this section. Logical shifts have
mnemonics LSL (logical shift left) and
LSR (logical shift right). Notice that the LSL
and the ASL instructions are equivalent.

The arithmetic and logical shift instructions operate
on the A and B registers and on memory bytes accessed
using direct, indexed or extended addressing. Shift
instructions always affect the carry bit CC.C whose
value becomes that of the bit which is shifted out of
the register.

Examples of shift instructions are:

ASLA ; Shift A left by 1 bit with
* CC.C set to the value of bit 7
* of A before the shift

ASRB ; Shift B right by 1 bit with
* CC.C set to the value of bit 0
* of B before the shift

LSL SVAL ; MEM(SVAL) is shifted left by
* 1 bit with CC.C set accordingly

LSR -16,U ; MEM(U-16) is shifted right by 1 bit
* with CC.C set accordingly

3.3.5 Rotate instructions
Rotate instructions are similar to logical shift

55

instructions. The only difference is that the value of
the carry bit CC.C rather than a 0 is moved to the
leftmost or rightmost place of the register, depending
on whether a rotate right or rotate left instruction is
executed.

The mnemonics for rotate right and rotate left
instructions are ROR and ROL respectively and they
operate on the A or B registers or on a memory byte. As
usual, direct, indexed or extended addressing may be
used to refer to this byte in memory.

Examples of rotate instructions are:

RORA ; A is shifted right by 1 bit with
* bit 7 becoming CC.C and CC.C taking
* the value of bit 0 before the shift

ROL SVAL ; MEM(SVAL) is shifted left by 1 bit
* with bit 0 becoming CC.C and CC.C set
* to the original value of bit 7.

3.4 TEST INSTRUCTIONS

The M6809's test instructions allow the programmer to
determine if certain conditions are true or false. The
execution of a test instruction always causes one or
more bits in the CC register to be set or unset
depending on the result of the test. Thus CC bit
settings are the means by which test results are
'remembered' for use by following instructions.

There are three kinds of test instructions:

(1) Bit test instructions

(2) Byte test instructions

(3) Compare instructions

Bit test instructions only operate on registers A and B
and byte test instructions on A, B and memory bytes.
Compare instructions, however, are available for all
index and accumulator registers.

3.4.1 Bit test instructions
The bit test instructions BITA and BITB are used to
test if particular bits (0-7) in register A or B are 1
or 0. The operand of the bit test instruction is a
single byte called a mask whose value determines which
bits in the specified register are to be tested.

In order to test bit n in the register, the mask is
set up so that only its nth bit is 1 with all other
mask bits set to 0. Therefore, to test bit 4, the mask
value should be 10 (hex) and to test bit 6, it should
be 40 (hex).

If the bits being tested are set, the effect of the

56

bit test instruction is to unset the zero flag (Z-flag)
in the CC register. Recall that this flag is always
set when the result of an operation is zero and unset
when the result is non-zero. Bit test is implemented
as an and operation but without the anded value being
stored in the specified register. Therefore, if a
tested bit is 1, CC.Z is 0 and if a tested bit is 0,
CC.Z is 1.

Examples of bit test instructions are:

BITA #$80 ; Tests bit 7 of A
* CC.Z = not A.7

BITB MASK ; Tests the bits of register B
* according to MEM(MASK)

3.4.2 Byte test instructions
Byte test instructions are used to test if a byte in
memory, register A or register B is positive, negative
or zero. The mnemonic for these instructions is TST
with, as usual, A or B appended to it if registers are
tested. If a memory byte is being tested it may be
addressed using direct, indexed or extended addressing.

Byte test instructions are implemented by
subtracting 0 from the contents of the byte being
tested. The result of this subtraction causes the
negative flag and the zero flag in the CC register to
be set or unset. We have already discussed how the Z-
flag is set if the result of the previous operation is
zero so, if the tested byte is zero, CC.Z is set and
CC.N is unset.

If the byte tested is positive, both CC.Z and CC.N
are unset, whereas if it is negative CC.Z is 0 and CC.N
is 1. In all cases the byte test instruction causes
the overflow bit CC.V to be unset.

Examples of byte test instructions are:

TSTA ; Test register A

TST 16,X ; Test MEM(16 + X)

3.4.3 Compare instructions
Compare instructions allow registers A, B, D, X, Y, S,
and U to be compared with one or two bytes in memory or
with an immediate operand. Allowed addressing modes
are direct, indexed and extended addressing. The
mnemonic for compare instructions is CMP followed by
the name of the particular register used in the
comparison.

Like byte test instructions, compare instructions
are implemented as a subtraction with no permanent
effect on the instruction operands. The addressed 8-
bit or 16-bit quantity is subtracted from the register
contents and the carry, overflow, zero and negative
bits in the condition code are set accordingly.

57

If the value in memory is less than the register
value, the result of the comparison is positive so CC.N
is unset. If it is greater than the negative value,
the result is negative so CC.N is set, and if the
values are equal, the result of the subtraction is zero
so CC.Z is set.

Examples of compare instructions are:

CMPX [MAXADD] ; Compare X with MEM(MEM(MAXADD))

CMPB #10 ; Compare B with (decimal) 10

CMPD 16,U ; Compare D with MEM(16 + U)

Compare instructions are mostly used immediately before
branch instructions to implement loops, conditions,
etc. The programmer need not explicitly be aware of
which bits in CC are set or unset by the compare
instruction when they are used in this way.

3.5 BRANCH INSTRUCTIONS

The M6809's branch instructions are provided to give
the programmer control over the flow of execution of
his program. They allow single bits or combinations of
bits in the condition code register to be tested and,
on the basis of these tests, add or subtract some value
from the PC register. This PC modification results in
a break in the normal sequential execution of machine
instructions and transfers control to some other
instruction.

Branch instructions may be considered under four
headings:

(1) Unconditional branch instructions
These always cause a transfer of control ir
respective of the bit settings in the CC regis
ter.

(2) Simple conditional branch instructions
These test a single bit in the CC register with a
control transfer dependent on its value.

(3) Signed conditional branch instructions
These are used if, in the previous test, signed
register contents were compared with signed con
tents of memory. They test one or more bits in
CC with control transfers dependent on their
values.

(4) Unsigned conditional branch instructions
These are similar to signed conditional branch
instructions but are used when unsigned values
were compared in a previous operation.

58

All branch instructions use PC relative addressing with
the value to be added to PC held as an 8-bit or 16-bit
instruction operand. Because the operand may be 1 or
two bytes, there are 2 forms of every branch
instruction, a short form and a long form. Short
branch instructions have the form:

B<condition> <1 byte 2's complement displacement>

Long branch instructions have the form:

LB<condition> <two byte 2's complement displacement>

In the description and examples below, it is convenient
for us to show only the short form of the branch
instructions. However, the reader should bear in mind
that long branch forms are also allowed. The actual
machine code value for the long branch form of a branch
instruction is usually made up by prefixing the
corresponding short branch op-code with
10 (hexadecimal). Long branch instructions are used
when the displacement in the branch instruction is less
than -128 or greater than 127.

3.5.1 Unconditional branch instructions
There are three distinct unconditional branch
instructions available to the M6809 programmer. These
are:

BRA Branch always
BRN Branch never
BSR Branch to subroutine

The BRA instruction is equivalent to a BASIC GOTO
statement and the BSR instruction to a BASIC GOSUB
statement. These instructions always add their
displacement to PC irrespective of the settings of CC
flags. In addition, the BSR instruction, before
modifying PC, stacks that register on the hardware
stack referenced by the S register. This means that,
on return from the subroutine, execution can be resumed
at the instruction which follows the BSR instruction.

The BRN instruction is a so-called no-op
instruction. In short it does nothing at all except
take up 2 or 4 bytes of space. When this instruction
is executed, control immediately moves on to the
following instruction. This may, therefore, appear to
be a useless instruction. However, it has its uses
when the programmer wishes to cheat a little and hide a
1 or 2 byte instruction in the operand field of the BRN
instruction. After the first execution of BRN when
this instruction is ignored, it is possible to branch
back to the hidden instruction and execute it. This,
however, is poor programming practice and is not a
recommended technique.

59

3.5.2 Simple conditional branch instructions
Simple conditional branch instructions examine a single
bit in the M6809's condition code register.
Instructions exist which branch on the setting of the
carry flag, the overflow flag, the negative flag, and
the zero flag. There are two instructions which test
each flag. One of these instructions branches if the
flag is set, the other branches if the flag is unset.

The table below lists the simple conditional branch
instructions and shows their association with condition
code flags.

As with all other branch instructions, these may take
an 8-bit or 16-bit signed two's complement offset thus
allowing forward or backward branching. If a 16-bit
offset is used, the mnemonics above must be prefixed
with an L to indicate long branching.

3.5.3 Signed conditional branch instructions
Signed conditional branch instructions are used when a
preceding operation has compared the values of signed,
numeric operands. These branch instructions examine
combinations of condition code flags to determine if
the specified condition is true or false and if
branching should occur.

The table below shows the four distinct signed
conditional branch instructions available to the M6809
programmer. In addition to these, the simple
conditional branch instructions BEQ and BNE may also be
used as signed conditional branches, where the branch
takes place if the operands in the preceding comparison
were equal or not equal.

Flag
C

V

Z

N

Mnemonic
ECS
BCC

BVS
BVC

BNE

BEQ

BMI
BPL

Function
Branch if carry bit is set
Branch if carry bit is unset (clear)

Branch if overflow bit is set
Branch if overflow bit is clear

Branch if zero bit is unset
that is, when comparison operands
are not equal
Branch is zero bit is set
that is, when comparison operands
are equal

Branch is negative bit is set
Branch if negative bit is unset

Flag combination
NOT(Z OR (N XOR V))

NOT(N XOR V)

Mnemonic
BGT

BGE

Function
Branch if greater than

Branch if greater than
or equal

Notice that the pairs of conditions above are
complementary with the greater than conditions the
inverse of the less than conditions. BLE is the
complement of BGT and BGE is the complement of BLT. We
therefore only explain the flag combinations for a
single pair of instructions BLE and BLT.

The BLE instruction branches if, in the preceding
comparison, the register operand was less than or equal
to the memory operand. If register A was tested
against MEM(VAL) say, we might write this as A <= VAL.
If the operands are equal, the Z-flag in CC is set.
This flag is examined by BLE and branching occurs if it
is set.

If A and MEM(VAL) have the same sign, the
subtraction operation entailed in the comparison can
never result in overflow so CC.V is always cleared. If
A is indeed less than MEM(VAL), the subtraction will
result in a negative value so CC.N will be set.
Therefore, if CC.N is set and CC.V unset, this
indicates that A is less than MEM(VAL) and branching
will occur. If CC.V is unset and CC.N is unset, A is
not less than MEM(VAL).

In the case where A and MEM(VAL) have different
signs, the comparison may result in an overflow
occurring. Thus the sign bit will have an incorrect
value. If CC.V is set, indicating overflow, and CC.N is
unset, indicating a non-negative value, this actually
means that the result is negative. On the other hand,
if both CC.N and CC.V are set, the result is positive.

Because of the meanings of these bit combinations,
the exclusive or operation performed on CC.N and CC.V
always gives the correct sign bit for the number.
Therefore, if this operation returns 1, the result of
the comparison is negative and branching should take
place.

The BLT instruction can be considered as a less
general form of the BLE instruction which only branches
when the register operand is less than the memory
operand. The above argument holds for this instruction
also. The BGT and the BGE instructions are simply the
complements of these so a not operation performed on
the corresponding 'less than' condition bits allows
these instructions to determine if branching should
take place.

3.5.4 Unsigned conditional branch instructions
Unsigned conditional branch instructions are used when
the preceding operation compares the values of unsigned
operands. Again, these instructions test condition

Z OR (N XOR V)

(N XOR V)

BLE

BLT

Branch if less than

Branch if less than
or equal

60

61

code register flag combinations to determine if
branching should take place.

The table below shows the four unsigned conditional
branch instructions and the flags tested in the CC
register. Again, the BEQ and BNE instructions may be
used under this category.

Again the instruction pairs BLO/BHS and BLS/BHI are
complementary so we shall only discuss the operations
BLO and BLS. As these operations assume that the
previous comparison tested unsigned operands, the
negative flag CC.N is not tested by these instructions.
As always, if the result of the comparison is zero,
CC.Z is set so the BLS instruction branches if this
flag is 1.

As the comparison operands are unsigned, the
subtraction entailed in the comparison is essentially a
subtraction of positive values. If the second operand
is greater than the first, the subtraction will result
in a borrow. Thus, the carry bit in CC will be set.
If the second operand (the memory operand) is smaller
than the first, no borrow will result so the carry bit
will be unset. Therefore, the BLO and BLS instructions
examine the carry bit and branch if it is set.

So far, we have not provided any explicit examples
of branch instructions as, unlike other instructions
considered so far, examples of these instructions are
meaningless in isolation. To illustrate some of the
branch instructions in use we show below the assembly
code equivalent to a number of BASIC statements
involving loops and conditional operations.

100 IF V1 > V2 THEN GOTO 500
200 IF V1 = V2 THEN GOTO 700
300 V1 = V1 + 2
400 GOTO 200
500 M = V1
600 GOTO 800
650 REM ASSUME A SUBROUTINE EXISTS AT 2000
700 GOSUB 2000
800 ...

Assuming V1, V2 and M are represented as 16-bit signed

Flag combination
C

C OR Z

NOT(C)

NOT(C OR Z)

Mnemonic
BLO

BLS

BHS

BHI

Function
Branch if lower

Branch if lower or
the same

Branch if higher or
the same

Branch if higher

62

quantities and that the subroutine at 2000 has the
symbolic name V1EQ, an assembly code sequence which
would carry out the same function is:

LDD V1 ; D = V1
CMPLAB CMPD V2 ; Compare this with V2

BGT GTLAB ; If greater than branch
BEQ EQLAB ; If equal branch.

* Notice there is no need for
* another load or comparison

ADDD #2 ; Add 2 to D
STD V1 ; and put result back into V1
BRA CMPLAB ; Branch back to comparison

GTLAB STD M ; V1 > V2 so M = V1
BRA NXTLAB ; continue

EQLAB BSR V1EQ ; Values equal, call routine
NXTLAB

Notice how the assembly code version of the sequence is
only slightly longer than the BASIC. Whilst, in
general, BASIC statements expand into multiple assembly
code instructions it is often possible to eliminate
much of the redundancy inherent in high level language
programming and hence produce compact code.

3.6 INTERRUPT HANDLING INSTRUCTIONS

An interrupt is a means by which a program, executing
on a processor, can be temporarily suspended whilst
some other program executes. They are of vital
importance in I/O programming where interrupts are used
by peripheral devices to inform the processor that data
are available. The processor must stop what it is
doing, collect the data from the peripheral then
restart its original activity.

The interrupt handling instructions available to the
M6809 programmer are described in full in Chapter 8
which covers I/O programming. Here, we simply list the
interrupt handling instructions which are available and
summarise their functions.

(1) The wait instruction
This instruction, mnemonic CWAI, takes a single
byte operand which is anded with the contents of
CC when the instruction is executed. The E flag
in the condition code register is then set, indi-
cating that all registers should be stacked on
the hardware stack. The instruction then waits
(does nothing) until a hardware interrupt occurs.
Interrupt processing, as detailed in Chapter 8,
then commences.

(2) The return from interrupt instruction
The return from interrupt instruction, RTI, is

63

executed after interrupt processing is complete.
It unstacks the register values pertaining when
the interrupt occurred thus returning control to
the interrupted process.

(3) The software interrupt instruction
This instruction, which has mnemonic SWI, causes
a so-called software interrupt. A software in
terrupt causes the processor to jump to an asso
ciated interrupt service routine which may, for
example, transfer control to some other process.
Thus the execution of programs in different parts
of the M6809's memory may be coordinated and syn
chronised .

(4) The synchronise instruction
This instruction, SYNC, is used to synchronise an
executing program with some external hardware
event.

Interrupt handling instructions are special purpose
instructions and are unnecessary for most applications
programmed in assembly code.

3.7 MISCELLANEOUS INSTRUCTIONS

In this section, we describe the remaining M6809
machine instructions which don't fit neatly into any of
the above classifications. There are only four
instructions in this category. These are:

(1) The jump instruction

(2) The jump to subroutine instruction

(3) The return from subroutine instruction

(4) The no operation instruction

We shall start with the 'no operation' instruction
which has mnemonic NOP. Its function is very easy to
describe - it does nothing. A NOP instruction is 1
byte long and all it does is take up memory space. This
can be useful if it is necessary to force other
instructions to occupy particular memory locations.

3.7.1 Jump instructions
The jump instructions available to the M6809 programmer
are similar to the branch instructions discussed
earlier in this chapter. The function of these
instructions is to evaluate their operand and load its
value into the program counter register. Therefore, if
addresses of other instructions are saved as data, you
can transfer control to these instructions using a jump
instruction.

64

The addressing modes allowed with jump instructions
are direct, indexed and extended addressing. There are
two jump instructions JMP, which is an unconditional
jump, and JSR, which is a jump to subroutine
instruction. The only difference is that JSR stacks the
program counter PC on the hardware stack before
assigning its operand to the PC register.

Examples of jump instructions are:

JMP B,U ; PC = MEM(B + U)

JSR ,U ; S = S - 2: MEM(S) = PC: PC = MEM(U)

3.7.2 The return instruction
The return from subroutine instruction, whose mnemonic
is RTS, is executed as the last instruction in a
subroutine. It unstacks the top two bytes from the
hardware stack and assigns them to PC. This
effectively transfers control to the instruction
following the BSR or JSR instruction which initiated
the subroutine.

Chapter 4

Introducing assembly
language
Assembly language programming is a form of computer
programming where the programmer writes his program as
a sequence of absolute directives to the processor.
That is, he states exactly which machine instructions
are to be used in the exemption of his program.

This type of programming is sometimes called low-
level programming because it is a notation which is
very close indeed to machine language. By contrast,
programming in a language such as BASIC is called
high-level language programming. The programmer writes
his program at a much higher level where the details of
the machine architecture are irrelevant.

High-level programming is much easier than low-level
programming because machine architectures are
inherently complex. The low-level programmer must
master all the details of this complexity if he is to
avoid making programming errors. The high-level
programmer, on the other hand, has many fewer details
to remember and can concentrate on getting the logic of
his program correct - a difficult enough task in
itself.

The majority of computer applications can be
programmed perfectly adequately in a high-level
language and there is no point in programming in
assembly language when BASIC will do. However, in
personal computers, like the Dragon, there are some
tasks which are easier to program in assembly language
rather than BASIC because they require access to
hardware features of the machine. Although this is
possible from BASIC, it is clumsy and inconvenient as
it requires the use of many POKE and PEEK instructions.

There are also some types of program which, if
programmed in BASIC, are too slow. This slowness
results from the way in which BASIC is implemented.
Every BASIC statement must be translated to machine
code just before it is executed and this takes a
significant amount of time. As this translation is
absolutely essential, the only way to speed these
programs up is to program them or, at least those
time-critical parts of them, in assembly code.

As we have already suggested, the real difference
between programming in assembly language and
programming in BASIC is one of detail. In BASIC,

65

66

decisions about where the program and its data are to
be located in memory, how real numbers are to be
provided, how character strings are manipulated, etc.
are all made for the programmer by the BASIC system.
As well as this, BASIC programs are expressed in such a
way that they are readily understood by people whereas
the notation used for assembly code bears little
relation to the logical processes involved in solving
the problem at hand.

However, in spite of these difficulties, there are
three fundamental advantages in programming in assembly
language rather than BASIC:

(1) The programmer has complete control over the
machine. If he wishes to use his own particular
way of manipulating characters or to access
hardware features in some non-standard way, this
is possible in assembly language but impossible
in BASIC.

(2) Assembly language programs are very much faster
than equivalent BASIC programs. Because the
translation phase from BASIC to machine code is
avoided, assembly language programs typically ex
ecute at least 100 times faster and sometimes as
much as 1000 times faster than corresponding
BASIC programs. This means that they are suit
able for programs, like some arcade-type games,
which must react very quickly to input from the
user.

(3) Assembly language programs are more compact, that
is, occupy less memory, than their BASIC
equivalents. This is particularly important when
large programs are written which may require al
most all of the memory available on the machine.

Of course, there are also disadvantages associated with
programming in assembly language apart from the obvious
one that the programmer must remember many low-level
details of the machine. These disadvantages are:

(1) Because the programmer has complete control over
the machine, it is more difficult to detect mis
takes in assembly code programs. As long as a
valid instruction is written, something will hap
pen even although the instruction does not do
what the programmer really wants. Whereas the
BASIC system has many built-in checks which
detect errors like dividing by zero, no built-in
error detection is available to the assembly
language programmer.

(2) Because of the low-level nature of assembly

67

language programs and because the programmer must
explicitly include his own error checking facili
ties, assembly language programs are usually a
good deal longer than their BASIC equivalents.
This means that they take longer to write, are
more difficult to understand, and are likely to
contain more mistakes than high-level language
programs.

Because of the complexity of assembly language
programming, it is best to adopt a multi-stage approach
when developing a program which is ultimately written
in assembly code.

The first stage is to work out the solution to your
problem in very general terms and to write down this
solution in some stylised way. This is a very high-
level expression of what your program ought to do. For
example, say you are developing a game where the player
must shoot down alien spacecraft. Part of the general
high-level expression of this might be:

if firing button pressed then
launch missile

if alien detects missile launch then
drop anti-missile bomb

if dodge key pressed then
move missile to avoid bomb

else
missile destroyed

In fact, this approach is always how we work out the
logic of programs although, sometimes, we do it in our
heads rather than explicitly on paper. Writing down
the solution is much better because when we hold
detailed information mentally it is very easy to forget
bits of the problem solution or to make mistakes when
mentally translating to a programming language.

The second stage, which is particularly important
for inexperienced assembly language programmers is to
translate the general, abstract problem solution into a
high-level programming language like BASIC. Here, you
must decide how logical operations such as 'firing
button pressed' are actually to be implemented. For
example, in the above program, missile dodge keys might
be '4' to move left and '6' to move right. We might
code that part of the solution as:

KEY$ = INKEY$
IF KEY$ = "4" THEN MISX = MISX - 1
IF KEY$ = "6" THEN MISX = MISX + 1

where MISX represents the x-coordinate of the missile.
An advantage of this intermediate stage between

problem solution and assembly code program is that the

68

BASIC program can sometimes act as a prototype for the
final program. This lets you try out ideas and debug
the logic of the solution before becoming involved with
the details of assembly language.

The third stage in the development of an assembly
language program is to take the high-level language
program and to translate it, by hand, to assembly code.
This is a straightforward process and the assembly
language equivalents for BASIC statements are described
later in this chapter.

Sometimes it isn't necessary to translate the
complete program into assembly code. Typically, most
programs have relatively small sections, such as a
display subroutine, where they spend most of their
time. It is possible to code these time-consuming
subroutines in assembly language and to link them into
a BASIC program. This often gives the speed-up effect
desired by the programmer and the chore of translating
the whole program into assembly code can be avoided.
We explain how assembly code subroutines can be linked
with BASIC programs in Chapter 6.

In any direct translation of a BASIC program to
assembly language, there is bound to be redundancy.
For example, say we have two BASIC statements:

M = M + 1
V = V + M

A direct translation of these into assembly code,
assuming that both M and V can be held as 8-bit
integers, is:

LDA M ; A = MEM(M)
ADDA 1 ; A = A + 1
STA M ; MEM(M) = A
LDA V ; A = MEM(V)
ADDA M ; A = A + MEM(M)
STA V ; MEM(V) = A

However, this can be optimised by using the INC
instruction to add 1 to A. An optimised version of
this instruction sequence is therefore:

INC M ; MEM(M) = MEM(M) + 1
LDA V ; A = MEM(V)
ADDA M ; A = A + MEM(M)
STA V ; MEM(V) = A

The final stage in developing an assembly code program,
therefore, is to take the BASIC equivalent program and
to eliminate redundant steps in order to optimise the
program. Some obvious elimination of redundancy can be
done during stage three but program rearrangement, the
use of different addressing modes, etc. should be left

69

until this final stage. In the examples in the
following chapters we show how optimisation can make a
considerable difference to the size of a program.

This chapter and the following two chapters are
devoted to assembly language programming. In the
remainder of this chapter, we describe a class of
program called assemblers. An assembler translates
instruction mnemonics, symbolic names, etc. used by the
programmer to machine code. It is a vital tool for the
serious assembly language programmer.

The following chapter, Chapter 5, shows how commonly
used programming constructs such as assignments, loops
and conditional statements may be programmed in
assembly language. The approach which we use here is to
take BASIC statements implementing these constructs and
show how assembly language equivalents to these can be
built up. We also show how these 'BASIC-equivalent'
programs can usually be optimised to produce a program
which has improved space and time efficiency.

Chapter 6 looks at more advanced aspects of assembly
language programming. In that chapter, we describe a
general-purpose technique for implementing subroutines
and we show how character strings may be represented
and manipulated. We also describe how to link assembly
language subroutines with BASIC programs and how to
write assembly code which is position independent.

It is beyond the scope of this book to discuss
assembly language programming in great detail. This
requires a book in itself and, to supplement the
material here, the reader may find it useful to refer
to some of the textbooks on M6809 assembly language
programming which are listed in the reading list.

4.1 THE ASSEMBLER PROGRAM

We have already introduced, in earlier chapters, the
idea of an assembler as a program which translates
assembly language statements to machine code. This
translation is not a difficult process as it simply
requires the program to look up tables of names and
associated hexadecimal values. However, for humans this
is a slow, tiresome, error-prone task. In fact, it is
the kind of job that computers excel at and we
recommend that you should try to avoid the hand
translation of assembly code.

For each machine, there are usually several
different assemblers available from different
suppliers. Some of these might have more sophisticated
features than others but all will provide at least the
following facilities.

(1) The translation of mnemonic instructions to their
equivalent hexadecimal op-codes.

70

(2) The ability to associate labels with assembly
language statements. Reference to these labels
within the program will result in the address of
the labelled statement being substituted for the
label.

(3) The association of names with specific memory lo
cations. When these variable names are used by
the programmer, the assembler substitutes the ac
tual memory address of the variable.

(4) The translation of decimal numbers to their hexa
decimal equivalent.

(5) The translation of symbolised address references
such as [,X] for indirect indexed addressing to
the appropriate postbyte, offset, etc.

(6) Limited error checking indicating if an invalid
mnemonic has been used, if a label referenced in
an instruction is not declared, if a short branch
is used where a long branch is required, etc.

The particular assembler whose facilities we shall
describe in this chapter is the DREAM assembler,
available from the manufacturers of the Dragon. This is
a typical assembler which uses fairly standard Motorola
M6809 notation, as set out in Appendix 1, for assembly
language instructions. There may be slight differences
in detail if you use a different assembler but, in
general, the description of facilities below applies to
all assemblers which are available for the Dragon.

The single exception to the standard notation is
when indirect addressing is used. As the symbols '['
and '] ' are not Dragon keyboard characters, the DREAM
assembler uses round brackets ' (' and ') ' to indicate
indirect addressing. We shall follow this convention
from now on but the reader who is using some other
assembler should read (<address>) as [<address>].

As well as being an assembler, DREAM is also an
editor. It provides facilities for inputting,
modifying, duplicating and saving text on a cassette.
This text need not be assembly code but may be anything
at all. However, as the editing and assembling
facilities are combined, the implementors of DREAM
clearly see the creation and editing of assembly
language instructions as its major task. As assembly
language instructions do not have explicit line
numbers, it is not possible to use the BASIC editor to
create and edit assembly language programs.

The standard format for an assembler source line as
input to DREAM or any other assembler based on the
standard Motorola notation is:

71

<label> <mnemonic> <operand> <comments>

The different fields in the source line must be
separated by one or more spaces. The <label> and
<comments> fields are optional, the <mnemonic> field
must be present as must the <operand> field except for
those instructions which use inherent addressing and do
not require explicit operands.

4.1.1 The label field
The label field, if present, must start in the first
column of the source line. Anything that starts in
column 1 is therefore taken, by the assembler, to be a
label. If you make a mistake and put a mnemonic in
column 1 or a label starting in some other column the
assembler will get very confused indeed.

Labels must start with a letter and may only contain
alphanumeric characters, that is, letters and numbers.
Most assemblers impose a limit on the length of a label
- the DREAM assembler, for example, insists that labels
be no more than 6 characters long.

The table below shows examples of valid and invalid
statement labels.

Valid Labels Invalid Labels

A372 372A (label must start with a letter)
NEXTCH NEXTCHAR (label too long)
OUT IN-OUT (label may not contain '-')

There is a single exception to the rule in the DREAM
assembler that labels may contain only alphanumeric
characters. One label, and one label only, in the
program may have a '@' as its first character. For
example, @START or ©BEGIN are valid labels although
both may not be used in the same program. The label
whose first character is '@' is one way of indicating
to the assembler where to start program execution when
the assembled machine code program is run on the
Dragon.

Although the labels A, B, X, Y, U, S, CC, PC, and DP
are not invalid, you should avoid using them because of
potential confusion with the M6809 register names.
Similarly, you should not use labels which are
identical to assembly language mnemonics.

4.1.2 The mnemonic field
The mnemonic field of an assembler input line must
contain one of the instruction mnemonics that we
covered in the previous chapter. It must be separated
from the label field by at least one space. If no
label is present, the mnemonic field must still be
preceded by one or more spaces otherwise it will be
taken as a label.

72

4.1.3 The operand field
The operand field in an assembly language instruction
must be present except for those instructions like
INCA, ABX, MUL, etc. which have no operands. It must be
separated from the mnemonic field by at least one
space. The operand field specifies the operand address
and the following conventions are used when using the
DREAM assembler to indicate which addressing mode is
being used.

Register addressing
The names of the source and destination registers are
separated by a comma. For example:

TFR X,Y
EXG A,DP

Immediate addressing
The immediate value is preceded by a '#' symbol. By
default, immediate values are decimal but hexadecimal
values may be input by preceding the value with a '$'
symbol and character values by preceding them with a
quote "'" symbol. It is also possible to associate
symbolic names with constants and these may also be
input as immediate values. For example:

LDA #10
LDB #$10
LDA #' +
LDA #MAXINT
LDA #LAB1

If the immediate operand in an instruction is a program
label, the value substituted for the symbolic label is
the address of the labelled statement.

Direct and extended addressing
In general, the assembler will decide for the
programmer whether it is best to use direct or extended
operand addressing. DREAM works out if the addressed
operand is within a page of the current DP register
setting and, if so, it generates a direct address.
Otherwise, an extended address is generated.

A symbolic name on its own indicates either direct
or extended addressing as decided by the assembler.
The programmer may force extended addressing by
preceding the name with a '>' character or may force
direct addressing by preceding it with a '<' character.
For example:

LDX VNAME Direct or extended
LDX >TNM Force extended addressing
LDX <COUNT Force direct addressing

73

Indexed addressing
The general form of an indexed address is:

<offset>,<index register>

The offset may be a register name, a symbolic name, a
constant value or may be left out altogether. The
register name must be X, Y, U or S and, if no offset is
present, auto increment or decrement may be specified.

The following examples all show generalised indexed
addressing.

LDA BASE,PCR PC relative
STX OFFST,Y Symbolic constant offset
STD -16,X Constant offset
LDA ,X Zero offset
LDB A,U Register offset

Auto increment and decrement may only be used with zero
offset addressing. They are indicated by prefixing the
index register name with '-' or '--' or by suffixing it
with '+' or '++'. For example:

STX ,Y++ Auto increment by 2
STA ,S+ Auto increment by 1
LDB ,-Y Auto decrement by 1
LDD ,--S Auto decrement by 2

In all cases, the assembler works out whether the
specified offset should be represented as a 5-bit, an
8-bit or a 16-bit offset. The programmer may force an
8-bit offset by preceding the offset with a '<'
character and may force a 16-bit offset by using a '>'
symbol. It is not possible to force the assembler to
generate a 5-bit offset. For example:

LDD <4,X Forces 8-bit rather than 5-bit offset.
STX >32,Y Forces 16-bit rather than 8-bit offset

Indirect addressing
Indirect addressing is indicated by surrounding the
operand field with round brackets. For example:

LDA (VALADD) Indirect extended
STX (A,Y) Indirect indexed

When using constant values within the operand field,
the DREAM assembler allows a limited form of arithmetic
to be used. If constant expressions using '+' and '-'
are specified, DREAM will carry out the necessary
arithmetic as it assembles the program. For example:

LEAS BASE+8,U
LDD #START - 10

74

BRA * + 12

An asterisk (*) means the value of the program counter
at the start of the current statement. Notice that
this is not the same as the actual PC value which
refers to the next instruction to be executed.

4.1.4 The comments field
The comments field is used to provide descriptive
comment about the associated assembly code instruction.
It must be separated by at least one space from the
operand field but the convention when using the DREAM
assembler is to separate the comments field from the
remainder of the instruction by two or more spaces and
to make the first symbol a semi-colon. For example:

LDA T ; put top value in A

Comments taking up an entire line may also be
introduced by placing a '*' in column 1. Most M6809
assemblers will recognise this as a comment and ignore
the remainder of the line. For example:

* An asterisk indicates a comment

In order to make assembly language statements as
readable as possible, it is best to adopt a fairly
rigid, fixed format layout for instructions. The
following layout is suggested:

Columns 1-6 Label or blank if statement
is unlabelled

Columns 8-11 Mnemonic
Columns 13-19 Operand
Columns 22- Comment

If the operand is more than eight characters long, it
will obviously overflow into the comments field.
Depending on the length of the comment, you may either
continue it on the same line or start a new line with
'*' and include the comment field on that line. In
general, when all of a comment cannot fit on the
instruction line, the continuation on succeeding lines
should be aligned.

Examples of this layout are:

BEGIN LDD MAX ; Start with max
SUBD #1 ; Take 1 off it
CMPD MINVAL ; Compare with min.
BEQ VALSEQ

As with all layout conventions, there are many special
cases which do not fit well with the convention.
Slight changes may avoid taking a new line for a short

75

comment continuation or may make the program more
readable. The programmer must use his common sense in
this respect and modify the above rules accordingly.

The output from the DREAM assembler consists of a
listing of the source lines with each line preceded by
the address of the corresponding machine instruction
and the hexadecimal representation of the instruction
itself. For example, assuming the instruction address
was 4E40, this might appear:

4E40 4C INCA ; increment pointer
4E41 1F8B TFR A,DP ; and load DP

Notice that the address is incremented according to the
number of bytes in the instruction. We shall describe
how the initial assembler address is set up in a later
section (4.2.5) of this chapter.

4.1.5 Assembling without an assembler
If you don't have an assembler program but want to run
machine code programs, you have to translate the
assembly language statements to hexadecimal machine
code by hand. This is only realistic if you have only
a few statements to translate and you only do such
translations fairly occasionally.

There is enough information in Chapters 2 and 3 and
in the appendices to allow you to translate from
assembly language to machine code. You must keep
careful track of the number of bytes taken up by each
instruction so that your relative addresses are
correct. It is best to make a table for yourself of
the symbolic names which you use and the memory
addresses which you have assigned to them.

Once you have completed the translation from
assembly code to machine code, you then load the
hexadecimal representations of your machine
instructions into memory and start executing them.
This can be accomplished using another program called a
loader. In the final section of this chapter, we
provide a listing of a loader, written in BASIC, which
POKES hexadecimal codes into memory. You may either
then execute the machine code program with an EXEC
command or you may include such a command in the loader
so that the machine code is immediately executed.

4.2 ASSEMBLER DIRECTIVES

Assembler directives are instructions used by the
programmer to give commands to the assembler. They do
not cause machine instructions to be generated but they
may alter internal assembler variables. Assembler
directives are the means by which symbolic names are
associated with addresses and they also allow the
programmer to specify the initial values which memory

76

bytes should take before his program is executed.
The operation of assembler directives can only be

understood in the context of the general memory
organisation which is assumed by the assembler. Figure
4.1 shows this organisation for that part of memory
used by the assembler.

Fig. 4.1 Assembler memory map

There is a large area of RAM which is reserved by
the assembler as its work space. This workspace
immediately follows the machine code of the assembler
program in the Dragon's memory.

At the top of this work space, the assembler creates
its own internal tables which it uses in the
translation of the programmer's assembly code to
machine code. As the number of entries in these tables
depends on the size of the program being assembled, the
tables are variable in size. As new elements are added
to the table, they are allocated lower memory
addresses. Dynamically allocated areas of this sort are
shown on memory maps as wavy lines with an arrow
indicating the direction of growth.

As an illustration of how this table is set up, say
the top address in the assembler's work space is 6AFF.

77

The first table entry, which might be 8 bytes long, is
allocated address GAFF. The following table entry has
address 6AF8, the one after that 6AF0, and so on. The
table grows downwards in memory as each succeeding
element is allocated.

As the assembly language program is translated, the
generated machine code must be stored somewhere in
memory. The area chosen by the assembler for the
generated machine code is at the bottom of its work
space and the generated machine code grows upwards in
memory.

The assembler uses an internal variable called the
assembler program counter (APC) to keep track of where
the next generated machine instruction is to be placed
in its work space. As instructions are generated, APC
is incremented by the length of the instruction in
bytes. Some assembler directives also affect the value
of APC and their effects are discussed along with the
description of the directives in question.

4.2.1 The EQU directive
The equate directive is the directive which is used to
associate a symbolic name with a constant decimal or
hexadecimal value. It has the general form:

<label> EQU <value>

It is good programming practice to make extensive use
of equate directives to name constants used in your
program. If you chose a name related to the constant's
function, this makes the program easier to understand.
Furthermore, if you need to change the value of a
constant, you merely need to change the equate
directive rather than search through your program
changing the absolute value every time it is used in an
instruction.

Examples of equates defining absolute constant
values are:

MAXINT EQU 32767 ; maximum allowed integer
TABSIZ EQU 100 ; some table size
OFF EQU $00 ; define a value meaning off
ON EQU $FF ; a value meaning on

The constant value in the equate directive may include
other symbolic constants defined by an equate and may
also include the symbols ' + ' and '-'. The assembler
carries out the necessary arithmetic to compute the
equated value. For example:

TRUE EQU ON ; TRUE has value $FF
FALSE EQU OFF ; FALSE = $00
UTABSZ EQU TABSIZ - 15 ; UTABSIZ = 85

78

As well as being used to associate names with program
constants, the EQU directive may also be used to name
locations in a memory page when direct addressing is to
be used.

Recall that the direct addressing mode uses the DP
register to hold the hi-byte of the memory address with
the lo-byte of the address obtained from the
instruction itself. Not only is this form of
addressing space efficient as addresses only take up a
single byte, it also means that memory locations can be
reserved for variables in a position independent way.

The programmer need not decide the absolute address
in memory which is to be allocated to particular
variables. Rather, he may set up their addresses as a
displacement from the start of a page. Where that page
actually resides in memory when the program is executed
is governed by the setting of the DP register which may
be assigned immediately before execution. We shall say
more about position independence in Chapter 6.

The equate directive is used to associate page
addresses with symbolic names. For example:

DELAY EQU $00 ; first byte in page
CURPOS EQU $01 ; CURPOS takes up bytes 1 and 2
INCH EQU $03 ; byte 3

The names used in an equate directive must obey the
normal rules for assembler labels. That is, they must
start with a letter, contain only alphanumeric
characters and may be no more than six characters long.

The equate directive does not affect the assembler's
program counter. Names and associated values are
stored in an internal assembler table and, when the
name is used in a program, its value is substituted for
it.

4.2.2 The FCB/FCC directive
The FCB/FCC directive is used to format data bytes.
That is, the programmer uses this directive to allocate
store and to associate a particular value with each
byte of that allocated memory. The general form of
this directive is:

[<label>] FCB <value list>

The label is optional and must obey the usual rules for
assembler labels. If a label is used, its value is
deemed to be the address of the allocated data byte.
The value list is a list of one or more initial values
expressed as decimal numbers, hexadecimal numbers or
character constants.

In some assemblers, the directives FCB and FCC have
different meanings with FCB used to format single bytes
and FCC used to format ASCII character strings. In the

79

DREAM assembler, however, they are equivalent and are
handled in exactly the same way. Therefore, the
directive FCB may be replaced by FCC anywhere that it
is used.

Examples of FCB directives are:

* Set up the name of a data area for an error message
* The first byte holds the length of the message
* The following characters hold the ASCII characters
* of the message itself
*
ERR1 FCB 13,/NO INPUT CHAR/
*
* Notice how strings are delimited by the / character
* Set up a byte with value 1F (hex)
*

FCB $1F

* Set up a 5 byte memory area with bytes initialised
* to the hex values 8E, 8F, 90,91, and 92

TAB1 FCB $8E,$8F,$90,$91,$92

The FCB/FCC directive affects the assembler program
counter. If APC has the value 5000 say when the FBC
labelled ERR1 above is processed, its value after
processing is 5000 + 14 (decimal), that is 500D. Note
that if a value greater than FF (hex) is used with an
FCB directive only the lo-byte of that value is used in
the initialisation.

4.2.3 The FDB directive
The FDB directive is similar to the FCB directive.
However, rather than formatting single data bytes, it
formats 16-bit values taking up 2 bytes (1 word). It
general form is:

[<label>] FDB <value list>

Examples of FDB directives are:

DIGITS FDB 1,2,3,4,5,6,7,8,9,0
MAXVAL FDB 1024
INSUB FDB GETNUM

The first two FDB examples above format data words to
the specified values. In the third example, the
constant filled in and named INSUB may be the value
associated with the name GETNUM if GETNUM is defined
via an EQU directive. Alternatively, if GETNUM is an
instruction label, the location named INSUB is filled
in with the address of the labelled instruction.

This facility allows you to create tables of

80

addresses and then use indirect addressing to access
the instructions or data whose addresses are kept in
the table. For example:

SUBTAB FDB INCHAR,OUTCH,INWRD,
OUTWRD,RESET,CLOSE

This directive might be used to create a table of
subroutine addresses with the subroutine names given on
the right hand side of the directive.

Like FCB, FDB affects the assembler program counter,
incrementing it by two for every word formatted.

4.2.4 The RMB directive
The RMB directive is used to reserve one or more memory
bytes. It does not set them up to any specific value,
it merely increments APC by the value specified in the
directive. The general form of an RMB directive is:

[<label>] RMB <value>

The value may be either a symbolic, hexadecimal or
decimal constant. For example:

INCHAR RMB 1 ; reserves a single byte
OUTBUF RMB 256 ; reserves a 256 byte buffer

Typically, RMB is used to reserve space which will
subsequently be allocated values in I/O operations.

4.2.5 The ORG directive
The ORG directive is used to assign a value to APC and,
hence, sets up the logical origin of the generated
machine code which follows that directive. It is not
obligatory to include an ORG directive in a program.
If there is no ORG directive, the DREAM assembler sets
up its program counter to have an initial value equal
to the bottom of its work space.

The general form of an ORG directive is:

[<label>] ORG <address>

Examples of this directive are:

ORG $5000 ; APC = 5000 (hex)
NEWSEG ORG * + 128 ; * means current value of APC
* This directive is equivalent
* to RMB 128

All the examples in this book have been tested with a
code origin at memory address 4E21 (20001 decimal).
This is set up with an ORG $4E21 statement as shown in
the example in section 4.3 below.

81

4.2.6 The PUT directive
The PUT directive is used to tell the assembler where,
in RAM, the generated object code should be placed. It
is a means of overriding the assembler's normal placing
of generated code at successive addresses starting at
address 4E21 which is the bottom of its work space.

The general form of a PUT directive is:

PUT <address>

Normally, a PUT directive is preceded by an ORG
directive to set the APC to the address where the
generated code is to be placed. This is not
obligatory, however, if you are going to move the code
before executing it or if the code is completely
position independent.

4.2.7 The SETDP directive
The SETDP directive is used to tell the assembler the
current value of the direct page register DP. Remember
that the assembler decides whether to use direct or
extended addressing when a symbolic name is used in the
address field of an instruction. To make this
decision, it must know the value of DP at that point
and SETDP is used to provide that information. The
general form of the directive is:

SETDP <hex value)

The operand must be a hexadecimal value in the range 00
to FF. The SETDP directive only provides information to
the assembler; it does not cause instructions to be
generated to assign a value to the direct page
register. It is the programmer's responsibility to
ensure that the actual run time value of DP is
consistent with the value used in a SETDP directive.

4.3 EXAMPLE PROGRAMS

In this section we present two complete, working
programs which the user may type into his machine and
execute. The first of these programs is a loader
program, written in BASIC, which allows the user to
POKE machine code into particular locations in the
Dragon's memory. This code may then be executed.

The other example program is presented in both BASIC
and assembler. This is a simple program designed to
illustrate just how much faster machine code programs
can be. The program fills the display screen with every
character, one after the other. When the BASIC version
of the program executes, you will see that this
operation takes about 2 seconds per screenful. The
assembly language version fills the screen with each
character in a fraction of a second. The machine code

82

for the assembly language version of the screen filler
is included, in hexadecimal, as the DATA statements in
the BASIC loader.

Both of these examples are commented and should need
no further explanation.

10 ' Machine code loader
11 ' Machine codes in hex are poked into memory
12 ' locations starting at 20001 then execed
20 READ LA ' LA = load address (start of program)
30 READ EA ' EA = address of first instruction
40 PA = EA 'to be executed
50 READ HB$ ' Hex constants
60 IF HB$="END" THEN 100
70 POKE PA,VAL("&H"+HB$) ' Poke value into memory
80 PA = PA + 1 ' Increment address
90 GOTO 50
100 PRINT "MACHINE CODE LOADED"
110 PRINT "LOAD ADDRESS IS ";LA;"(DEC)";
111 PRINT HEX$(LA);"(HEX)"
120 PRINT "END ADDRESS IS "; PA-1;"(DEC)";
121 PRINT HEX$(PA-1);"(HEX)"
130 PRINT "EXEC ADDRESS IS";EA;"(DEC)";
131 PRINT HEX$(EA);"(HEX)"
140 PRINT "YOU ARE ADVISED TO SAVE LOADER "
141 PRINT "BEFORE RUNNING M/C CODE"
142 'If you want to execute the loaded code
143 'immediately, you should put an
144 'EXEC EA statement here. If you do this
145 'for this program, you lose BASIC print
146 'information
150 DATA 20001 'Load address here
160 DATA 20001 'Execute address here
165 ' You put your own machine code in hex
166 ' here to load your hand translated
167 ' programs
170 DATA 34,12 ' Machine code for the
180 DATA 86,00 ' Screen filler program
190 DATA 8E,04,00 ' given below
200 DATA A7,80
210 DATA 8C,06,00
220 DATA 25,F9
230 DATA 4C
240 DATA 81,80
250 DATA 25,Fl
260 DATA 35,92
270 DATA END

Program 4.1 BASIC machine code loader

10 ' Fills screen with characters with codes
20 ' 0 to 127 in turn
30 FOR CH = 0 TO 127
35 ' Screen RAM addresses are from &H400-&H5FF

83

40 FOR SC = &H400 TO &H5FF
50 POKE SC,CH
60 NEXT SC
70 NEXT CH

Program 4.2 BASIC screen filler

* SCRFL - fill screen with characters

* Register inputs NONE
*

ORG $4E21
SCRFL PSHS A,X ; Save registers

LDA #0 ; First character
NXTSC LDX #$400 ; Screen base address
PRCH STA ,X+ ; Store character

CMPX #$600 ; At end of screen?
BLO PRCH ; No, next character
INCA ; Go on to next character
CMPA #128
BLO NXTSC ; Do another screenful
PULS A,X,PC ; Restore and return

Program 4.3 Assembly language screen filler

Chapter 5

From BASIC to assembly code

In this chapter we describe the assembly language
equivalents of the most commonly used BASIC statements.
As well as the literal translations of BASIC to
assembly language, we show how these constructs can
often be implemented in a more efficient way by
removing some of the redundancy inherent in BASIC.

The assembly language programmer must obviously know
the mnemonics for the M6809, the register names and the
symbolism for the M6809 addressing modes. It may seem a
daunting task to memorise all this information,
although it is less so than memorising about 1400
machine instructions! However, the consistent and
orthogonal nature of the M6809's instruction set makes
the task less difficult than might at first be supposed
and, after a little practice, the programmer will
easily remember all the mnemonics which he needs.

The basic building blocks of programs are assignment
statements, conditional statements, loops and
statements for input and output of data. We describe,
in some detail, how each of these may be implemented in
assembly language. We also cover the declaration and
calling of BASIC-like subroutines and the
representation and manipulation of arrays. The
notation which we use is similar to that used in
previous chapters. However, if a symbolic name is used
for a memory location, we use it in comments here as if
it was a BASIC name - we do not precede it with MEM.

5.1 ASSIGNMENT STATEMENTS

Assignment statements in BASIC are used to assign a
constant, the result of an arithmetic expression or the
value of a memory location to some other memory
location. For ease of reference, we may give symbolic
names to the memory locations involved although, if the
memory access routines PEEK and POKE are used, we
actually signify the absolute memory locations to be
accessed. We describe PEEK and POKE later and
concentrate here on assignments which have the general
form:

<name> = <expression>

84

85

The <name> on the left side of the = sign may be either
a variable name or may be a reference to an element of
an array. The <expression> on the right side of the
equals sign may be a constant, a variable name, an
array element reference or an arithmetic expression
consisting of two or more operands separated by
arithmetic operators such as + and *.

Reference to array elements will be dealt with later
so, in this section, we only describe assignments where
numeric constants and variables are used. We shall
make the further simplification that these constants
and variables may only take 8-bit or 16-bit integral
values represented as unsigned numbers or in two's
complement notation.

This is not too great a limitation as many practical
applications of computers don't need real numbers. The
provision of real number arithmetic in most
microcomputers is made using software routines which
manipulate pairs of 16-bit quantities representing the
real number. This is a fairly complex process, and if
the reader is interested in how it's done he should
refer to one of the computer science textbooks
suggested in the reading list.

In general, assignment statements on the M6809 are
implemented using the accumulator registers A, B and
their catenation D when 16-bit numbers are involved.
Although it is possible to make use of the index
registers X, Y, S, and U, these are usually reserved
for the storage of addresses.

The basic outline of an assignment statement in
assembly language is:

Evaluate RH expression into an accumulator register.
Store accumulator in memory.

For example, the assembly language equivalent of the
simple BASIC statement M = 7 is:

LDA #7 ; A = 7
STA M ; M = A

Notice how immediate addressing is used to specify that
a constant value is to be loaded into a register. A
very common mistake made by novice assembly language
programmers is to forget the # symbol indicating
immediate addressing.

LDA 7 ; A = PEEK(7)
STA M ; M = A

The BASIC code documenting the assembly language
instructions shows how this gives a completely
different result. Rather than a constant value 7
being loaded into A, the contents of memory byte

86

7 (which may be any value between -128 and 127) are
loaded into the A register.

If a constant value between -128 and 127 is being
assigned, we may use either the A or the B register as
the accumulator. If the value lies outside this range,
we must use the D register for the assignment. For
example, the BASIC statement T = -3842 has the assembly
language equivalent:

LDD #-3842 ; D = -3842
STD T ; T = D

As D is a 16-bit register, the STD operation results in
information being stored in two consecutive memory
bytes. If the address of T is 4E22, say, the
assignment results in the hi-byte of D being assigned
to 4E22 and the lo-byte being assigned to 4E23.

Assignments of the form M = N are implemented in
assembly language in a comparable way:

LDA N ; A = N
STA M ; M = A

If the operands in the assignment T = R are 16-bit
quantities, the D register must be used:

LDD R ; D = R
STD T ; T = D

When the right side of the assignment is an arithmetic
expression consisting, in general terms, of constants,
variables and arithmetic operators, the assembly
language programmer must arrange the evaluation of this
expression in an accumulator. The evaluated value is
then stored. For example, the assignment statement M =
N + P has the assembly language equivalent:

LDA N ; A = N
ADDA P ; A = A + P
STA M ; M = A

Notice that we are ignoring the possibility of overflow
and carry here. In some arithmetic evaluations, this
must be taken into account but, as we are simply
illustrating concepts, we will not introduce this
unnecessary complication.

If the assignment uses a mixture of 8-bit and 16-bit
values, the D register must be used and, in some cases,
8-bit values will automatically be extended to 16 bits.
For example, assuming T and R are 16-bit variables, the
assignment R = T - 10 may be implemented as follows:

LDD T ; D = T
SUBD 10 ; D = D - 10
STD R ; R = D

87

A 16-bit subtraction is automatically carried out in
this case. However, if mixed 8-bit and 16-bit
variables rather than constants are used in arithmetic
expressions, the programmer must be careful not to use
a D register operation on an 8-bit variable. If such
an operation is specified, the addressed variable and
the following memory byte (which is not wanted) will be
used in the operation.

For example, say T and R are 16-bit signed
quantities and M is an 8-bit signed quantity. A
careless assembly language programmer might translate
the assignment T = M + R as follows:

LDD M ; D.hi = MEM(M): D.lo = MEM(M + 1)
ADDD R ; D = D + R
STD T ; T = D

A completely incorrect value for the addition will
result because of the LDD operation which does not load
the 8-bit value of M into D.

A correct assembly code sequence for this mixed-
length arithmetic takes into account the fact that the
lo-byte of D is the B register. The sign extend
instruction is also used to make sure that the signs of
the 16-bit and the 8-bit values are the same.

LDB M ; B = M
SEX ; Extend sign bit of B to A
ADDD R ; D = D + R
STD T ; T = D

This mixed-length arithmetic becomes more complex when
a subtraction is involved and the order in which
operands are loaded into D is significant. Assuming T,
R, and M have the same values as before, the assignment
T = R - M cannot be implemented using the same sequence
as above because the SUBD instruction has no facilities
for sign extension.

There are various different ways of implementing
this type of assignment in assembly language. The
simplest is to convert the 8-bit value to a 16-bit
value, store it in some temporary location and then
perform the subtraction using 16-bit operations only.
For example:

LDB M ; B - M
SEX ; D = B (propagate sign)
STD ,--S ; Store M on hardware stack

* Auto decrement S so that it points to
* free location on stack

LDD R ; D = R
SUBD ,S++ ; D = R - M

* Note how auto increment used to reset
* stack pointer

STD T ; T = D

88

There are no problems in implementing addition and
subtraction operations in assembly language but
generalised multiplication and division have no
corresponding machine instructions. These operations
must be implemented by calling machine language
routines and it is beyond the scope of this section to
explain how these routines may be programmed.

However, multiplication and division of 8-bit
unsigned quantities by numbers which are powers of 2
may be implemented very simply by using the arithmetic
shift instructions ASR and ASL. Shifting a number left
n times is equivalent to multiplying it by 2n and
shifting it right n times is equivalent to dividing
that number by 2n. Naturally, the division is an
integer division operation with the remainder
discarded.

For example, if I and J are unsigned 8-bit integers,
the assignment I = J * 4 might be implemented in
assembly language as follows:

LDA J ; A = J
ASLA ; A = A * 2
ASLA ; A = A * 2
STA I ; I = A

Similarly, J = I/8 might be implemented:

LDA I ; A = I
ASRA ; A = A/2
ASRA ; A = A/2
ASRA ; A = A/2
STA J ; J = A

Using shifts to multiply and divide signed quantities
is more complex because of the need to ensure that the
sign of the result is correct. We leave it as an
exercise to the reader to work out how to implement
signed multiplication and division by powers of 2.

The PEEK and POKE functions
The BASIC functions PEEK and POKE allow direct
reference to individual memory bytes. Whereas PEEK is
always used as the right hand side of a normal BASIC
assignment, POKE is a specialised kind of assignment.
Therefore, T = PEEK(&H0406) assigns the byte value at
memory address 0406 (hex) to T and POKE ASC("*"),&H0500
assigns the code for '*' to the byte in memory at
address 0500.

PEEK and POKE are very easily implemented in
assembly language using load and store instructions.
The assembly language equivalent of the above PEEK
instruction is:

LDA $0406 ; A = MEM(0406)
STA T ; T = A

89

The POKE operation has the equivalent assembly code:

LDA #'* ; A = '*'
STA $0500 ; T = A

The only difference between straightforward assignments
and PEEK and POKE is that. rather than symbolic
addresses, absolute memory addresses are used.

5.2 CONDITIONAL CONSTRUCTS

Conditional constructs are fundamental program building
blocks which allow other statements to be selected for
execution depending on the truth of some condition. In
BASIC, conditional execution of statements or groups of
statements is implemented using IF-THEN statements in
combination with GOTO statements.

More generally, conditional constructs can be
partitioned into three classes:

(1) Single armed conditionals
These may be expressed:

if <condition> then <action>

If the specified condition is true, the <action>
is executed otherwise it is skipped.

(2) Two armed conditionals
These have the form:

if <condition> then <actionl> else <action2>

If the given condition is true, <actionl> is exe
cuted and <action2> is skipped. If the condition
is false, <actionl> is skipped and <action2> is
executed.

(3) Multi-armed conditionals
These are really conjunctions of single armed
conditionals:

if
<conditionl> then <actionl>
<condition2> then <action2>
<condition3> then <action3>

<conditionN> then <actionN>

The conditions are evaluated in turn. If the
evaluated condition is false, the associated ac
tion is skipped and the following condition is
evaluated. If the condition is true, the associ
ated action is executed and the remainder of the
condition/action pairs are skipped. In BASIC,

90

multi-armed conditionals are usually implemented
as a sequence of IF-THEN statements.

We shall consider each of these in turn and show how
they may be implemented in assembly language. The
approach which we use is to show first how the
conditional is implemented in BASIC. We then describe
how this may be literally translated into assembly
language and finally optimised to remove redundancy.

5.2.1 Single armed conditionals
In BASIC, single armed conditionals are expressed as an
IF-THEN statement if only a single statement is to be
conditionally executed. If a number of statements are
to be executed if the condition is true, a goto is used
to skip over these statements if the given condition is
false rather than true.

For example, if we want to swap the values of I and
J if J is greater than I, we might write the following
code:

100 ' Swap if J > I. So skip if J <= I
110 IF J <= I THEN 200
120 T = J
130 J = I
140 I = T
200 . . .

In assembly language programming, we use exactly the
same technique of reversing the sense of the comparison
and skipping if this (reversed) condition is true. The
outline for this is:

Make comparison setting CC bits
Branch if NOT desired condition to L

Code to be executed if original condition true

L

Assuming that I and J are unsigned 8-bit values, the
above BASIC sequence may be translated to assembly
language as follows:

LDB J ; B = J
CMPB I ; compare B with I
BLS L200 ; if J <= I goto L200
LDB J ; B = J
STB T ; T = B
LDB I ; B = I
STB J ; J = B
LDB T ; B = T
STB I ; I = B

L200

91

This literal translation may be optimised by noting
that the first instruction loads the value of J into B
and the same instruction is repeated after the
comparison. As comparison does not affect register
values, the second load is unnecessary. Furthermore,
we are obliged in BASIC to use an intermediate variable
T in the swap sequence but in assembly code this is
unnecessary. We may simply use another register. An
optimised version of the swap sequence is:

LDA J ; A = J
CMPA I ; compare A with I
BLS L200 ; if A <= J then goto L200
LDB I ; B = I
STB J ; J = B, ie J takes original value of I
STA I ; I = A, ie original value of J

Simple BASIC IF-THEN statements of the form IF P = Q
THEN P = P + 1 may be directly translated to assembly
language as follows:

LDA P
CMPA Q ; Compare A and Q
BNE L1 ; if A <> Q then goto L1
LDA P ; A = P
ADDA #1 ; A = A + 1
STA P ; P = A

Again, this may be optimised by using the fact that P
is loaded into a register to evaluate the condition and
then immediately reloaded after this comparison. This
second load can be eliminated. We may also use the INC
instruction to add 1 to a value rather than the add
instruction. The advantage of this is that INC
occupies less space and executes more quickly than ADD.

An optimised form of the above sequence is:

LDA P ; A = P
CMPA Q ; Compare A and Q
BNE L1 ; if A <> Q then goto L1
INCA ; A = A + 1
STA P ; P = A

L1

In fact, we can reduce the number of instructions still
further by using the ability of INC to operate on a
memory location:

LDA P
CMPA Q
BNE L1
INC P

L1

92

Assuming direct addressing of both P and Q, the 4
instruction sequence takes up 8 memory bytes, the 5
instruction sequence occupies 9 memory bytes and the
literal translation of the BASIC code takes up 12
memory bytes.

5.2.2 Two armed conditionals
Two armed conditionals are implemented in BASIC by
using a combination of IF-THEN statements and GOTO
statements. For example, the condition if <condition>
then <action1> else <action2> is written:

100 IF <condition> THEN 200
110 <action2>
120 GOTO 300
200 <action1>
300 . . .

Notice how we reverse the order of the actions and skip
over the second action if the condition is true.
Exactly the same outline structure is used when
implementing two armed conditionals in assembly
language.

Evaluate condition
Branch if true to L1
Action2
Branch unconditionally to L2
L1 Action1
L2 • • • •

For example, if we wish to assign the higher of two
numbers to some other variable, we might write in
BASIC:

100 IF P > Q THEN 200
110 ' P <= Q here
120 MAX = Q
130 GOTO 300
200 MAX = P
300 ...

Given that P, Q and MAX are unsigned values, direct
translation of this BASIC sequence to assembly language
gives:

LDA P ; A = P
CMPA Q ; Compare A and Q
BHI L200 ; if A > Q then goto L200
LDA Q ; A = Q
STA MAX ; MAX = A
BRA L300 ; goto L300

L200 LDA P ; A = P
STA MAX ; MAX = A

L300

93

Again, optimisation of this sequence is possible. The
statement labelled L200 is a redundant load as A
already contains the value of P at that point.
Furthermore, both actions end with an identical store
operation so it may be factored out and executed after
one or the other action is complete. An optimised
version is:

LDA P
CMPA Q
BHI L200 ;if P > Q goto L200
LDA Q ; A = Q

L200 STA MAX ; MAX = A

A sequence of 8 assembly language instructions has been
optimised to 5 instructions which do exactly the same
thing. We must emphasise however that it is not good
programming practice to try to write optimised code
directly. This is an error-prone process because the
programmer is liable to become caught up in
optimisation details and to lose track of the correct
solution. With high-level language code to serve as a
master solution, the introduction of errors through
optimisation is much less likely.

5.2.3 Multi-armed conditionals
Multi-armed conditionals are conditional statements
where several conditions are evaluated and the action
following the true condition is executed. Readers
familiar with Pascal will recognise the case statement
as a form of multi-armed conditional but in BASIC it
must be implemented as a sequence of IF-THEN
statements. For example:

10 IF T = 7 THEN AGE = BAND1
20 IF T = 9 THEN AGE = BAND2
30 IF T = 14 THEN AGE = BAND3
40 IF T = 15 THEN AGE = BAND4
50

Of course, this may be translated into assembly code as
a sequence of IF-THEN statements as described above.
However, multi-armed conditionals often use the same
value in all tests and often have similar actions with
different values being assigned to the same variable in
each action.

The following structure shows how multi-armed
conditionals can often be implemented.

Load test variable
if NOT(testl) goto T2
Load value to be assigned
goto STORE
T2 if N0T(test2) then goto T3
Load T2 value

94

goto STORE

STORE Store value to be assigned

The above sequence of IF-THEN statements may be coded
in assembly language:

LDA T ; Load variable to be tested
CMPA #7 ; First test, compare A with 7
BNE L1 ; if A <> 7 then goto L1
LDB BAND1 ; variable to be assigned into B
BRA L4 ; Jump to store

L1 CMPA #9 ; Second test, compare A and 9
BNE L2 ; if not equal, go on to next test
LDB BAND2
BRA L4

L2 CMPA #14
BNE L3 ; if A <> 14 then goto L3
LDB BAND3
BRA L4

L3 CMPA #15 ; last test
BNE L5 ; do nothing if not equal
LDB BAND4

L4 STB AGE ; assign to AGE
L5 • • • •

Compound conditional expressions
So far, we have looked at conditional statements where
the condition involved is a simple condition of the
form <operand> <conditional operator> <operand>.
However, compound conditional statements using ANDs and
ORs to connect conditions are also frequently used.
These have the general form:

<simple condition> <logical operator> <condition>

where permitted logical operators in BASIC are AND and
OR.

In BASIC, therefore, the following are all valid
conditional expressions:

P = Q AND T >= R
J > I AND J < K
J > I OR K = L
K = J AND (P > Q OR T >= R)

When such conditions are implemented in assembly
language we may write them so that it is often only
necessary to test a single condition rather than the
conditions on each side of the AND or OR operator. This
is possible because we know that both conditions must
be true for an AND operation to be true and that both
conditions must be false for an OR operation to be
false.

95

Therefore, if we test the first condition in an AND
operation and find it false there is no need to test
the second condition. Similarly, if we test the first
condition in an OR operation and find it true, the
entire expression must be true. The second condition
need not be tested. For AND operations, the outline
structure of an assembly language program is:

Test left hand condition
If false goto L1
Test right hand condition
If false goto L1
Actions if condition is true
L1 ...

For OR conditional operators, the outline is similar:

Test left hand condition
If true goto L1
Test right hand condition
If false goto L2
L1 actions if condition is true
L2

We illustrate this by showing how BASIC IF-statements
with compound conditions may be expressed in assembly
code. Again, assume that all variables are unsigned 8-
bit quantities.

IF P = Q AND T >= R THEN M = N

The assembly language equivalent of this is:

LDA P ; A = P
CMPA Q
BNE OUT ; if P <> Q skip second condition
LDA T ; A = T
CMPA R
BLO OUT ; if T < R skip action
LDA M
STA M

OUT

Notice how only a single test is necessary if P is not
equal to Q.

IF (P > Q OR T >= R) AND K = J THEN M = N

To implement this in assembly language we re-order it
to test first if K = J. If this is false, there is no
need to carry out any more tests.

LDA K ; A = K
CMPA J

96

BNE OUT ; If A <> K do no more
LDA P
CMPA Q
BHI OK ; OR condition is true, skip to action
LDA T
CMPA R
BLO OUT ; Skip over action

OK LDA N
STA M

OUT

5.3 LOOP CONSTRUCTS

Loop constructs are those programming constructs which
allow the programmer to specify that a group of
statements is to be executed a number of times. They
take three fundamental forms:

(1) For loops
These execute the loop a specified number of
times. A loop counter variable is used and the
loop terminates when this variable reaches a
specified value.

(2) While loops
These execute the statements in the loop while
some condition remains true. Loop execution stops
as soon as this condition becomes false.

(3) Repeat loops
Repeat loops cause the loop to be executed until
some condition becomes true. The important dis
tinction between repeat loops and while loops is
that the test for loop termination comes at the
end of a repeat loop whereas it comes at the be
ginning of a while loop. Repeat loops, therefore,
always execute at least once.

BASIC provides facilities which allow each of these
looping constructs to be expressed. For loops are
constructed using FOR and NEXT statements and both
while and repeat loops are built from combinations of
IF-THEN and GOTO statements.

We shall now look at each of these loop constructs
in turn and see how they may be expressed in assembly
language.

5.3.1 For loops
For loops are loops which execute a given number of
times. They have a controlling for-loop variable which
is incremented or decremented by one or by some
programmer specified value until it reaches a
terminating value. For example, consider the following
BASIC program which sums the integers between 1 and N,
where N is some positive number.

97

100 TOT = 0
110 FOR I = 1 TO N
120 TOT = TOT + I
130 NEXT I

On completion of this program fragment, the value of
TOT will be the desired sum. To see how this might be
expressed in assembly code it is best to consider it in
primitive terms using only IF-THEN and GOTO statements
to implement looping.

100 TOT = 0
110 I = 1
120 IF I > N THEN GOTO 160
130 TOT = TOT + I
140 I = I+1
150 GOTO 120
160

Now we have reduced the loop to conditionals and gotos
which we know how to express in assembly language:

CLR TOT ; TOT = 0
LDA #1 ; A = 1
STA I

LOOP LDA I ; A = I
CMPA N
BHI OUTLP ; IF I > N stop looping
LDA TOT
ADDA I
STA TOT
INC I ; Notice use of INC rather than ADD
BRA LOOP

OUTLP

In this example we have implemented the statement I=I
+ 1 as INC I which appears to be a sensible
optimisation. However, if we look at the body of the
loop we see that I is not actually modified in the loop
body so we can keep the loop counter in a register for
the duration of the loop.

CLR TOT ; TOT = 0
LDB #1 ; B = 1, loop counter

LOOP CMPB N
BHI OUTLP ; if B > N then skip
TFR B,A ; A = B
ADDA TOT ; A = A + TOT
STA TOT ; TOT = A
INCB ; B = B + 1
BRA LOOP

OUTLP

The above code shows how the for loop may be
implemented when TOT is an 8-bit value. If TOT is a

98

16-bit value, an alternative strategy may be adopted.
Because of the existence of the register add
instruction ABX, the B register may be used to hold the
loop counter and the X register the sub-total as the
loop is executed.

LDX #0 ; X = 0, initial total
LDB #1 ; Loop counter

LOOP CMPB N
BHI OUTLP ; If B > N then goto OUTLP
ABX ; X = X + B
INCB ; B = B + 1
BRA LOOP ; goto LOOP

OUTLP STX TOT ; TOT = X

You can see from these examples that there is no single
'best' way of implementing for loops in assembly
language. Rather, if optimal code is required, the
programmer must look at the statements within the loop
and code his loop with how they interact with the loop
counter.

As a final example in this section, we show how a
FOR-NEXT loop using a negative step might be
implemented in assembly code. This example is also our
first introduction to arrays. The program fragment
assigns those numbers between 100 and 50 which are
divisible by 8 to adjacent array elements. Therefore,
the first element holds 96, the second 88, the third 80
and so on. In BASIC, this may be written as follows:

100 I=0
110 FOR J = 100 TO 50 STEP -2
115 RM = J - (INT(J/8) * 8)
120 IF RM <> 0 THEN 150
130 ARR(I) = J
140 I = I + 1
150 NEXT J

A completely literal translation of this program is not
possible because there is no direct equivalent in
assembly language to the divide operator. However, the
calculation of the remainder may be simulated by using
the fact that a binary number which is divisible by 8
always has its 3 least significant bits (bits 0-2)
equal to 000. If the bit pattern 00000111 is anded with
a number and the result is zero then bits 0-2 of that
number must be 000 and the number is divisible by 8.

In the assembly language example below, the array
ARR is accessed by placing the address of its first
element in register X. Indexed addressing is then used
to access this and succeeding elements.

CLR I ; I = 0, not 1 as assembly language
* array indexes always start at 0

99

LDA #100
STA J ; J = 100

LOOP LDA J
CMPA #50
BLO OUTLP ; if J < 50 then goto OUTLP
ANDA #$F8 ; AND with bit pattern 11111000
CMPA J ; Compare anded value with original
BNE L150 ; if not divisible by 8 goto L150
LDB I
STA B,X ; Register B holds array index
INCB
STB I ; I = I + 1

L150 LDA J ; next J
SUBA 2
STA J ; J = J - 2
BRA LOOP ; Back to LOOP

OUTLP

This code may be optimised by making use of registers
to hold the value of the loop counter J and the array
index I. We leave this optimisation as an exercise for
the reader.

5.3.2 While loops
While loops are loops which execute while some
condition is true. When this condition becomes false,
execution of the loop terminates. In BASIC, while
loops are implemented using IF-THEN and GOTO
statements.

For example, consider the following while loop:

count = 0
while m > n do

m = m - n
count = count + 1

end while

In BASIC, this loop might be written:

100 COUNT = 0
110 IF M <= N THEN 150
120 M - M - N
130 COUNT = COUNT + 1
140 GOTO 110
150

It is a straightforward task to translate this to
assembly language using the techniques which we have
already described for converting IF-THEN and GOTO
statements to assembly code:

CLR COUNT ; COUNT = 0
WLOOP LDA M

CMPA N
BLS OUTLP ; If M <= N goto OUTLP

100

LDA M
SUBA N
STA M ; M = M - N
INC COUNT ; COUNT = COUNT + 1
BRA WLOOP

OUTLP

As usual, the direct translation of BASIC to assembly
code may be optimised by removing redundancies and
making more effective use of the processor registers.

CLRB ; Use B to hold COUNT
LDA M ; A = M

WLOOP CMPA N
BLS OUTLP ; If M <= N goto OUTLP
SUBA N ; M = M - N.

* Don't store back into M
* as value is needed

INCB ; COUNT = COUNT + 1
BRA WLOOP

OUTLP STB COUNT ; COUNT = B
STA M ; M = A
• * • •

Although there are exactly the same number of
instructions in this optimised sequence, the number of
instructions executed within the loop has been reduced
from 8 to 5. As these are the instructions which are
each executed several times (once for each loop
execution), this reduction means that the optimised
program will run more quickly than its unoptimised
equivalent.

5.3.3 Repeat loops
Repeat loops and while loops are similar. The most
important difference is that the test for loop
termination in a repeat loop comes at the end of the
loop whereas in a while loop the termination test is
placed at the start of the loop. The result of this is
that repeat loops always execute at least once whereas,
if the while test is initially false, the while loop
will not execute at all. Again, the BASIC programmer
uses IF-THEN and GOTO statements to implement repeat
loops.

For example, consider the following repeat loop:

repeat
m = m + t
p = p + m

until p >= n

In BASIC, this might be written:

101

100 M = M + T
110 P = P + M
120 IF P < N THEN 100

Translating this BASIC program to assembly language
results in the following program fragment:

RLOOP LDA M
ADDA T
STA M ; M = M + T
LDA P
ADDA M
STA P ; P = P + M
LDA P
CMPA N
BLO RLOOP ; If P < N goto RLOOP

We leave the optimisation of this assembly code
sequence as an exercise for the reader.

5.4 GOTO STATEMENTS

Although you may never have considered them as such,
the only function of BASIC GOTO statements is to
provide a means for the programmer to implement
conditional statements and loop statements. You will
have surmised by now that the equivalent, in assembly
code, to BASIC'S GOTO statement is the unconditional
branch instruction BRA <label>.

There is also an alternative form of the BASIC GOTO
in assembly language and that is the unconditional jump
instruction JMP. Executing a JMP instruction causes the
program counter to be set to the value of JMP's
operand. Unlike the BRA instruction where the operand
is added to or subtracted from PC, JMP's operand is not
a relative but is an absolute value.

In general, you will probably find that you use BRA
more often than JMP as it is part of the fundamental
mechanism involved in the implementation of loops and
conditional statements.

5.5 INPUT AND OUTPUT

One of the most significant advantages of programming
in a language like BASIC, rather than in assembly
language, is the fact that BASIC provides easy-to-use
statements for the input and output of program data.
Generalised input/output programming is very complex;
indeed, we devote the whole of Chapter 8 to this topic,
and the BASIC system hides much of this complexity from
the programmer.

In BASIC, we may say INPUT N in order to read a
number from the keyboard into variable N. Similarly,

102

PRINT N prints the contents of the variable N on the
display screen. When you think of it however, you
don't really type the binary form of a number on the
keyboard nor do you get the binary pattern representing
the number printed on the screen. Rather, you type
characters, which happen to be the digits making up the
number required, and you read characters on the screen.

The BASIC system contains routines which convert
character sequences, say '5' and '8', to the binary
representation of 58. Similarly, when printing a
number say -326, the PRINT routine converts the binary
pattern representing -326 to the characters '-', '3',
'2' , '6' .

The assembly language programmer does not have ready
access to these BASIC conversion routines so must
always deal with input and output in terms of
characters rather than numbers. If conversion to and
from numbers is required, you must write your own
conversion routines for this task. Some of these
routines are provided as part of the machine code
monitor program given in the final section of this
chapter.

As I/O programming is described in general in
Chapter 8, we only describe very basic facilities here
which allow you to input characters from the keyboard
and output characters to the screen. These operations
are carried out by calling subroutines which are an
inherent part of the Dragon's input/output system.

We call the routine which is used to input
characters from the keyboard INCH. The details of how
this routine works are not important, all the user must
know is how to call this routine and the results of the
routine call. When INCH is called, it interacts with
the keyboard controller and returns an 8-bit value in
the A accumulator. This value is either zero, which
means that no key has been pressed, or is a code
representing the input character.

The key code returned by INCH is, in most cases, the
ASCII value of the character typed by the user. The
exceptions to this, when another value is returned in
A, are shown in the table below.

Character

Up arrow
Shift up arrow
Down arrow
Shift down arrow
Shift @
BREAK
Shift BREAK
Left arrow
Shift left arrow
Right arrow

Hex Code

5E
5F
0A
5B
13
03
03
08
15
09

Shift right
arrow ENTER

Shift ENTER
CLEAR
Shift CLEAR

5D
0D
0D
0C
5C

103

A jump to the starting address of the INCH routine is
always stored in memory at address 8006. The INCH
subroutine can therefore be called directly either by
using this address as the instruction operand or by
equating the name INCH with the address and using INCH
in the operand field of the instruction.

We call the routine using the jump subroutine
instruction JSR which pushes the value of PC onto the
S-stack and jumps to the called routine. On
termination, the called subroutine restores the value
of PC. Therefore, a character may be input as follows:

JSR INCH

However, when you actually look for a character using
INCH there is no guarantee that a key has been pressed.
INCH returns 0 in A if no key is pressed and also sets
up the condition code register flags. Remember, the Z
bit in CC indicates whether the result of the previous
operation was zero or not so, if CC.Z is set, this
means that A = 0. The following short loop continually
calls INCH until a character is actually input.

GETCH JSR INCH ; Look for a character
BEQ GETCH ; if none input, keep looking

The routine INCH does not destroy any register contents
apart, obviously, from A and CC. If the value of CC is
precious and must be preserved, it must be saved before
calling INCH and restored after the return from the
subroutine. For example:

PSHS CC ; Save CC on S-stack
GETCH JSR INCH ; get a character

BEQ GETCH
PULS CC ; Restore CC

Normally, it is not necessary to save and restore CC as
it should not be used to hold permanent information.

INCH's complement, a character output routine, is
accessed via address 800C and the name OUTCH may be
equated with this address. As well as actually printing
the character on the screen, OUTCH also moves the
cursor one space when a character is printed and
handles the control characters 'Backspace', 'Return',
etc.

To output a character, that character should be
placed in the A register and OUTCH called. The value

104

of the condition code register is lost when OUTCH is
called but the values of all other registers, including
the A register, are not affected.

The use of OUTCH is illustrated by the following
example which outputs a '*' at the current cursor
position.

LDA #'* ; A = ASC("*")
JSR OUTCH ; Output character

Using these simple character input and output routines,
we may now write an assembly language program which
reads characters from the keyboard and prints them on
the display. Assume that the read/print sequence halts
when the BREAK key is pressed.

LDA #$03
STA BREAK ; Set location BREAK to

* BREAK key input code
GETCH JSR INCH

BEQ GETCH ; Get a character
CMPA BREAK ; Is it BREAK
BEQ DONE ; If so, finish with no print
JSR OUTCH ; Print the character
BRA GETCH ; Get next character

DONE

The final example in this introduction to assembly
language input and output reads 10 characters into a
memory area then prints them in reverse order. Notice
how auto increment and decrement of the X register is
used in this sequence.

CLRB ; B is counter register
LDX #CHARS ; Set up address of memory area

GETCH JSR INCH
BEQ GETCH ; Get a character
STA ,X+ ; Store it and increment X
INCB ; Add 1 to counter
CMPB #10 ; If counter <= 10 then
BLS GETCH ; get next character

* Now all characters are input and the address in X is
* one greater than the address of the last character
* in the sequence
* Count downwards to output them in reverse order

DECB ; Reset B to correct number
COUT LDA ,-X ; Decrement X
* and fetch character to A

JSR OUTCH ; Print it
DECB ; One off counter
BNE COUT ; If counter <> 0 goto OUTCH

105

5.6 SUBROUTINES

A subroutine is a self-contained section of code which,
usually, is set up to implement a particular function.
Subroutines may be called from within a program. They
carry out their specified function and control then
return to the statement following their call.

Subroutines are a very important programming
construct and the assembly language programmer has
great flexibility in how he defines and uses
subroutines. In fact, much of the next chapter is
dedicated to this topic and we confine our description
here to an explanation of how BASIC'S GOSUB command may
be implemented.

In BASIC, when we set up or declare a subroutine, we
assign it a line number which is out of sequence with
the numbers in the rest of our program. To call the
subroutine, we set up the values which it needs in
program variables and then execute a GOSUB <line
number> instruction. This transfers control to the
subroutine until a RETURN statement is executed when
control returns to the calling program.

For example, the following BASIC sequence calls a
subroutine to check if a number is an odd number less
than 20. If so, the subroutine converts it to another
number by adding 20 to it. Otherwise, it returns the
number unchanged. The subroutine expects its input to
be stored in the variable INN and returns its output in
the variable OUTN.

100 INPUT INN
110 GOSUB 1000
120 PRINT OUTN
130
1000 RM = INN - (INT(INN/2)*2)
1010 IF INN < 20 AND RM = 0 THEN 1040
1020 OUTN = INN
1030 GOTO 1050
1040 OUTN = INN + 20
1050 RETURN

When using subroutines in assembly code, we may either
use the BSR instruction or the JSR instruction. The
BSR instruction is like the unconditional branch
instruction BRA, but as well as branching it saves the
value of PC on the S-stack. The JSR instruction is
used when we have subroutines set up at known addresses
or when it is necessary to use indirect addressing to
call the subroutine.

Consider how the above BASIC code might be
translated to assembly language. As we haven't yet
covered the input and output of numbers, let us assume
that there exists a subroutine GETNUM which inputs a
number to the A register and a corresponding routine

106

PUTNUM which outputs the A register, as a number, to
the screen.

JSR GETNUM ; INPUT A
STA INN ; INN = A
BSR CONVON ; To convert number
LDA OUTN
JSR PUTNUM ; PRINT A

* CONVON - Add 20 to odd numbers < 20

CONVON LDA INN
CMPA #20
BHI EXIT ; If INN > 20 then goto EXIT
BITA #$01 ; Test bottom bit of A

* If it is 0, number is even
BEQ EXIT
ADDA #20 ; Add 20 to number

EXIT STA OUTN ; and store in OUTN
RTS ; return to calling code

The RTS instruction is used to return control to the
instruction which immediately follows the subroutine
call. As CONVON is called above, the first load
instruction LDA INN is redundant as INN is already held
in register A. However, we don't optimise this by
removing the load instruction as the subroutine
specification does not require the programmer to store
INN in register A before the subroutine call.

Notice also that the subroutine alters the value of
register A. In general, subroutines should leave the
states of registers exactly as they were when the
subroutine was called. Therefore, all subroutines
ought to have the following structure.

Save registers used by subroutine on stack
Subroutine code
Restore register values from stack
Return

The subroutine CONVON may be adapted to reflect this
structure:

CONVON PSHS A,CC ; Save A and CC on stack.
LDA INN
CMPA #20
BHI EXIT
BITA #$01
BEQ EXIT
ADDA #20

EXIT STA OUTN
PULS A,CC,PC ; Restore and return

All the RTS instruction does is to pull PC from the S-

107

stack so it can be left out if PC is pulled explicitly
when the saved registers are restored from the stack.

This mechanism of passing parameters to and from a
subroutine in fixed memory locations is not ideal. We
shall describe its deficiencies and introduce better
parameter passing conventions in the following chapter.

5.7 ARRAYS

Arrays are one of the most commonly used data
structures where a sequence of storage elements is
given a name and particular elements in that sequence
are accessed by number. In this section, we show how
arrays of numbers may be stored and accessed using
assembly language.

In BASIC, the programmer may use one-dimensional
arrays which are made up of a linear sequence of
numbers or two-dimensional arrays which, conceptually,
may be considered as a table or matrix of numbers. In
fact, two-dimensional arrays are also stored in the
computer's memory as a linear sequence and the BASIC
system provides routines to map a row/column pair
(l,m), say, to the appropriate address n in the linear
sequence. Two possible mappings which may be used by
the assembly language programmer are described later in
this section.

When using one-dimensional arrays in assembly
language, you must know the address of the first
element in the array. You get this by associating a
label with a 'reserve store' directive as described in
section 4.3. This label identifies the so-called 'base
address' of the array. We assume, in the remainder of
this section, that NARR is the base address of a one-
dimensional array of 8-bit numbers and that MATRIX is
the base address of a two-dimensional numeric array.

These may be set up using assembler directives as
follows:

NARR RMB 15
MATRIX RMB 100

The index registers X and Y are the mechanism through
which consecutive array elements may be accessed. The
base address of the array is loaded into one of these
index registers and the auto increment/decrement
facilities used to sequence through the array. For
example, say NARR is made up of 15 8-bit values and you
want to set all elements to 0. In BASIC, you would
write:

100 FOR I = 1 TO 15 DO
110 NARR(I) = 0
120 NEXT I

108

Exactly the same assignments may be specified in
assembly language but there is no need for an explicit
counter variable.

LDX #NARR ; Put array base address in X
SET0 CLR ,X+ ; NARR(X) = 0 : X = X + 1

CMPX #NARR+15 ; Compare X to base address+15.
* see if all elements cleared

BLS SET0 ; If not, goto SET0
* to clear next element

The availability of index registers makes array element
access a very efficient operation. Even when auto
increment or decrement cannot be used to update the
index register, because the step is not one or two, the
LEA instruction may be used to perform arithmetic on
the index register.

For example, say the following BASIC code is to be
implemented in assembly language:

100 FOR I=3 STEP 3 to 15
110 NARR(I) = NARR(I - 1) + 1
120 NEXT I

Using assembly language, there is again no need for an
explicit array index variable:

LDX #NARR + 2 ; X = base of NARR + 2
* As NARR+0 is first element
* this refers to 3rd element
SETVAL LDA ,-X ; A = Previous element

INCA ; A = A + 1
LEAX 1,X ; X = X + 1 to get back to

* address to be assigned
STA ,X ; NARR(X) = NARR(X-1) + 1
LEAX 3,X ; X = X + 3
CMPX #NARR + 15 ; Are we finished?
BLS SETVAL ; If not, back to SETVAL

The use of index registers to hold the address of the
array element to be accessed is easy to implement for
one-dimensional arrays. However, when two-dimensional
arrays are used, the programmer must devise a way of
storing the array as a linear sequence and must invent
a mapping to convert a row/column address to an address
in that sequence. There are two techniques which are
commonly used for this conversion.

The first of these techniques stores the entire
array, row by row, in contiguous memory locations. So,
if an array is declared in BASIC as MATRIX(10,10) this
takes up 100 memory elements. The first 10 elements
are row 1, written as MATRIX(1,*), the next 10 are row
10, MATRIX(2,*), etc. The position of an element in
row m say is found by finding where row m starts then

109

adding the column displacement to it.
The starting position of a particular row, the row

base, is computed by multiplying the row number by the
length of the row. As the row base of the very first
row is the same as the array base address, we count row
numbers from 0. Therefore, to find the row base of the
sixth row, we actually multiply the row length by five.
For example, MATRIX(6,*) would have a row base address
of MATRIX + 50 (5 * row length) and the element
MATRIX(6,8) has the address MATRIX + 5 0 + 8 .

An alternative storage technique for two-dimensional
arrays does not require array rows to be stored
consecutively nor does it require a multiplication to
compute the row base address. Rather, the row base
addresses are all stored separately in another array
called an Iliffe vector, named after J. Iliffe, the
inventor of the mapping technique. This is best
illustrated diagrammatically as shown in Figure 5.1.

Fig. 5.1 Using Iliffe Vectors to implement 2-D arrays

To find out the row base address, the row number is
used as an index into this Iliffe vector and the

110

starting address of the row is returned. The column
number is then added to this to compute the actual
element address. The base address of the array is not,
in this case, the address of the very first array row
but is the address of the first element in the Iliffe
vector.

The main disadvantage of using Iliffe vectors is,
obviously, the fact that the Iliffe vector itself takes
up precious memory locations. However, the flexibility
which it affords inasmuch as all array rows need not be
in contiguous storage elements and the fact that a
multiplication is avoided in the address computation
often outweighs this disadvantage.

Both of these techniques of array storage are
illustrated below with assembly language versions of
the following BASIC code.

10 DIM MATRIX(10,10)
100 INPUT M
110 FOR J = 1 TO 10
120 MATRIX(M,N) = 0
130 NEXT J

When MATRIX is stored row by row in a linear sequence,
the above BASIC may be implemented in assembly code as
follows. Assume that the subroutine GETNUM inputs a
number to the A register.

JSR GETNUM ; INPUT M
* That is, get row number into A

DECA ; Subtract 1 as count from 0
LDB #10 ; This is the row length
MUL ; D = A * B ie 10*(M-1)
ADDD #MATRIX ; Add the matrix base address
TFR D,X ; Set up index register X
LDA #10 ; Use A to count assignments

NEXT CLR ,X+ ; Zero element: X = X + 1
DECA ; A is counter register
BNE NEXT ; If A <> 0 goto NEXT

When the two-dimensional array is represented using an
Iliffe vector, the array base MATRIX holds the address
of the first element of that vector.

JSR GETNUM ; A = row number
DECA ; Get displacement from array base
LDX #MATRIX ; Put base address in X
LDX A,X ; Index to load X with the row base

* taken from the Iliffe vector
LDA #10 ; A is counter

NEXT CLR ,X+ ; Set element to zero
DECA
BNE NEXT ; If all elements not cleared

* go back to clear next element

111

Notice, from this example, how the powerful indexed
addressing features of the M6809 makes the computation
of the row base very efficient indeed. In fact, both
techniques of two-dimensional array implementation are
efficient on the M6809.

5.8 A MACHINE CODE MONITOR

Rather than present a number of small examples of
working assembly code programs, we have chosen to
illustrate the principles described in this chapter
with a single, substantial assembly code program.
However, we have written this program in a structured
way so that it is made up of a number of easily
understood routines.

The reason for adopting this approach is that we
want to present a program which is of use to the novice
assembly code programmer and which can help him debug
his own programs. The program below is a so-called
'monitor' which provides facilities for the user to
examine the contents of specified memory addresses and
to change them by typing the revised value.

The monitor issues a prompt to the user and responds
to two commands:

(1) J - this means jump to the start of the user pro
gram.

(2) M <address> - this displays the contents of the
specified address.

Once an M command has been issued, the user may examine
subsequent addresses by typing any letter and may
examine the previous address by typing an 'up arrow'
character. If the user types a value made up of three
decimal digits or two hexadecimal digits preceded by a
'$' sign, this value is filled in to the current
address.

To return to the program which called the monitor,
you must type a 'BREAK' character. A number is
normally terminated with an 'ENTER' character but can
be terminated early with any other character in which
case, the change is ignored.

The sequence below is an example of a possible
dialogue with the monitor. User input is underlined.

*M $1000
$1000 000 $00 255
$1001 001 $01 $FF
$1002 128 $80 2[ENTER]
$1003 016 $10 [up arrow]
$1002 002 $02 $A+
$1003 016 $10 [up arrow]
$1002 002 $02 [BREAK]

112

The monitor program itself now follows. Do not worry if
you cannot understand it completely on your first
reading. You may find it helpful to read Chapter 6 and
then come back to this program for further study.

* MONITOR - memory examine and change system
*
* This program is intended to help with the
* development and debugging of assembly language
* programs. It provides facilities for the
* user to input a memory address and display its
* contents. These contents may then be modified
* by the user.

* Unless otherwise specified, all routines preserve
* all register values except CC and any registers used
* for returning results.

ORG 20001
LBRA DRAMON ; Entry point of the monitor

INTRO FCC "DRAGON MONITOR 1.0"
FCB 0 ; Terminator for string

CR EQU $0D
QMARK EQU $3F
UPAROW EQU $5E
BREAK EQU $03
DOLLCH EQU $24
STAR EQU $2A
CBLINK EQU $8009 ; Cursor blink routine
INCH EQU $8006 ; Keyboard input routine
OUTCH EQU $800C ; Output character routine

* INECHO - read a character and echo it to screen

* Register inputs NONE
* Register outputs A - contains character input
INECHO PSHS X,B ; Save registers affected
INLOOP JSR CBLINK ; Blink the cursor

JSR INCH ; Scan the keyboard
BEQ INLOOP ; and wait for a character
JSR OUTCH ; Echo the character
PULS X,B,PC ; Restore registers and return

* OUTSTR - print string of characters
*
* Register inputs X - pointer to beginning of string
* Registers destroyed X,A
*
* String must be terminated with a null byte
*
OUTSTR LDA 0,X+ ; Get character from string

BEQ ENDSTR ; Terminated by a zero byte
JSR OUTCH ; Output the character
BRA OUTSTR ; and deal with the next one

ENDSTR RTS

113

* OUTCR - output a carriage return

* Register inputs NONE

OUTCR PSHS A ; Preserve A
LDA #CR ; Load Carriage Return code
JSR OUTCH ; and send it
PULS A,PC ; Restore and return

* OUTSP - output a space

* Register inputs NONE
*
OUTSP PSHS A

LDA #$20 ; Code for space
JSR OUTCH ; and output it
PULS A,PC

* READY - Prompt user for new command
*
* Register inputs NONE
*
READY PSHS A

BSR OUTCR ; Take a new line
LDA #STAR ; before outputting
JSR OUTCH ; prompt character
PULS A,PC

*
* DOLLAR - prompt for hexadecimal value
*
* Register inputs NONE
*
DOLLAR PSHS A

BSR OUTSP
LDA #DOLLCH ; Hexadecimal prompt
JSR OUTCH
PULS A,PC

*
* INHEXD - input a hexadecimal value
*
* Register inputs NONE
* Register outputs A - if valid hex char then hex
* value else character
* CC.V = 0 if valid hex character
* = 1 if non-hex character

INHEXD BSR INECHO ; Read a character
CMPA #'0 ; and check the range
BLO INHERR ; for "0" to "9"
CMPA #'9
BLS CHOSUB ; and convert if so
CMPA #'A ; Could be "A" to "F"
BLO INHERR

114

CMPA #'F
BHI INHERR
SUBA #7 ; Make "A" to "F" follow "9"

CHOSUB SUBA #'0 ; Convert to numeric value
ANDCC #$FD ; Valid return
BRA INHXIT

INHERR ORCC #2 ; Error return, V bit set
INHXIT RTS

* OUTHXD - Output hex digit as character

* Register inputs A - hexadecimal value

OUTHXD ANDA #$F ; Mask off MS 4 bits
CMPA #9 ; Check for decimal digit
BLS ADDCHO
ADDA #1 ; A to F offset

ADDCHO ADDA #'0 ; Convert to character
JSR OUTCH ; and output it
RTS

* INDECD - input decimal digit and convert to value
*
* Register inputs NONE
* Register outputs A - decimal value if in range 0-9
* - character if non-decimal
* CC.V - 0 if valid input
* =1 otherwise
*
INDECD BSR INECHO

CMPA #'0
BLO INDERR
CMPA #'9
BHI INDERR
SUBA #'0 ; Converts to numeric value
ANDCC #$FD
BRA INDXIT

INDERR ORCC #2
INDXIT RTS

* OUTDCD - output decimal digit as character
*
* Register inputs A - decimal value

OUTDCD ANDA #$F
ADDA #'0
JSR OUTCH
RTS

* HCNVAB - combine hex digits into single byte
*
* Register inputs A - new hex digit
* B - existing hex digit
* Register outputs B - new hex value = B*16+A

115

*
HCNVAB STA 0,-S ; Save for later

ASLB ; Move LS 4 bits
ASLB ; of B
ASLB ; to the
ASLB ; MS 4 bits
ADDB 0,S+ ; Add in new hex digit
RTS

*
* INHEXB - input a hexadecimal byte
*
* Register inputs NONE
* Register outputs A - hex byte value
* CC.C = 0 means value is OK
* CC.V = 0 means that B contains last
* hex value input
* CC.V = 1 means hex byte terminated
* prematurely and B holds
* character read in.
*
INHEXB CLRB ; Initialise to 0

BSR INHEXD ; Read a hex digit?
BVS NONHEX
BSR HCNVAB ; yes, so add to byte
BSR INHEXD ; Second hex digit?
BVS NONHEX
BSR HCNVAB ; yes, so add that also

NONHEX ANDCC #$FE ; Indicate OK
EXG A,B ; Return with A and B set up
RTS

* OUTHXB - output a hex byte as characters

* Register inputs A - contains byte value
*
OUTHXB PSHS A

LSRA ; Shift MS 4 bits
LSRA ; to LS 4 bits
LSRA
LSRA
BSR OUTHXD ; and output the hex digit
LDA 0,S ; Get original again
BSR OUTHXD ; MS 4 bits masked off by OUTHXD
PULS A,PC ; Return intact

*
* MULB10 - multiply by 10
*
* Register inputs B - value to be multiplied
* Register outputs B = B*10
* CC.C = 0 means result between 0-255
* =1 result out of range
*
MULB10 CLR 0,-S ; Create temp on stack

ASLB ; Evaluate 2*B

116

BCS MULXIT ; Too big?
STB 0,S ; Save as temp result
ASLB ; Evaluate 4*B
BCS MULXIT ; Too big?
ASLB ; Evaluate 8*B
BCS MULXIT ; Too big?
ADDB 0,S ; Evaluate (2*B)+(8*B)

* If this is too big a result C will be set
MULXIT LEAS 1,S ; Release temp.

RTS
*
* DCNVAB - combine decimal values
*
* Register inputs A - new decimal digit
* B - old decimal value
* Register outputs B - result = B*10 + A
* CC.C = 0 - result in range 0-255
* = 1 - result out of range
*
DCNVAB PSHS A ; Save register

BSR MULB10 ; B:=B*10
BCS DCNXIT ; Too big?
ADDB 0,S ; B:=(B*10)+A

DCNXIT PULS A,PC ; Restore and RTS
*
* INDECB - Input decimal byte value
*
* Register inputs NONE
* Register outputs A - input value if valid
* CC.C = 0 value in range 0-255
* =1 value out of range
* If CC.V = 1 then number terminated early so must
* be in range 0-255. B holds last converted digit
* of all 3 typed otherwise set to terminator.
*
INDECB CLRB ; Initialise byte

BSR INDECD
BVS NONDEC ; Valid digit?
BSR DCNVAB ; yes, add to byte
BCS IDBXIT ; Too big?
BSR INDECD
BVS NONDEC ; Valid digit?
BSR DCNVAB ; yes, add to byte
BCS IDBXIT ; Too big?
BSR INDECD
BVS NONDEC ; Valid digit?
BSR DCNVAB ; yes, add to byte
BCS IDBXIT ; Too big, so leave C set

NONDEC ANDCC #$FE ; Result is in range 0 - 255
IDBXIT EXG A,B ; Return registers

RTS

* OUTDCB - output byte as 3 digit decimal value

117

* Register inputs A - contains byte to be output
*
OUTDCB PSHS D ; Both A and B used

TFR A,B ; A is to be used in sub.
CLRA ; Clear the 100s digit

NXTHUN CMPB #100 ; Any 100s?
BLO TRYTEN
INCA ; yes, so update digit
SUBB #100 ; Subtract a 100
BRA NXTHUN ; and try again

TRYTEN BSR OUTDCD ; Output the 100s digit
CLRA ; Set up for 10s

NXTTEN CMPB #10 ; Any 10s
BLO TRYONE
INCA ; yes, so update 10 digit
SUBB #10 ; Subtract 10
BRA NXTTEN ; and try again

TRYONE LBSR OUTDCD ; Output 10s digit
CLRA ; Now count the 1's

NXTONE CMPB #1 ; Any 1's
BLO OUTONE
INCA ; yes, update 1's digit
DECB ; Subtract 1
BRA NXTONE ; and try once more

OUTONE LBSR OUTDCD ; Final digit
PULS D,PC ; Restore and return

*
* HCONVX - Add hexadecimal digit to X
*
* Register inputs A - new hex digit
* X - old hex value
* Register outputs X = X*16 + A
*
HCONVX STA 0,-S ; Save away for later use

EXG X,D ; So we can do arithmetic
ASLB ; This performs an ASL
ROLA ; on the D register
ASLB
ROLA
ASLB
ROLA
ASLB
ROLA ; Have now space in LS 4 bits
ADDB 0,S+ ; To add in new hex digit
EXG D,X ; Restore D and return X
RTS

*
* INHEXW - input hex word (address)
* May be up to 4 hex digits
*
* Register inputs NONE
* Register outputs X - hex address value
* CC.V = 1 address terminated

118

* CC.V = 0 full 4-digit address
* read in
* CC.C = 0 value in range O-FFFF
*
INHEXW PSHS D ; Save from harm

LDX #0 ; Initialise address
LBSR INHEXD ; Read hex digit?
BVS NONHW
BSR HCONVX ; yes, add to X
LBSR INHEXD ; Read hex digit?
BVS NONHW
BSR HCONVX ; yes, add to X
LBSR INHEXD ; Read hex digit?
BVS NONHW
BSR HCONVX ; yes, add to X
LBSR INHEXD ; Read hex digit?
BVS NONHW
BSR HCONVX ; yes, add to X

NONHW ANDCC #$FE ; Result valid
PULS D,PC ; Restore and return

¥

* OUTHXW - output hex word as 4 hex digits

* Register inputs X - value to be output
*
OUTHXW PSHS D

TFR X,D ; D := hex word
LBSR OUTHXB ; Output MS byte first (A)
TFR B,A
LBSR OUTHXB ; followed by LS byte (B)
PULS D,PC

* MCOMND - memory examine and change
*
* Register inputs NONE
* Registers destroyed X, A, CC
*
* Interprets user commands as defined in introduction
MCOMND LBSR DOLLAR ; Prompt for hexadecimal

BSR INHEXW ; Expecting an address (hex)
EXAMIN LBSR OUTCR ; Prefix the address

LBSR DOLLAR ; with a "$"
BSR OUTHXW ; followed by the address
LBSR OUTSP ; separate by a space
LDA 0,X ; Get contents of that address
LBSR OUTDCB ; Shown as decimal value
LBSR DOLLAR ; and followed by the
LBSR OUTHXB ; hexadecimal value
LBSR OUTSP ; Then a space
LBSR INDECB ; Assume decimal change
BCS QUERY ; Too big a number?
BVC CHANGE ; If OK just change the byte

* A non-digit has been typed, check for hex prefix

119

CMPB #DOLLCH ; Hex number?
BNE CHKCR
LBSR INHEXB ; yes, so get the rest
BVC CHANGE ; If OK just change the byte

* At this point an early end to the number has
* been typed. Only CR (ENTER) will be allowed.
* Note: If only a CR is typed then the byte is
* cleared to zero!. Be careful!
CHKCR CMPB #CR ; CR (ENTER)?

BEQ CHANGE ; yes, then change the byte
* Check for the "up arrow" key since this
* returns to the previous location.

CMPB #UPAROW ; "up arrow"?
BEQ LSTLOC ; yes, move back to last

* Now check for the BREAK key since this exits
* the Monitor

CMPB #BREAK ; BREAK in?
BEQ MCDXIT ; yes, then exit

NXTLOC LEAX 1,X ; Move location address on
BRA EXAMIN ; and repeat

LSTLOC LEAX -1,X ; Back up location address
BRA EXAMIN ; and repeat

CHANGE STA 0,X ; Make the change
CMPA 0,X ; and check afterwards
BEQ NXTLOC ; OK?, move on if so

QUERY LDA #QMARK ; Made a mistake.
JSR OUTCH ; so report it.
BRA EXAMIN ; Don't do anything untoward

MCDXIT RTS ; Return
*
* JCMND - jump to start of program
*
* Register inputs NONE
*
JCOMND LBSR DOLLAR ; Put out $ prompt

LBSR INHEXW ; Get hex address
BVS JERR ; MUST be all 4 hex digits
JMP 0,X

JERR RTS ; Only get here on error
*
* DRAMON - main driving routine
*
* Register inputs NONE
* Registers destroyed X, A, B, CC

DRAMON LBSR OUTCR ; Prompt on a new line
LEAX INTRO,PCR ; Output intro.
LBSR OUTSTR

NXTCMD LBSR READY ; Prompt the user
LBSR INECHO ; Read the command
CMPA #'M ; Memory examine and change?
BNE TRYJ
BSR MCOMND ; yes, then obey it
BRA NXTCMD ; and repeat

120

TRYJ CMPA #'J ; Is it the Jump command?
BNE TRYBRK ; no, then check for BREAK
BSR JCOMND ; yes, so obey it
BRA NXTCMD ; but don't expect to get here

TRYBRK CMPA #BREAK ; Is it the BREAK key?
BNE NXTCMD ; no, then prompt again
RTS ; yes, return to caller

Chapter 6

Subroutines and strings

When we try to solve a problem, we do not go directly
from the general statement of the problem to a detailed
solution unless the problem is very trivial indeed.
Rather, we split the problem into a sequence of sub-
problems and work out the individual solutions to these
smaller problems. The sub-problem solutions are then
integrated and coordinated to form the general problem
solution.

When a problem is intended for computer solution, we
can use exactly the same approach. The overall problem
solution is a computer program but, rather than
generate this as a monolithic code sequence, it can be
made up of calls to subroutines. Each subroutine is
the solution to a particular sub-problem. By adopting
this approach, we reduce the overall complexity of the
program because we never have to understand or think
about any more than one subroutine at any one time.

The idea of a subroutine as a self-contained section
of code which can be initiated from elsewhere in the
program was one of the earliest advances in computer
programming. Subroutines are an essential tool for the
programmer as they allow him to create 'black boxes'
implementing particular functions. Once these have been
written and tested, the programmer need not be bothered
how they work as long as he knows their function and
how to use them.

To make the most effective use of this problem-
solving method, the programming language which we use
must allow us to create subroutines which are
independent of their environment. Unfortunately, BASIC
subroutines are very primitive indeed and are not truly
self-contained. Their disadvantages can be summarised
as follows:

(1) BASIC subroutines cannot be made independent of
their environment because the only way of passing
information to and returning information from a
subroutine is through its environment. That is,
program variables must be used to pass informa
tion to and from the subroutine. This means that
BASIC subroutine libraries cannot be created be
cause both the subroutine and the program must
'agree' on what variables should be used for
passing input and output parameters.

121

122

(2) There is no way, in BASIC, for a subroutine to
have a completely private data area which no
other subroutine may tamper with. A private or
local variable area is essential if the
subroutine is to be self-contained and if the
programmer is to be sure that a call of the
routine always does exactly what's expected of
it.

(3) The BASIC programmer cannot give his subroutine a
name which reflects its function. Rather, he
must refer to it by a meaningless line number.
When a program has many subroutines, it is
difficult to discern what operations are
implemented by a sequence of subroutine calls,
especially if the program is not properly
commented.

The subroutine facilities available to the assembly
language programmer are actually slightly less
primitive that BASIC'S subroutine mechanism. At least
in assembly language, a mnemonic name rather than a
number can be given to a subroutine. As in BASIC,
there are no built-in mechanisms for passing
information to and from a subroutine or for
establishing local data space.

However, the flexibility of assembly language
programming is such that the programmer may establish a
set of conventions which allow local data areas to be
created and which allow parameters to be passed to and
from a subroutine without using global variables.
These conventions provide a more powerful, effective
and safer mechanism for using subroutines than that
available to the BASIC programmer.

In this chapter we show how the M6809's architecture
is well suited to the implementation of self-contained
subroutines and we describe a very general way of
declaring and calling subroutines. We also describe a
subroutine calling technique which can be used when
execution speed is the paramount consideration and we
explain how to construct subroutines which are position
independent. The final sections of the chapter discuss
techniques for representing and manipulating character
strings and we show how assembly language subroutines
may be integrated with BASIC programs.

6.1 ASSEMBLY LANGUAGE SUBROUTINES

We have already shown in section 5.6 how the BASIC
GOSUB and RETURN statements can be implemented in
assembly language using the BSR, JSR, and RTS
instructions. In that section, we showed how
parameters could be passed to and from subroutines
using shared global variables but this is not a
recommended technique. Furthermore, if it is important

123

to produce very efficient code, using shared variables
for parameter passing has the additional disadvantage
that it takes time to set up and access these shared
variables.

In many cases, there is no need for separate
variables to be used for parameter passing. Rather, if
one or two parameters only are to be passed to and from
the subroutine, it is often possible to pass their
values or addresses in registers. This saves both the
calling program storing register values and the
subroutine reloading these values into registers.

The use of registers for parameter passing also has
the advantage that the parameters do not take up memory
space and that the impermenent nature of register
values emphasises that subroutine parameters are
distinct from other permanent program variables.

Program 6.1 shows how the A and X registers can be
used to pass parameters to and from a subroutine.

* SQUARE - compute square of input parameter
*
* Register input A - positive number to be squared
* Register output X - square of input
* Method used is to add n to itself n times

SQUARE PSHS B ; Save B register
TFR A,B ; B = A
LDX #0 ; Clear X

SQLOOP ABX ; X = X + B
DECA ; Use A as counter of the

* number of adds
BNE SQLOOP
TFR B,A ; Restore value of A
PULS B,PC ; Restore B and return

Program 6.1 SQUARE - compute square of input

Notice that a return from subroutine instruction, RTS,
is not required as the program counter is explicitly
restored using a PULS instruction.

To call this subroutine, the input parameter must be
set up in register A. A possible calling sequence might
be:

LDA #28 ; Compute 28 squared
PSHS X ; Save value of X as it is

* destroyed by SQUARE
BSR SQUARE ; Call routine
STX RESULT ; Store result of call
PULS X ; Restore X

Notice how the S-stack is used to save register values
which are subsequently restored. Of course, the value
of X before the call of SQUARE is not necessarily

124

precious. If this is the case there is no need to
save it before the call and restore it after the
subroutine has been executed.

Any of the registers A, B, X, Y, or U may be used to
pass parameters to and from subroutines. However, the
S register is never used for this purpose because of
its role as a system stack pointer. As the return
address, the value of PC when the routine is called, is
stacked, it is important that the value in S is not
corrupted otherwise a proper return from the subroutine
is impossible.

In some subroutines it is useful to return an error
indicator specifying whether or not the subroutine has
succeeded in its task and the best way to do this is to
make use of the CC register. The programmer may use
CC.V or CC.C as error indicators or, alternatively, the
settings of CC.Z and CC.N may indicate that an event
has or has not occurred.

We have already seen an example of how this latter
method can be used to determine if an input routine has
returned a character. If a character has been input,
CC.Z is unset otherwise CC.Z is set. Therefore, the
following code loops until a character is input:

GETCH JSR INCH ; Call input routine
BEQ GETCH

When using the CC register to return results from a
subroutine, the ANDCC and ORCC instructions may be used
to set and unset particular bits in that register.

Using registers for subroutine input and output
parameters is an efficient parameter passing technique
which should be used when subroutine calls must be
executed as quickly as possible. However, this
technique requires that the programmer knows exactly
what registers must be set up when the subroutine is
called and what registers are used by the subroutine to
return results. Typically, different subroutines have
different conventions in this respect depending on the
number and type of input parameters and on whether they
return one or more results. The programmer must know,
in detail, the conventions for each subroutine before
he can make use of it.

If there are only a few subroutines used in a
program, it may be fairly easy to memorise such
details, but in a large program, where there might be
tens or even hundreds of subroutines, this is not
possible. Furthermore, the programmer may wish to build
up a library of useful subroutines to be included in
his programs as they are required. It is obviously a
good idea to have all the subroutines in the library
used in a consistent way so passing parameters in
registers is not really suitable.

There are two different general mechanisms which can

125

be devised to support subroutine parameter passing.
The first technique, which we do not describe in
detail, is to allocate a specified parameter area for
each subroutine and store the addresses of the
parameters in that area. When calling the subroutine,
this area is set up immediately prior to the subroutine
call. The address of the parameter area is assigned to
an agreed register such as the Y register, and indirect
indexed addressing is used to access the subroutine
parameters.

This technique works well in most cases but cannot
support so-called recursive subroutines. Recursive
subroutines are subroutines which contain an embedded
call to themselves. Although this may seem an unusual
idea to the programmer who has only ever programmed in
BASIC, recursion is very useful in many situations as
it allows you to write compact programs which, with
practice, are easy to understand. Readers who wish to
experiment with recursive programming should consult
textbooks which describe data structures such as lists
and trees to see how recursion is used.

The second generalised technique of subroutine
parameter passing can handle recursive routines. It
makes use of a stack to pass parameters to and return
results from subroutines. This technique can be
implemented very efficiently on the M6809 because of
its built-in stack manipulation instructions. It is
described in detail below.

6.1.1 Parameter passing using a stack
The M6809 processor is designed so that two stacks may
be used, at the same time, by the assembly language
programmer. One of these stacks, the hardware or system
stack, is referenced via the S register and is always
in existence as it is used to hold the program counter
when a subroutine is called. The user stack, or U-
stack, is referenced via the U register and may or may
not be used depending on the application being
programmed.

A parameter passing mechanism can be devised which
uses the S-stack to hold information such as the
subroutine return address and which uses the U-stack to
hold subroutine parameters. This works perfectly well
and is often used. It does, however, require
considerable housekeeping by the calling and called
routine to make sure that the stacks are always
consistent.

The technique which we describe below uses only a
single stack, the S-stack, but uses two stack pointer
registers, S and U. As well as being useful to the
assembly language programmer, this technique of
subroutine parameter passing is that used by structured
high-level languages such as Pascal.

To understand this parameter passing method, we must

126

introduce the idea of a stack frame. A stack frame is
a data area which is set up on the stack when a
subroutine is called. The exact number of bytes making
up a stack frame depends on the number of subroutine
parameters, the registers saved by the subroutine and
the local data space required by the subroutine.
Figure 6.1 is a diagram of a stack frame in its most
general form:

Fig. 6.1 Stack frame organisation

The saved registers are those registers which are
modified by the subroutine. The return address is the
value of PC stacked by the BSR or JSR instruction.

The subroutine parameter area is set up by the
calling program with the values of the subroutine input
parameters and, if a result is returned by the
subroutine, the calling program reserves a location on
the stack for it.

To illustrate how stack frames are used, consider
the SQUARE subroutine described earlier in this
chapter. This is a subroutine which we might wish to
implement as a function which returns the square of its
parameter. Assuming that we use the stack for
parameter passing, we would call the function SQUARE
using the following instruction sequence:

LEAS -2,S ; Decrement S by 2.
* As stacks in the M6809 grow downwards
* this leaves a 2-byte 'hole' in the
* stack for the result

LDA N ; A = number to be squared
PSHS A ; Put parameter onto the stack
BSR SQUARE ; call SQUARE

The call of SQUARE pushes PC onto the S-stack. The
subroutine SQUARE first pushes the registers which it
uses onto the stack and then sets up a register so that

127

indexed addressing may be used to access the subroutine
parameters and result. As the X and Y registers are
often used for array accessing, it is best to use the U
register as the stack index register set to the base of
SQUARE'S stack frame.

Given that the subroutine SQUARE saves the registers
A, B, X, U, and CC, the stack structure after
subroutine entry is shown in Figure 6.2.

Fig. 6.2 Stack structure after entry to SQUARE

In general, a called routine should save the value
of the U register then reset it so that it points to
the current stack frame. It is important to ensure
that the U register is set to the same relative
position in the stack frame for every subroutine but
the particular location chosen does not matter a great

128

deal. In our examples, the U register is set so that
it refers to the hi-byte of the subroutine return
address on the stack.

The U register is assigned after the registers have
been saved using an LEAU instruction. As S points at
the top location on the stack, the stack address
assigned to U is computed using the S register value
and the number of register bytes stacked.

The code implementing the subroutine SQUARE is:

* SQUARE - returns the square of its input
*
SQUARE PSHS A,B,U,X,CC

LEAU 7,S ; set U register
LDA 2,U ; Get parameter from stack

* it is immediately below
* the return address

TFR A,B ; Use repeated addition to
LDX #0 ; square N

SQLOOP ABX ; X = X + B
DECA ; A counts adds
BNE SQLOOP
STX 3,U ; Store result

* Result is always immediately
* below parameter on the stack

PULS A,B,U,X,CC,PC ; Restore and return

Program 6.2 SQUARE with stack parameter passing

On return from the subroutine, the S register is set so
that it points to the subroutine parameter on the
stack. As this is no longer required, the calling
program must increment S to discard the parameter or
parameters. After this modification of S, S then
refers to the result returned by the subroutine.

The complete call/return sequence for SQUARE is
therefore:

LEAS -2,S ; Space for result
LDA N
PSHS A ; parameter onto stack
BSR SQUARE ; call routine
LEAS 1,S ; discard parameter
PULS D ; result in D register

* for processing, store, etc

Obviously, if the subroutine does not return a result,
there is no need to reserve space on the stack for the
result. It is, therefore, very important that the
programmer ensures that each subroutine has an
associated comment at its head which states the size,
in bytes, and the type of any result. This is
essential so that the correct call/return sequence may
be used for that routine.

129

In general, the call sequence for a subroutine where
the stack is used for parameter passing is as follows:

Reserve space, if necessary, for subroutine result
Evaluate parameters and store on S-stack
Call subroutine
Discard parameters
Retrieve subroutine result from the stack

The called routine must have an entry and exit sequence
as follows:

Save U register and other registers as necessary
Set up U as stack frame register
<Body of subroutine>
Restore registers including PC

An important advantage of using this technique of
parameter passing is that the stack may also be used as
a local variable area for the called subroutine. These
local variables are accessed using indexed addressing
via the U or S registers.

Rather than allocate specific memory locations as
private working store for the subroutine, it is
possible to use stack locations for this purpose. This
store is allocated dynamically on entry to the
subroutine and de-allocated on exit from the routine.
Thus store is only allocated when it is required and
need not be set aside permanently for subroutine local
variables.

Program 6.3 takes an array base address and an array
length as parameters on the stack and returns the
maximum and minimum values of that array as results.
It uses local variables to hold the maximum and minimum
values which have been determined so far.

* MAXMIN - determines MAX and MIN array values
*
* Results are left on the stack in space left
* by calling routine.
*
MAXMIN PSHS U,A,B

LEAU 4,S ; U points at return address
LDA 2,U ; Array length in A
LDX 3,U ; address in X
LDB ,X+ ; 1st element in B
PSHS B
PSHS B ; Push locals onto stack

* Both MAX and MIN initially set up
* to be the value of 1st element
* MAX=stack(S), MIN=stack(S+1)

DECA
BEQ DONE ; If only one element, all done

MMLOOP LDB ,X+ ; Array element in B

130

CMPB ,S ; Compare with MAX
BGT NEWMAX ; If greater, re-assign MAX
CMPB 1,S ; Compare with MIN
BGT ELOOP ; Value greater, go on to next
STB 1,S ; Otherwise re-assign MIN
BRA ELOOP

NEWMAX STB ,S ; Re-assign MAX
ELOOP DECA

BNE MMLOOP
DONE LDA ,S+ ; Maximum value

STA 5,U ; into result space
LDA ,S+ ; Minimum value
STA 6,U ; into result space

PULS U,A,B,PC ; Restore and return

Program 6.3 MAXMIN - find maximum and minimum of
array

This technique of local variable allocation allows
recursive subroutines, subroutines which call
themselves, to be implemented. When a subroutine calls
itself, a completely new local variable area is set up
on the stack and the data area of the calling routine
is not destroyed.

We illustrate this using a recursive routine which,
given an input parameter N, returns the Nth Fibonacci
number. Fibonacci numbers are numbers in a sequence
where the value of a given number is computed by adding
the previous two numbers in the list. The first values
in the sequence are 0 and 1 so the first 10 Fibonacci
numbers are:

0 1 1 2 3 5 8 13 21 34

Fibonacci numbers are not just mathematical oddities
but have practical uses in sorting large data files
held on magnetic tape. Readers interested in how they
are used should consult a textbook on sorting
techniques.

A general formula for computing the Nth Fibonacci
number is recursive:

if N = 1 then
FIB(N) = 0

else
if N = 2 then

FIB(N) = 1
else

FIB(N) = FIB(N-1) + FIB(N-2)

So, if the 5th Fibonacci number is required, this
formula would be evaluated as follows:

FIB(5) = FIB(4) + FIB(3)
= FIB(3) + FIB(2) + FIB(2) + FIB(l)

131

= FIB(2) + FIB(l) + 1 + 1 + 0
= 1 + 0 + 1 + 1 + 0
= 3

The assembly code routine below takes an 8-bit input
parameter N and returns a 16-bit result which is the
Nth Fibonacci number. As BASIC does not support
recursion, we cannot first translate our logical
solution above into BASIC but must go straight to
assembly code.

* FIB - Computes Nth Fibonacci number
*
* Result left on stack in location P+1 where P
* is parameter address
* Set up equates to refer to stack locations
*
FRES1 EQU 3 ; Result
FPAR1 EQU 2 ; Parameter
FIBL1 EQU -5 ; Local variable
FIBL2 EQU -7 ; Local variable

FIB PSHS A,U,CC ; Save registers
LEAU 4,S ; Set stack frame register
LEAS -4,S ; Space for local variables

* FIBL1 and FIBL2
LDA FPAR1,U ; Get input parameter
BLE ERR1 ; If it is not positive, error
CMPA #1 ; is it 1st Fibonacci number?
BNE FIB2 ; If not, try the second
LDD #0 ; D = FIB(l)
BRA EXIT ; Get out of routine

FIB2 CMPA #2 ; Is FIB(2) required
BNE FIBN ; No, compute FIB(n)
LDD #1 ; D = FIB(2)
BRA EXIT ; Get out

FIBN LEAS -2,S ; Get stack space for result
DECA ; FIB(N-1) is being computed
PSHS A ; Parameter for recursive call

* of FIB
BSR FIB ; Call FIB
LEAS 1,S ; Discard parameter

* S now refers to result
PULS D ; Pull result into D
STD FIBL1,U ; Store D into local variable

* Now call Fib again to compute FIB(N-2)
*

DECA ; A = N - 2
LEAS -2,S ; space for result
PSHS A ; stack parameter
BSR FIB ; and call FIB recursively
LEAS 1,S ; discard parameter
PULS A,B ; D = FIB(N-2)
STD FIBL2,U ; Assign to local

132

* Now add locals to get Fibonacci number
*

LDD FIBL2,U
ADDD FIBL1,U ; D = FIB(N-1)+FIB(N-2)
BRA EXIT ; get out

ERR1 LDD #-1 ; D = -1 if error
EXIT STD FRES1,U ; Store D in result space

PULS A,U,CC,PC ; Restore and return

Program 6.4 FIB - compute nth Fibonacci number

This routine can be optimised by using the space on the
stack reserved for the result of FIB as local working
store and by removing some redundant load instructions.
We leave this optimisation as an exercise for the
reader.

You will probably have to think quite hard to
understand exactly what the FIB program is doing. You
may find it helpful to draw a diagram of the stack
structure and see how it expands and contracts as the
routine is called recursively. Whilst this example
demonstrates the power of assembly language, it also
shows that, if you try to do complex things, the code
to implement them can be difficult to understand!

The generalised parameter passing and local variable
allocation techniques which we have described are
useful when you are writing large programs with many
subroutines or when you are building a subroutine
library. For fairly small assembly language programs
their generality can be confusing and it is better to
adopt a simpler parameter passing technique.

However, we do recommend that you should avoid the
allocation of fixed local variable space for
subroutines. In many cases, you can use registers as
local work areas and this is often the most efficient
approach. In other cases, where this is impossible,
you should use the stack as a local work area. You may
either set up the U register as a pointer to this area
or may use S register relative addressing to access
local subroutine variables. These techniques are
illustrated in some of the character string
manipulation routines which are described later in this
chapter.

6.2 CHARACTER STRINGS

We have described how BASIC arrays can be set up using
the FCB, FDB, and RMB directives. These arrays can be
accessed using index registers with the array length
held in an accumulator register. Naturally, these
arrays can be arrays of characters and this is one way
of carrying out character manipulation in assembly
language.

However, the use of fixed-length arrays to hold

133

character strings means that the decision as to the
number of characters in a string must be made when the
array holding the string is declared. In this respect,
character arrays are not like BASIC'S character strings
where the number of characters in a string may vary
from 0 to 255. When this flexibility is required, it
is not usual to implement character strings as fixed-
length arrays.

In this section we describe how the assembly
language programmer may set up variable-length
character strings and we explain how various string
manipulation operations can be implemented. In section
6.3 we provide listings of a package of subroutines
which implement character string operations.

In order to implement variable-length strings the
programmer must set aside a large data area for string
storage where the actual characters making up the
string are kept. The string name is associated with a
2-byte area which holds the address of the string
characters within the string storage area.

The fundamental operations which are normally
allowed on character strings are as follows:

(1) Comparison
Character strings are compared for equality

(2) Assignment
One character string is assigned to another

(3) Catenation
Two character strings are put together (catenat
ed) to form a longer string

(4) Substring selection
Part of a character string (a substring) is
selected

(5) Length computation
The number of characters making up a string is
computed

There are also other operations which may be carried
out with character string operands such as determining
the ASCII value of a particular character and
converting numeric strings to integers and vice-versa.

Given that all character strings are to be stored in
a common string storage area, the first decision that
the programmer must make is how to represent strings so
that the length of the string can be determined. All of
the string operations listed above need to know the
string length in order to operate correctly.

Probably the simplest variable-length string
representation technique is to associate an explicit
'end-of-string' character with each string. This

134

character is catenated with the characters making up
the string so that the storage space required for the
string is the length of the string plus one byte.
Usually the null byte, hexadecimal 00, is used as the
string terminator. Therefore the string 'HI THERE'
would be stored as 'HI THERE<NULL>' .

There are two advantages of using this technique of
variable-length string representation.

(1) There is no limit to the length of the strings
which may be represented.

(2) Strings whose length cannot be predicted can be
stored in this way as the string
modification (adding the null byte) is carried
out after the entire string is known. This means
that the technique is very useful for represent
ing strings which are input from the keyboard or
some other device. Obviously, the length of such
strings is not known in advance.

The disadvantage of this representation technique is
that string length determination requires a program to
explicitly count the string characters until a null
byte is detected. This takes time and when a program
does a lot of character manipulation, this time penalty
may be unacceptable.

An alternative technique for string representation
is to hold the length of the string as the very first
byte of the string. For example, the string 'HI THERE'
would be stored as <8>HI THERE. This means length
computation is very fast but has the disadvantages that
the maximum string length is 255 characters and that
the length of the string must be known in advance
before it can be entered in the string store.

As character strings are represented as a 2-byte
reference to the string store, the assignment of one
character string to another is a very efficient
operation. There is no copying of the string
characters themselves. Assignment simply involves
assigning one string reference to another. However,
this can result in much wasted store. The reason for
this is best illustrated by an example.

Assume that the variables STR1, STR2, and STR3 have
been set up using an FDB directive and have been
initialised to refer to strings as follows:

STR1 -> 'HI THERE'
STR2 -> 'WELCOME'
STR3 -> 'HELLO'

If STR1 is assigned to STR2, this means that STR2 now
points to the string 'HI THERE' and the string
'WELCOME' is no longer referenced by anything. However,

135

the space occupied in the character store by this
string cannot magically disappear so, if many string
assignments are executed, the string store soon fills
up with such inaccessible 'garbage'.

This is a general problem which is inherent in all
systems where variable-length strings are allowed. The
BASIC programmer has the advantage that the BASIC
system has an in-built 'garbage collection' routine
which finds all unreferenced strings in its string
store and marks the store which they occupy as
reusable. Garbage collection is a fairly complex
operation and the interested reader should refer to a
computer science textbook which covers data structures
for a description of various garbage collection
algorithms.

Rather than discuss garbage collection, we describe
how routines can be written to allocate and deallocate
space in the string storage area so that the amount of
garbage is minimised. The first routine described
below is called GETSP. This takes one parameter, say
n, and returns an address in the string storage area of
n consecutive unused bytes. The second routine below
is FREESP, which is called after string assignment, to
mark a group of bytes as being available for re
allocation.

Let us assume that the string storage area is called
HEAP and is set up using the following directive:

HEAP RMB 4096 ; String storage area

Furthermore, let us assume that we use an explicit
length byte at the start of each string. If this byte
has a value between 0 and 254, this is taken as the
string length. If the length byte is 255, the
following two bytes hold a number which is the number
of unused bytes in that area and therefore available
for string allocation.

Figure 6.3 shows part of HEAP with intermingled
character strings and free space. Initially, HEAP is
set up so that the very first byte (byte 0) is 255 and
bytes 1 and 2 hold the 16-bit integer 4096 indicating
that the entire storage area is available for
allocation. The routine GETSP starts at the beginning
of HEAP searching for a byte whose value is 255. When
such a byte is found, GETSP checks if the number of
free bytes available is enough to satisfy its request.

If so, GETSP claims what it needs from this free
space and marks the remainder as free. If the free
space is not sufficient, GETSP goes on to find the next
byte whose value is 255. If no free space is found
before the end of the string storage area, GETSP
returns an error indicator showing that it is unable to
satisfy the request for space.

136

Fig. 6.3 String storage area organisation

The code for the routines GETSP and FREESP is provided
in section 6.3. For the moment, let us assume that they
are available and have the following specifications:

* GETSP - gets space on heap
*
* Register input B - number of bytes required
* Register outputs Y - pointer to space requested
* CC.V = 0 if no space available
* CC.V = 1 if request satisfied
*
* FREESP - returns free space to heap
*
* Register input X - address of space to be freed
* Register output CC.V = 0 if invalid address
* CC.V = 1 if space freed

Given these routines, the initialisation of strings can
be implemented as shown below. Assume that a string,
terminated by a null byte, has been read into an input
buffer area called INBUF. The routine STINIT takes the
address of INBUF as its parameter in register X and
returns in register Y the address of the initialised
string on the heap. The assembly code for this routine
is:

* STINIT - Initialise a string
*
* Register input X - input buffer address
* Register outputs Y - string address in heap
* CC.V = 0 if error
* CC.V = 1 if no errors

5

T

3

255

H

0

13

0

E

P

10

L

B

I

L

R

Z

0

I

z

19

G

A

W

H

E

T

4

P

L

0

M

A

C

N

A

R

0

0

255

R

L

255

M

0

Y

0

0

E

12

255

U

19

0

R

137

STINIT PSHS X,A,B,PC ; Restore and return
CLRB ; B is counter

* holding length of string to be
* initialised

TFR X,Y ; Save value of X
STCNT LDA ,Y+ ; Get string byte

BEQ FSPCE ; If null byte, stop count
INCB ; Otherwise, count it
BRA STCNT

FSPCE INCB ; To account for length byte
BSR GETSP ; get space
BVC XIT ; No space found - error
DECB ; No of characters in string
STB ,Y+ ; Store length
BSR CPSTR ; String copy -see examples
ORCC #2 ; Set success flag
LEAY -1,Y ; To point at length byte

XIT PULS X,A,B ; Restore and return

Program 6.5 STINIT - string initialisation

Further examples illustrating string manipulation
techniques are provided in the following section.

6.3 STRING MANIPULATION ROUTINES

This section is entirely taken up with listings of
routines which carry out string manipulation. All the
examples here are written in a position-independent way
and may readily be incorporated with your own programs.

* CHKHP - check string validity
*
* Register input X - string address
* Register output CC.V = 1 if string in heap
* CC.V = 0 if not in heap
*
CHKHP PSHS X ; Save register

LEAX HEAP,PCR ; Heap start
CMPX ,S ; comparison
BHI HPERR ; Input address <• heap start
LEAX HEAPEND,X ; Heap end
CMPX ,S ; comparison
BLO HPERR ; Input address > heap end
ORCC #2 ; Set CC.V
BRA XIT1

HPERR ANDCC #$FD ; CC.V = 0
XIT1 PULS X,PC ; Restore and return

Program 6.6 CHKHP - check string address validity

* CPSTR - copy string characters

* Register inputs X - source string address

138

* Y - destination string address
* B - string length
*
CPSTR PSHS X,Y,A,B ; Save registers

TSTB ; Check for zero length
CPLOOP BEQ XIT2 ; Check if finished

LDA ,X+ ; Get character
STA ,Y+ ; and copy it
DECB ; B is counter
BRA CPLOOP

XIT2 PULS X,Y,A,B,PC ; Restore and return

Program 6.7 CPSTR - copy characters

* GETSP - get space for string
*
* Register input B - number of bytes required
* Register output Y - string address
* CC.V = 0 if request fails
* CC.V = 1 if request satisfied
* Uses first-fit algorithm, ie, returns first area
* large enough to satisfy request. Returns excess
* space as free if space found > space requested

GETSP PSHS A,B,X,U ; Save registers
TFR S,U ; U is pointer to locals
LEAX HEAPEND,PCR ; 1st local = U-2
CLRA ; U-4 is 16-bit length
PSHS X,A,B ; Locals onto stack
LEAY HEAP,PCR ; Initialise to heap start

FFREE CMPY -2,U ; At heapend?
BHS NTFND ; Yes, no space available
LDA ,Y ; Check if free area
CMPA #255 ; by comparing with 255
BEQ SPFND ; If so, space found
LEAY 1,Y ; Otherwise increment Y
BRA FFREE ; and keep looking

SPFND LDD 1,Y ; Pick up free area length
CMPD -4,U ; Compare with length needed
BHS LENOK ; We have enough
LEAY 3,Y ; No, look for next free
BRA FFREE ; area on heap

* Now check if too much space. Don't return
* an extra 1 or 2 bytes as they are unusable
LENOK LDD -4,U ; Space requested

ADDD #2 ; If D + 2 >= that available
CMPD 1,Y ; don't return space
BHS EXITOK ; and exit
LDD 1,Y ; get space available
SUBD -4,U ; subtract space requested
PSHS A,B ; and save on stack
LDB -3,U ; B = 8 bit length
LEAX B,Y ; start of free string
LDA #255 ; Free indicator

139

STA ,X+ ; and mark byte free
PULS A,B ; get free string length
STD ,X ; and store it
BRA EXITOK ; and exit

NTFND ANDCC #$FD ; Error indicator
BRA XIT3

EXITOK ORCC #2 ; No errors
XIT3 LEAS -4,S ; Discard local space

PULS A,B,X,U,PC ; Restore and return

Program 6.8 GETSP - get string space

* FREESP - free space on heap

* Register input X - address of space to be freed

* Register output CC.V = 1 if space freed
* CC.V = 0 if invalid input
*
FREESP PSHS A,B,X,Y ; Save registers

BSR CHKHP ; Is input valid?
BVC EEXIT ; No, error return
LDB ,X ; String length
INCB ; To get actual no of bytes
LDA #255 ; Free space indicator
STA ,X ; Mark string free
CLRA ; and store 16-bit
STD 1,X ; free string length
LDA #255 ; See if following string
CMPA B,X ; is free
BNE LKLAST ; No, try preceding string
LEAY B,X ; yes, so join strings
BSR JOIN

LKLAST TFR X,Y ; Find preceding free string
FLOOP CMPA ,-X ; Is byte free

BEQ CHKJN ; Yes, can it be joined
BSR CHKHP ; At heap start?
BVC XIT7 ; No preceding free string
BRA FLOOP

CHKJN LDD 1,X ; Length of free string
STD ,--S ; Stack it
TFR X,D
ADDD ,S++ ; D = address+length
PSHS Y
CMPD ,S++ ; Are strings adjacent
BNE XIT7 ; No, return
BSR JOIN ; Yes, join them

XIT7 ORCC #2 ; Set CC.V
BRA END7

EEXIT ANDCC #$FD ; Clear CC.V
END7 PULS A,B,X,Y,PC
*
* JOIN - join adjacent free segments
* Register inputs X,Y - addresses of areas to be
* freed

140

JOIN PSHS A,B
LDD 1,X ; Length of 1st area
ADDD 1,Y ; Length of 2nd area
STD 1,X ; Store total
CLR ,Y ; Get rid of free indicators
CLR 1,Y
CLR 2,Y
PULS A,B,PC

Program 6.9 FREESP - free string space

* CMPSTR - compare strings for equality
* Register input X - string 1
* Y - string 2
* Register output CC.Z = 1 if strings equal
* CC.Z = 0 if not equal
*
CMPSTR PSHS A,B,X,Y ; Save registers

LDA ,X+ ; Length of string 1
CMPA ,Y+ ; must be same as length 2
BNE CMPXIT ; If not, exit, CC.Z=0
TSTA ; Check for 0 length

CMPLP BEQ CMPXIT ; A = 0, so all done, CC.Z=1
LDB ,X+ ; Get character
CMPB ,Y+ ; and compare
BNE CMPXIT ; Not the same, CC.Z=0
DECA ; Yes, decrement length
BRA CMPLP ; and continue comparisons

CMPXIT PULS X,Y,A,B,PC ; Restore and return

Program 6.10 CMPSTR - compare strings

* STRCAT - catenate strings
*
* Register inputs X - string 1
* Y - string 2
* Register outputs Y - new string
* CC.V = 1 - no errors
* CC.V = 0 - error
*
STRCAT PSHS X,A,B

BSR CHKHP ; Check 1st string
BVC XIT8 ; Invalid, abort
EXG X,Y
BSR CHKHP ; Check 2nd string
BVC XIT8 ; Invalid, abort
LDB ,Y ; work out length
ADDB ,X ; of new string
BVS EEXIT ; Too long(overflow), abort
CMPB #255 ; 255 also too long
BEQ EEXIT
STX ,--S ; Stack string addresses
STY ,--S
INCB ; Total space needed incl.

141

BSR GETSP ; length byte. Get space
BVC XIT8 ; No space, abort
DECB ; New string length
STB ,Y+ ; stored as 1st byte
LDX ,S++ ; Get source address
LDB ,X+ ; and its length
BSR CPSTR ; and copy characters
LEAX -1,X ; Then free space
BSR FREESP
LEAY B,Y ; Update destination
LDX ,S++ ; Get source address
LDB ,X+ ; and its length
BSR CPSTR ; and copy characters
LEAX -1,X ; Then free space
BSR FREESP
ORCC #2 ; Set CC.V
BRA XIT8

EEXIT ANDCC #$FD ; Error indicator
XIT8 PULS A,B,X,PC

Program 6.11 STRCAT - catenate strings

* SUBSTR - select substring
*
* Register inputs X - source string address
* A - substring length
* B - offset from string start
* Register outputs Y - new address or error number
* CC.V = 1 - no errors
* CC.V = 0 - error
*
SUBSTR PSHS X,A,B ; Save registers

BSR CHKHP ; Is string valid?
BVS STROK ; yes, next check
LDY #0 ; error type indicator
BRA EEXIT1 ; error exit

STROK INCB ; To get offset from 1st char.
LEAY B,X ; Substring address
PSHS Y ; Stack it
LDB ,X ; Total string length
INCB ; To account for length byte
LEAY B,X ; End of string address
CMPY ,S ; With substring address
BLS INDXOK ; If invalid index
LDY #1 ; Index error = 1
BRA EEXIT1

INDXOK LDU ,S ; Substring address
LEAU A,U ; Add length
PSHS U ; and stack it
CMPY ,S++ ; Compare with end of string
BLS LENOK ; is index + length valid?
LDY #2 ; No, length too long
BRA EEXIT1

LENOK INCA ; To get number of bytes for

142

TFR A,B ; getspace parameter
BSR GETSP ; Get the space
BVS GSPOK
LDY #3 ; No space available error
BRA EEXIT1

GSPOK PULS X ; Source address
DECB ; For string length
STB ,Y+ ; New string length
BSR CPSTR ; Now copy characters
ORCC #2 ; No errors
BRA XIT5

EEXIT1 ANDCC #$FD ; Indicate error
XIT5 PULS X,A,B,PC ; Restore and return

Program 6.12 SUBSTR - select substring

6.4 POSITION-INDEPENDENT CODE

One of the problems which can arise when you try to use
machine code routines which have been written by other
people is that these routines make assumptions about
the contents of particular memory locations which you
have used for other things. What has happened is that
the operation of the routines depends on particular
instructions and/or data residing at fixed addresses
and, if these instructions/data are not at these
addresses, the routines will not work.

Routines like this are called 'position dependent'
and often cause many problems for the assembly language
programmer. However, it is possible to write 'position
independent' code which executes correctly irrespective
of where it is loaded into the machine memory. If you
are building a library of subroutines or writing a
program which may run on other machines, you should
always write position-independent code.

Position-independent code (PIC) is code that
executes in the same way regardless of where it resides
in memory. In other words, if it is located at a
different address from that which it was originally
assembled, it will still execute correctly. To produce
position-independent code for the Dragon, you must
adhere to a single fundamental rule:

All addresses which you use in your program should
be relative rather than absolute addresses.

In general, it is best to write your routines so that
addresses are all relative to PC but it is also
possible to use the direct addressing mode of the M6809
in the production of PIC. For the meantime, however,
we shall concentrate on how to produce PIC by using
PC-relative addressing.

We have already seen examples of PC-relative
addresses as all the M6809 branch instructions refer to

143

the destination address as an offset from the current
value of the program counter. Therefore, even if the
code is moved (relocated) to some other address, the
relative distance between the branch instruction and
its destination remains the same. However, you cannot
cheat by adding or removing machine code instructions
without re-assembly. If you do so, the program will not
work as the relative distance specified in the branch
instruction will be incorrect.

In early microprocessors, the production of PIC was
often difficult because relative branch instructions
only allowed an 8-bit offset thus restricting the
relative branch to the range -128 -> 127. However, no
such problem exists in the M68C9 as long branch
instructions allowing offsets from 32767 to -32768 may
be used. In fact, if you wish to use some of the
examples discussed in earlier chapters in combination
with the examples in this chapter, you may have to
change some of the BSR instructions to LBSR
instructions as the subroutine code may be located more
than 127 bytes away from the subroutine call.

As well as addressing instructions in a position-
independent way, it is also essential that data are
also addressed using the PC-relative addressing mode.
Although we introduced this addressing mode in Chapter
2, our examples so far have mostly used direct,
extended or indexed addressing. The reason for this is
that we felt that the introduction of PC-relative
addressing was peripheral to the concepts illustrated
in the examples.

Recall that the M6809's PC-relative addressing mode
uses the program counter as an index register and adds
either an 8-bit or a 16-bit offset to it. The table
below shows examples of how data can be addressed in a
position-independent way using PC-relative addressing.
Assume that TABLE, WORD, and DATA are storage locations
set up using an FCB or RMB assembler directive.

Non-PIC PIC

LDX STABLE LEAX TABLE,PCR

LDX WORD LDX WORD,PCR

STA DATA STA DATA,PCR
Notice how easy it is to write code in a position-
independent way. Instead of referring to the absolute
symbolic address, all you have to do is to tell the
assembler that PC-relative addressing is to be used.
The assembler works out the correct displacement from
the instruction position and generates the appropriate
postbyte and offset.

The only instructions which cause any real
difficulty are those which use 16-bit immediate

144

addressing where the 16-bit value in the instruction
refers to an absolute address. To load such addresses
in a position-independent way, the LEA instruction
rather than the LD instruction is used. Therefore,
rather than saying LDX STABLE to load the address of
TABLE into register X, this should be written LEAX
TABLE,PCR.

However, other instructions such as CMP which might
also use immediate values which are addresses do not
have position-independent forms. This means that when
a 16-bit register is to be compared with an immediate
value representing an address, we have to make use of a
temporary location on the stack.

For example, consider the following fragment of
non-PIC code which is often found in programs which
look up tables of values.

LDX #TABLE ; Set up base address of table
LOOP

Code to look
up table
CMPX #TABEND ; is table completely scanned
BNE LOOP

TABLE FCB <<table data values)
TABEND EQU * ; table end

In this example, TABLE and TABEND represent absolute
addresses and, if relocated without reassembly, this
code would not execute properly. In order to make this
code position independent, we must ensure that all
absolute addresses are eliminated. We do this by using
the LEA instruction to compute an address and we then
store this address where it may be accessed and
compared. We need a temporary location for the
absolute address and, as always, the best place to
allocate temporary store is on the stack.

We might, therefore, write the above example in a
position independent way as follows.

LEAX TABEND,PCR
PSHS X ; Stacks address of TABEND
LEAX TABLE,PCR

LOOP

CMPX ,S ; Compare X with top stack
BNE LOOP
LEAS 2,S ; Discard top stack element

In general, when you are writing your own routines you
should always try and use PC-relative addressing so
that PIC is generated by the assembler. However, if
you are making use of routines built into the BASIC
system, such as the input and output routines INCH and

145

OUTCH described in Chapter 5, PC-relative addressing
should not be used.

The reason for this is that these routines always
reside at fixed locations and if you relocate your own
program, the system routines do not move with your
program. Therefore, you should always use jump rather
than branch instructions to reference these system
routines.

For example, to reference the input routine at
address 8006, you might write the following code:

INPUT EQU $8006
• • • •
JSR INPUT

It would be quite incorrect to say LBSR INPUT as
relocating your code would cause the displacement built
into the branch instruction to be incorrect.
Naturally, the same applies to memory areas which have
a dedicated function, such as the BASIC screen area.
This starts at absolute address 400, so LD rather than
LEA instructions are used to pick up that address.

6.4.1 Jump tables
The only real problem associated with PIC arises when
some other program is assembled and uses PIC routines.
Naturally, the addresses of these routines are
assembled into the program and, if the routines are
relocated, these addresses will be wrong. After
relocation, it is necessary to modify the program to
reflect the new, relocated addresses and this seems to
negate some of the advantages of producing PIC.

In order to avoid a great deal of tedious address
modification, an addressing technique can be used which
isolates the necessary changes so that only a single
table need be changed. This technique is based around
the idea of so-called 'jump tables' or 'vector
locations' .

A jump table contains, at known positions, a link to
the actual addresses of routines and data used by a
program. If these addresses change, only the jump
table need be modified to reflect the new addresses.
There is no need to change the program which refers to
these addresses through the jump table.

Where routines are addressed, the jump table is
usually made up of jump or branch instructions (hence
the name) which immediately jump to the addressed
routines. We shall see shortly how such a table, which
is called a direct jump table, may be set up.

When data are referenced via a jump table, the table
locations do not contain instructions but merely hold
the address of the referenced data. The data item can
be accessed using indirect addressing. Hence, this
type of jump table is often termed an indirect jump

146

table. Of course, there is no reason why the data in
such a table should not be subroutine addresses. The
actual routines would then be called using a JSR
instruction with the indirect addressing mode.

Jump tables are the mechanism which provides access
to the BASIC I/O routines. In fact, there are two jump
tables referencing these routines - a direct jump table
starting at address 8000 and an indirect jump table
starting at address A000.

As an example of how these tables can be used,
consider the character input routine discussed in
Chapter 5. In the direct jump table, address 8006
holds a jump to this routine whereas the first location
in the indirect jump table (A000) is set up with the
address of the input routine.

If we wish to use the direct jump table, the
following instruction is used to call this input
routine:

JSR $8006

On the other hand, if the indirect jump table is used,
indirect addressing must be used to reference the input
routine:

JSR ($A000)

The jump tables for these BASIC I/O routines are set up
at known locations but if you envisage that other
programs will use your routines, it is a
straightforward matter to set up your own jump tables.

The skeleton example below shown how direct and
indirect jump tables may be defined by the assembly
code programmer.

SUB1
<code for subroutine 1>

SUB2
<code for subroutine 2>

SUB3
<code for subroutine 3>

*
* Now set up an origin for the jump table
*

ORG $1000
SUB1V JMP SUB1
SUB2V JMP SUB2
SUB3V JMP SUB3
*
* If an indirect jump table is required it
* might be set up as follows:
*
SUB1V FDB SUB1
SUB2V FDB SUB2

147

SUB3V FDB SUB3

This is a simple way to set up jump tables but the
disadvantage with this technique is that the addresses
filled in the jump table are those known when the
program is assembled. They are called 'static
addresses'. If the program is relocated, these
addresses remain as they were and are therefore
incorrect. What is needed is a technique which
allocates addresses to a jump table immediately before
the program runs. That is, the jump table must be set
up dynamically each time the program is executed.

To calculate the addresses at run-time requires the
use of initialisation code which fills in the jump
table addresses. The following initialisation code
shows how this can be achieved.

INIT LEAX SUB1,PCR
STX SUB1V+1 ; SUB1V+1 because the

* JMP opcode is at SUB1V
LEAX SUB2,PCR
STX SUB2V+1
LEAX SUB3,PCR
STX SUB3V+1

ORG $1000 ; Jump table address
SUB1V JMP $0000
SUB2V JMP $0000
SUB3V JMP $0000

We leave it as an exercise for the reader to work out
how to initialise an indirect jump table dynamically.

Normally, the INIT routine is the very first routine
in a program as it is essential that its address is
known in order that it may be called to set up the jump
table. Placing INIT at this position also means that
the program can be initiated from BASIC once CLOADMed
by using the EXEC command. There is no need to specify
an address for EXEC.

The use of an initialisation routine opens up the
possibility of using an alternative technique of
producing position-independent code. This technique
relies on all addresses being direct addresses with the
actual address computed by adding the contents of DP to
the address specified in the instruction. In other
words, the instruction address is actually a DP-
relative address.

In order to produce PIC code using direct
addressing, DP must be set up dynamically at the start
of program execution. The INIT routine must search for
an available page in memory and assign its address to
the direct page register. You might wish to explore
the possibilities of this technique but be warned that
the BASIC system keeps many pages for its own use and

148

assumes that they will not be used by the programmer.
You have to be very careful about saving and restoring
the value of the DP register and it is our opinion that
the use of PC-relative addressing is a better way of
producing position-independent code.

6.5 COMBINING ASSEMBLY LANGUAGE WITH BASIC

A disadvantage of assembly language programming is that
it is difficult to write and test low-level language
programs even when strict rules of programming are
adhered to. This is in contrast to BASIC programs
which, because of the way in which BASIC is
implemented, are easy to test. It is simple to print
out the values of variables as the program executes or
to break in and inspect variable values that you think
might be wrong. Ideally, we would like this flexibility
but with the speed and power of assembly language.

There is no such ideal system but, in many cases, it
is possible to call assembly code routines from BASIC
programs thus using high and low level programming in
the most productive way. It is a fact that most
programs spend most of their time executing a
relatively small proportion of the total program code.
The speed of BASIC programs can be significantly
increased by identifying execution-intensive sections
and replacing these by machine code equivalents. In
this way, the majority of the program made up of user
prompts, print statements, etc. can remain in BASIC
with only time critical sections programmed in assembly
language.

The easiest way to incorporate machine code routines
in a BASIC program is to use BASIC'S EXEC statement.
The EXEC statement takes an address as a parameter and
transfers control to the code residing at that address.
It is used as follows:

EXEC <address>

In actual fact, the address operand, which must lie in
the range 0000 to FFFF, in the EXEC statement is
optional. If it is present, the machine code routine at
that address is executed with control returned to BASIC
after a RTS or PULS PC instruction is executed. If the
address is omitted, EXEC consults a jump table (the
EXEC vector) to find the address of the code to be
executed.

The EXEC vector is located at address 9D and is made
up of a single word only. Therefore, the memory
locations 9D and 9E should contain the address of the
code to be EXECed. Initially, the EXEC vector is set
up to contain the address of an error routine which
explains why the message '?FC ERROR' is output when an
EXEC without a parameter is used as the first EXEC in a

149

program. If an address is specified in an EXEC call,
that address is filled into the EXEC vector with the
result that subsequent EXECs without an address
parameter call the machine code at that address.

An alternative way to set up the EXEC vector is via
the CLOADM command.

CLOADM "Name"
EXEC

This instruction sequence sets up the EXEC vector to
refer to the execution address of the machine code
program called "Name" which has just been loaded. The
EXEC instruction then transfers control to this code.

The main advantage of EXEC is its simplicity and the
fact that it can be used to invoke any number of
machine code routines. The main disadvantage with EXEC
is that any routine parameters must be passed in memory
locations and the programmer must POKE these parameters
into known locations before the EXEC call. Similarly,
the results of executing the machine code routine must
be in known locations and can only be retrieved using
PEEK.

An alternative way to invoke machine code routines,
which permits parameter passing, is to make use of the
USR call. The number of USR calls available to the
BASIC/machine code programmer is restricted to ten and
these are named USRO to USR9. USR calls do not take an
explicit address but transfer control to the address
which the programmer has previously associated with
that USR call.

The addresses to which particular USR calls should
transfer control are set up using a DEF USR statement.
This has the general form:

DEF USRn = address

The number n must be a single digit in the range 0 to 9
and the address must lie in the range 0 to FFFF. The
general form of the USR call itself is:

USRn(<argument>)

Executing a call of USRn causes control to be
transferred to the address specified in the
corresponding DEF USRn statement. Although the
definition of the USR call function states that the
name USR should be followed by a single digit from 0 to
9, readers who try to call USR in this way will find
that all USR calls actually result in a call to USRO.
This is due to an error in the BASIC system which,
fortunately, can be circumvented very easily.

The bug in the BASIC system causes the interpreter
to skip the digit so that USRO is taken to be the same

150

as USR1, USR2, etc. As BASIC takes a USR call without
a parameter to be equivalent to USRO, the effect of the
bug is to make all USR calls default to USRO.

Rather than call a USR call as USR1, USR6, USR9,
etc., the digit indicating which USR call is to be used
should be padded with an extra zero. Therefore, to
call USR1, you must actually write USR01, to call USR6,
you must write USR06, etc. Obviously, this is not
necessary for USRO but for reasons of consistency it is
probably better to call this as USR00.

A USR call from BASIC is treated like a BASIC
function so that it is used as part of an expression
and should return a value to the BASIC program.
Examples of USR calls are:

10 DEF USRO = &H1000 : DEF USR1 = &H2000
20 A = USR00(A) : ' Transfers control to &H1000
30 IF USR01(0) = 0 THEN B = B + 1

If a USR call is used without first defining the
address it refer to, the USR call will cause a message
'?FC ERROR' to be printed. Like the EXEC statement,
each USR call has an associated vector which contains
the address of the entry point of the machine code
routine to be executed. The USR vector is initially set
up to refer to the error routine which prints the '?FC
ERROR' message. When a DEF USR statement is used, this
fills in the address in the appropriate vector.

The table below lists the vector addresses
associated with each USR call.

If you are trying to link machine code and BASIC for
the first time, we recommend that you experiment with
the technique by using EXEC rather than USR calls.
Unfortunately, to set up USR call parameters requires
knowledge of how BASIC represents numbers and strings.
We therefore return to the use of USR calls in Chapter
9 after BASIC'S data representation has been described.

USR Call
USRO
USR1
USR2
USR3
USR4
USR5
USR6
USR7
USR8
USR9

USR Vector
134:135
136:137
138:139
13A:13B
13C:13D
13E:13F
140:141
142:143
144:145
146:147

Chapter 7

Graphics programming

One of the greatest advantages of assembly code
programming, its total flexibility, is also one of its
most serious drawbacks as the programmer has to concern
himself with every detail of the problem. One area in
particular where this lack of support is very evident
is in graphics and animation.

The problem becomes very obvious if the would-be
animator has relied on the graphics facilities provided
in Extended Color BASIC and has come to expect such
facilities when designing and writing graphics
programs. However, the major disadvantage of BASIC
programming is its inherent slowness and it is in
graphics applications that this is most evident. Only
the simplest of games, for example, with minimal
movement can be programmed in BASIC if they are to
present a challenge to the player.

A very large part of the Dragon's BASIC system is
dedicated to providing graphics facilities and it is
not an easy task to duplicate those features as
assembly code routines. Nevertheless, if speed is
required, some graphics programming must be carried out
in assembly code but the programmer should, as far as
possible, make use of BASIC for those parts of his
program which are not time critical.

In general, a good graphics programming strategy is
to develop the complete program using BASIC'S
facilities and to iron out program bugs at this stage.
This will probably result in a system which is far too
slow but you may then replace BASIC routines . with
assembly code routines to speed up your system.

It is seldom necessary to duplicate the BASIC
routines exactly unless they are components of other
routines. Rather, it is usually possible to make all
sorts of simplifications and later in the chapter we
look at how to design, code and animate screen
patterns. The chapter also discusses, in some detail,
the Dragon's graphics hardware and describes the
different graphics modes available to the programmer.

Firstly however, we describe in general terms, how
the Dragon's display system is organised. As in most
personal computer systems, the display system on the
Dragon is memory-mapped. This means that an area of
memory is scanned 50 or 60 times per second, depending

151

152

on the local mains frequency, and the contents of that
area are translated by special hardware to a standard
TV signal which may be displayed on a domestic
television set.

The machine allocates a 512 byte area of memory for
an alphanumeric display and it is this area which is
used to display BASIC program text as it is input, and
program results as they are output. The Dragon's
alphanumeric display is organised as 16 lines with 32
characters per line. We show later that this display
area can also be used as a low-resolution graphics
area. This text segment is always allocated at address
400 in memory so locations 400-5FF are dedicated to the
alphanumeric display.

The memory dedicated to graphics, that is, the
display of pictures rather than text, is organised into
graphics segments of 512 bytes each. In full graphics
mode, a minimum of 2 segments must be allocated but
there is no inherent maximum number of graphics
segments. Obviously, however, the maximum number of
such segments is limited by the amount of free memory
available to the graphics programmer. These graphics
segments are usually allocated from address 600
onwards, that is, immediately after the BASIC text
segment. The BASIC system organises these graphics
segments into 'pages' of 1536 bytes and a maximum of 8
pages is available to the BASIC programmer.

In order to display characters, the display screen
is considered as a two-dimensional array of 'picture
elements' or pixels. The more pixels on the screen, the
finer detail which can be resolved and the Dragon
compares favourably with other personal computers in
this respect. The Dragon's display is made up of 256
horizontal pixels by 192 vertical pixels. The Dragon's
graphics hardware provides various graphics modes where
the screen is considered as a matrix of elements. Each
element is made up of a single pixel at the highest
resolution or consists of an array of pixels.
Depending on the resolution chosen, this array can vary
from 2 by 1 pixels to 12 by 8 pixels.

In a memory-mapped graphics system, all information
about a particular screen element must be encoded in
memory. This means that the pixel settings and colours
must be held in memory locations so there is a trade
off between display resolution and the number of
colours available to the programmer. High-resolution,
multi-colour displays require a great deal of memory to
encode the screen information so the Dragon's graphics
system limits the number of colours available when
resolution graphics are used.

7.1 GRAPHICS DISPLAY HARDWARE

The Dragon's graphics display hardware is made up of 3

153

microchips. Working in combination, these chips extract
information from the system's memory and display that
information on a standard television screen. The so-
called 'Video RAM' is the memory area which is devoted
to the display and the contents of this memory area
determine what is actually displayed on the user's
screen.

The chips making up the graphics system are the
Video Display generator (VDG - 6847), the Synchronous
Address Multiplexor (SAM - 6883), and a Peripheral
Interface Adapter(PIA - 6821). The interconnections of
these chips is shown in the system block diagram in
Figure 1.2. In spite of the fact that the names of
these chips sounds daunting, it is fairly easy for the
assembly language programmer to control these devices.
Each of them, and the Video RAM, is described below.

7.1.1 The VDG chip
The video display generator (VDG) chip is the main
component of the Dragon's graphics system. As the name
suggests, it generates the video signals that are input
to the user's television set to provide the screen
display. For those readers with experience in
electronics, a complete description of this chip is
provided in Appendix 3.

However, you do not need experience in electronics
to understand how to control this chip. All you must
understand is that the chip has a set of control lines
which may be in one of two states representing the
binary values 1 and 0. When a line represents a 1, we
say that it is HI, when it represents a binary zero, we
say that the line is LO. Control signals can be
generated by writing information to specific memory
addresses.

The VDG chip determines the graphics capabilities of
the Dragon and it does so by providing a selection of
modes of operation. These modes dictate the resolution
of the display, the number of display colours, the
actual colours displayed, etc. In all, there are a
total of 14 different display modes:

(1) Four alphanumeric modes

(2) Two Semigraphics modes

(3) Four colour graphics modes

(4) Four resolution graphics modes

The PMODE statement in BASIC allows some of these modes
to be provided but not all of them are available to the
BASIC programmer. However, the assembly language
programmer may use all of the display modes by directly
configuring the VDG chip. Each of these modes is

154

described in a separate section later in this chapter.
The VDG chip has eight control lines which are used

to select the mode of the display. The table below
shows the function and the names of each of these
control lines.

The mode control lines, A/G, INT/EXT, GM0, GM1, GM2,
and CSS, are connected to the PIA chip as described in
the following section. The desired mode may be set up
by setting the appropriate bit pattern in the PIA's
data register. This causes the appropriate control
signals for the VDG chip to be generated.

Although six of the VDG control lines are set up via
the PIA, there are only five output lines from the PIA
to the VDG chip. There is no need for six lines as the
INT/EXT and GM0 input lines share a single PIA output
line. When GM0 is needed in graphics mode, the value
of INT/EXT is irrelevant and when the value of INT/EXT
is actually needed in alphanumeric/Semigraphics mode,
the value of GM0 is not used.

The remaining VDG control lines A/S and INV are
connected to two of the RAM data lines, D6 and D7.
These lines can therefore be set on a character by
character basis in the alphanumeric/semigraphic modes.

The VDG chip has the capability of generating eight
colours but, when colour graphics modes are used,
memory restrictions limit the number of colours which
may be displayed to four. The eight colours are
therefore separated into two colour sets and the CSS
control line on the VDG indicates which colour set is
in use.

The colours in each colour set are:

When the memory bits defining an element are set, this
means that the element is 'on' and it is displayed in

Control line
A/G

A/S

INT/EXT

GM0,GM1,GM2
CSS
INV

Function
Set LO to indicate Alphanumeric
HI to indicate Graphic mode
LO to indicate Alphanumeric
HI to indicate Semigraphic mode
Selects between internal (LO)
and external (HI) character
generator ROM.
Selects the graphics mode
Selects between the two colour sets
Selects between inverse and normal
video

Colour set 1
Green
Yellow
Blue
Red

Colour set 2
Buff
Cyan

Magenta
Orange

155

colour. When the associated bits are unset, the
element is off and is displayed as black.

7.1.2 The peripheral interface adaptor
The PIA is an example of a general-purpose programmable
interface device which is used to interface the M6809
processor to other devices. We describe the operation
of the PIA in Chapter 8 as it plays a very important
role in input/output programming.

The block diagram of the Dragon in Figure 1.2 shows
that the system contains two PIA chips. The PIA used to
control the VDG chip is PIA1 and, by setting the
appropriate bits in the PIA's B-side peripheral data
register, control signals for the VDG chip can be
generated.

As the M6809 uses memory-mapped addressing, this
data register is set by writing bit patterns to the
appropriate memory address. PIA1 is addressed via
memory locations FF20 through to FF23 with the B-side
peripheral data register located at location FF22. We
might therefore set up the VDG inputs as follows:

LDA <VDG input state>
STA $FF22

In fact, only bits 3 to 7 of this register are used to
set the VDG control lines with bits 0 to 2 used for
other purposes by the Dragon. The values of these bits
are irrelevant for graphics programming. The table
below shows the association of bits in the PIA register
and VDG control lines.

7.1.3 The video RAM
Whilst it is the VDG chip which determines how data is
displayed on the user's screen, it is the contents of
the video RAM which specifies what is displayed.
Remember that the display is made up of 256 by 192
pixels and the contents of the video RAM determine
which pixels should be displayed and the colour of
displayed pixels.

The VDG continually scans the video RAM and uses the
data there to build up an image on the screen.
Therefore, by changing a data byte in the video RAM,
the programmer can change the pixels in the
corresponding screen position. The resolution of the
display is determined by the number of pixels affected
when a single data byte of video RAM is modified.

Bit 3
Bit 4
Bit 5
Bit 6
Bit 7

CSS
GM0
GM1
GM2
A/G

F0
F1
F2
F3
F4
F5
F6

FFC6/7
FFC8/9
FFCA/B
FFCC/D
FFCE/F
FFD0/1
FFD2/3

156

7.1.4 The synchronous address multiplexor - SAM
The SAM chip has been specifically designed to provide
the necessary control and timing signals for the M6809,
the VDG chip, and the video RAM. Much of this
information is of no relevance to the programmer but
some aspects of the operation of the SAM chip are
important. We concentrate on these aspects in this
section rather than describe the SAM chip in detail.

Three bits in the SAM control register are used to
set the appropriate display mode. These bits should be
set to the same value as bits 3-5 in the VDG control
register. The SAM control register is memory mapped at
address FFC0 and occupies the address range FFC0 to
FFDF. As the control register is 16 bits wide, why are
32 bytes allocated in memory to that register?

The 16-bit control register maps onto the 32-bit
range FFC0 to FFDF so that each register bit is
represented by two memory bytes which have adjacent
even and odd values. Therefore bit 0 in the control
register is represented by FFC0/1, bit 1 by FFC2/3, bit
2 by FFC4/5 etc. In order to clear a particular bit, a
write operation to the even address is carried out, and
to set a SAM control register bit you must write to the
associated odd address. This technique of setting and
unsetting the control register bits is the reason why
32 bytes are allocated to a 16-bit register.

The SAM control register bits which indicate the
current graphics mode are the bottom three register
bits termed V0, V1, and V2. These have associated
addresses FFCO/1, FFC2/3 and FFC4/5. To set up the
graphics mode required, you must carry out the
requisite write operations to these addresses.

As well as these mode control bits, there are seven
other SAM control register bits (bits F0-F6) which are
used to indicate the base address in memory of the
graphics segments used for the video RAM. The table
below shows the association between these SAM control
register bits and memory bytes:

The 7-bit value in the SAM control register is
multiplied by 512 to compute the base address of the
graphics segments used. This is the reason why
graphics segments always have a base address which is a
multiple of 512 and why they are always 512 bytes long.

Because the VDG and SAM chips must operate in
tandem, they are normally set up in the same mode so

that signal timings, etc. are compatible. If set up in
different modes, the system will produce garbage except
when the VDG chip is in alphanumeric mode and the SAM
chip is in one of the colour graphics modes. In this
case, extra Semigraphics modes are available and these
are described in section 7.6.

7.2 INTEGRATING BASIC AND ASSEMBLY CODE GRAPHICS

One of the strengths of the BASIC system on the Dragon
is the graphics facilities provided by Microsoft's
Extended Color BASIC. These facilities allow complex
graphics programs to be written with relative ease but,
as with all BASIC programs, they are relatively slow.
Using assembly code speeds up the system's graphics
very considerably but is much less convenient for the
programmer. The ideal solution is to use the
convenience of the BASIC facilities when execution
speed is not important and to program time-critical
sections of the program in assembly language.

Typically, those parts of a graphics program which
are not time critical are the parts involved with
initialisation and hardware setup. In this section we
look at some useful BASIC graphics commands and
describe a BASIC subroutine which will set up the
graphics system then call an assembly language program
which actually creates the display.

Of the many BASIC commands used for high resolution
graphics, three are of particular importance to the
assembly language programmer.

(1) SCREEN type,colourset
This command is used to specify whether full
graphics or alphanumeric/Semigraphics mode is to
be used. For a full graphics mode, type is 1,
otherwise 0. The colourset parameter is either 1
or 0 and selects the colour set as defined in
section 7.1.1.

(2) PMODE mode,startpage
This statement selects one of the five graphics
modes available with Extended Color BASIC and is
only meaningful if a SCREEN 1, colourset command
has been issued. The modes available are summar
ised below:

The startpage value is used to select the base

Mode
0
1
2
3
4

Resolution
128 by 96
128 by 96
128 by 192
128 by 192
256 by 192

RAM bytes
1536
3072
3072
6144
6144

Graphics type
Resolution
Colour
Resolution
Colour
Resolution

Page
1
2
3
4
5
6
7
8

RAM address range
600-BFF
C00-11FF
1200-17FF
1800-1DFF
1E00-23FF
2400-29FF
2A00-2FFF
3000-35FF

158

address of the graphics display. In Extended
Color BASIC, the display area is made up of one
to four pages of 1536 bytes each with up to eight
pages used for the display. Therefore, the start
ing page value must lie in the range 1 to 8 with
page 1 starting at address 600, immediately after
the text page. The table below shows the rela
tionship of pages to RAM addresses.

(3) PCLS c
This command is used to clear the high-resolution
display screen to the background colour c, pro
vided that c is in the available colour set for
the current mode. If this is not the case, or c
is omitted, the default background colour is
used. This is green if colour set 1 is selected
and buff if colour set 2 is used.

SCREEN, PMODE and PCLS are useful to the assembly
language programmer since they can be used to set up a
graphics display prior to its use in an assembly
language program. In other words, the use of these
commands avoids the need to write machine code routines
to perform similar functions.

We show how these can be used in the BASIC
subroutine below. This routine initialises the
graphics system using SCREEN, PMODE, and PCLS commands
then calls an assembly language routine at address
4E21.

1000 SCREEN 1,0 'Select graphics screen
1010 PMODE 0,1 'Select graphics mode
1020 PCLS 'Clear graphics display
1030 EXEC &H4E21 'Call machine code
1035 ' Don't return immediately to BASIC
1036 ' as this means switch to text screen
1040 IF INKEY$="" THEN 1040 ' and display is lost
1048 'Switch colour sets and watch
1049 'screen colours change
1050 SCREEN 1,1
1060 IF INKEY$="" THEN 1060
1070 SCREEN 0,0 'Now revert to text mode
1080 RETURN

Program 7.1 BASIC test rig for graphics programs

159

7.3 ALPHANUMERIC DISPLAY MODES

The alphanumeric mode is the mode adopted by the Dragon
when it is switched on or reset. In this mode, the
display is made up of a 32 by 16 matrix of display
elements with 512 bytes of video RAM dedicated to this
display. The BASIC system allocates this display area
at address 400 so that the SAM control register bits
F0-F6 are set to 02.

Although the VDG chip supports four different
alphanumeric modes, the Dragon hardware is only
designed to make use of one of these. The other modes
require special read-only memories to be installed and
attempting to use them will result in unpredictable
access to RAM. Nevertheless, it is possible to use
these modes if you are prepared to spend some time in
experimentation to determine where the VDG accesses
RAM. The information in the VDG data sheet should be
sufficient to get you started with these experiments.

Each character on the display is represented by 8 by
12 pixels although only 5 by 7 pixels are used to form
the actual character. The remaining pixels define the
space between the characters. The shape of the
characters in alphanumeric mode is determined by a
read-only memory (ROM) which is build into the VDG
chip. Unfortunately, this ROM has space for only 64
characters so this means that the full ASCII character
set is not available. In particular, lower case
characters have been excluded and this limits the
display capabilities of the Dragon.

As the maximum number of characters which may be
held in the VDG's ROM is 64, this means that 6 bits of
an 8-bit byte are required to represent the character
value. The remaining 2 bits represent the INV and A/S
control inputs to the VDG chip. One bit specifies
whether the display mode is alphanumeric or Semigraphic
and the other specifies whether the character is to be
displayed in reverse or normal video. The table below
shows the usage of the bits in an 8-bit data byte:

One of the problems which arises with this display mode
is that there is not a one-to-one correspondence
between the character code in the video RAM byte (which
is an ASCII character) and the character which is
actually displayed. To illustrate this, you might like
to run the following BASIC program:

5 CLS
10 FOR K = 0 to 127
20 K$ = CHR$(K)
30 POKE &H400 + K,K

Bits 0-5
Bit 6
Bit 7

Character code
INV control bit
A/S control bit

160

40 PRINT @256 + K,K$;
50 NEXT K

Program 7.2 Screen character mapping

The statements at lines 30 and 40 should be equivalent
in that they should both place the ASCII value of a
character in the video RAM. However, some characters
will be displayed differently.

To further illustrate this point, type in the
following amendments to the program:

10 K$=INKEY$: IF K$="" THEN 10
20 K =ASC(K$)
50 P1 = PEEK(&H400 +K)
60 P2 = PEEK(&H400 + 256 + K)
70 PRINT @480,HEX$(K),HEX$(P1),HEX$(P2);
80 GOTO 10

When the program is run, you will see that the actual
ASCII codes K and P1 remain the same but that P2, the
result of printing a character, is different. This
means that the BASIC print routine is altering the
character code before placing it in the video RAM.

This conversion is carried out by the standard BASIC
character printing routine OUTCH. We have already
mentioned this routine in Chapter 5 and, because it
takes care of the necessary character conversions for
the VDG chip, we recommend that it always be used for
character output.

OUTCH places the character to be output at the
current cursor position on the screen. The cursor
position is held in a system variable called CURADR and
the contents of that variable determines where, on' the
screen, the cursor is displayed. Cursor blinking is
under the control of a system routine called CBLINK and
the blinking effect is the result of inverting and re-
inverting the cursor position character.

As well as performing code conversions, the routine
OUTCH also carries out other screen 'housekeeping'
duties. It handles screen scrolling when the end of a
line is reached, deletes characters from the screen
when the delete key is pressed, and updates the cursor
position so that the next character input is at that
position.

Normally, the Dragon display consists of dark
characters on a light background. In fact, the
'normal' character set of the VDG chip consists of
light characters on a dark background so the Dragon's
display is actually the inverse character set. This
means that the INV control bit (bit 6) of each data
byte must be set to indicate dark-on-light display. To
illustrate this, the following program manipulates the
INV bit of every character in the display:

161

LDX #$400 ; Display start address
NEXTCH LDA ,X ; Character into A
* INV bit manipulation here - see below

STA ,X+ ; Put character back
CMPX #$5FF ; Reached end of screen?
BLS NEXTCH ; No, repeat
RTS

Program 7.3 INV bit manipulation

The INV bit can be manipulated in the following ways:

Instruction Effect
ORA #$40 Sets INV to 1 so 'normalising' the

display
ANDA #$BF Clears INV so inverting the display
EORA #$40 If INV is set, it is unset and vice

versa. The effect of this is to
reverse the display

7.4 COLOUR GRAPHICS DISPLAY MODES

The VDG provides eight full graphics modes although
only five of these are directly supported by Extended
Color BASIC. The modes range from a four-colour 64 by
64 element display requiring 1024 bytes of video RAM to
a two-colour 256 by 192 display requiring 6144 bytes of
video RAM. Four of these modes are termed colour
graphics modes and these are described in this section.
Each of these modes is numbered 1, 2, 3 or 6 depending
on the number of graphics pages required and colour
graphics modes are indicated by using this number and
suffixing it with C.

In any colour graphics mode, the setting of each
element in the display is controlled by two bits in the
video RAM byte so that the element may be one of four
colours. The general format of a video RAM byte for
colour graphics is shown in Figure 7.1.

Fig. 7.1 Colour graphics byte format

Because the VDG is capable of generating eight colours,
two colour sets each of four colours are available.
Which colour set is in use is determined by the CSS
input line to the VDG. The table below shows the
available colours and their associated coding in the
video RAM byte.

c1c0

E3

C1C0

E2

C1C0

E1

C1C0

E0

162

To illustrate each of the graphics modes available, the
assembly language routine shown as Program 7.4
generates a checkerboard pattern on the screen. As
each graphics mode has different requirements, the
appropriate constants have been defined using an EQU
directive so that they may be easily altered for
another mode. The appropriate equates are defined along
with the description of each of the graphics modes and
are initially set up for the colour graphics 1 mode.

The method used to generate the checkerboard pattern
is to set up alternating on-off patterns in the video
RAM byte and then write a complete row of such bytes to
the screen. After a row has been written, the on-off
patterns are reversed and another row written. This
means that an on-pattern falls immediately below an
off-pattern which is black thus creating the
checkerboard.

When in colour graphics mode, two bits are used to
define each screen location so the appropriate on-off
pattern in the video RAM byte is 00110011. This is
encoded, in hexadecimal, as $33.

DSTART EQU $0600 ; Display start address
DSIZE EQU 1024 ; Display size
DEND EQU DSTART+DSIZE ; Display end address
DWIDTH EQU 16 ; Display width in bytes
DBITS EQU $33 ; Display bit pattern

ORG $4E21 ; Set up code address
PATGEN PSHS A,B,X ; Save registers

LDX #DSTART ; Set up base address
LDA #DBITS ; Set up pattern
LDB #DWIDTH ; Set up width

NXTCOL STA 0,X+ ; generate pattern
DECB
BNE NXTCOL ; are we finished?
COMA ; yes, complement pattern
LDB #DWIDTH ; and reset row length
CMPX #DEND ; Reached end of display
BLO NXTCOL ; no, do next column
PULS A,B,X,PC ; restore and return

Program 7.4 Checkerboard routine

CSS
0
0
0
0
1
1
1
1

Colour
Green
Yellow
Blue
Red
Buff
Cyan

Magenta
Orange

C1C0
00
01
10
11
00
01
10
11

163

7.4.1 The colour graphics 1 mode
This mode provides a 64 element wide by 64 element high
four colour graphics display and is referred to as the
1C mode. As the display screen is 256 by 192 pixels,
this means that each element is 4 pixels by 3 pixels in
size. Given that the code for 4 screen elements can be
held in each byte, the display memory requirement for
this mode is therefore 1024 bytes.

The pattern generator program is set up initially in
this mode. However, as the BASIC PMODE command does not
recognise this particular mode, the SAM and VDG chips
have to be set up directly in the BASIC test rig by
poking values into their control registers. It is still
possible to use the SCREEN command to select the
graphics screen since this is independent of the mode.
It is also possible to use one of the colour graphics
PMODEs (1 or 3) to set up the start page and PCLS to
clear the screen graphics display since the byte format
is the same. This does mean that 3072 (3C) or
6144 (6C) bytes will be cleared when only 1024 bytes
need be but this is not usually a problem.

The following amendments to Program 7.1 configure
the graphics hardware for the 1C mode.

1010 PMODE 1,1
1022 POKE &HFFC1,1 'Set V0 in SAM
1024 POKE &HFFC2,0 'Clear V1 in SAM
1026 POKE &HFFC4,0 'Clear V2 in SAM
1028 POKE &HFF22,&H80 'Configure VDG

The lines 1022-1028 are used to configure the VDG and
SAM directly and therefore override the PMODE 1
command.

7.4.2 The colour graphics 2 mode
The display generated by this mode is in four colours
on a 128 by 64 grid. Elements are made up of 2 by 3
pixels and a total of 2048 bytes of video RAM is
required to support this mode. To convert the
checkerboard generator to this mode, the following
equates must be made:

DSIZE EQU 2048
DWIDTH EQU 32

Again, the programmer must configure the SAM and VDG
chips by the use of POKEs to set their control
registers. The amendments to the BASIC test rig below
set these devices for this mode.

1010 PMODE 1,1
1022 POKE &HFFC0,0
1024 POKE &HFFC3,1
1026 POKE &HFFC4,0
1028 POKE $HFF22,&HA0 'Configure VDG

164

7.4.3 The colour graphics 3 mode
This mode considers the screen to be made up of 128 by
96 elements and, like all the colour graphics modes,
can display up to four colours. The total video RAM
requirement for this mode is 3072 bytes or two high-
resolution graphics pages.

To reconfigure the checkerboard program for this
mode requires the following redefinitions

DWIDTH EQU 32
DSIZE EQU 3072

BASIC recognises this mode so the hardware can be set
up using a PMODE 1 command.

7.4.4 The colour graphics 6 mode
This is the highest resolution colour graphics mode.
The screen is made up of 128 by 192 elements and there
are four possible colours. Elements are each 2 by 1
pixels in size. The memory requirements for this mode
are 6144 bytes which needs four high-resolution
graphics pages.

The following alterations to the pattern generator
program are needed:

DSIZE EQU 6144
DWIDTH EQU 32

Again, this mode is recognised by BASIC and can be set
up by using a PMODE 3,1 command.

7.5 RESOLUTION GRAPHICS DISPLAY MODES

Resolution graphics, as the name implies, are more
concerned with screen resolution rather than colour so,
in these graphics modes, the colours are limited. The
display is black on a background colour or a foreground
colour on black.

The background or foreground colours are green and
buff as shown in the table below.

In resolution graphics, each element in the display is
controlled by a single bit which means that an element
can be one of two colours.

The bit pattern used to define the checkerboard
consists of bits with alternating values, that is,
01010101, so for all resolution graphics modes the
DBITS constant in Program 7.4 is set to $55.

CSS
0
0
1
1

Colour
Black
Green
Black
Buff

RAM bit value
0
1
0
1

c

E7

C

E6

C

E5

C

E4

C

E3

C

E2

C

E1

C

E0

165

The general format of a video RAM byte for
resolution graphics is shown in Figure 7.2.

Fig. 7.2 Resolution graphics byte format

There are four resolution graphics modes which are
given the names 1R, 2R, 3R and 6R. These are the
resolution graphics equivalents of modes 1C, 2C, 3C,
and 6C and each is described below.

7.5.1 The resolution graphics 1 mode
This mode generates a 128 element wide by 64 element
high two-colour graphics display. Each element is
controlled by a single bit in the video RAM byte and is
2 pixels by 3 pixels in size. The total memory
requirements for this mode are 1024 bytes. Like the 1C
mode, this mode is not supported directly by BASIC.

The pattern generator can be altered for this mode
by redefining some of the constants as follows:

DSIZE EQU 1024

The BASIC test rig must be modified to set up the VDG
and SAM chips but a PMODE 0 command followed by a PCLS
will clear enough screen bytes for this mode. The
following amendments to the BASIC test rig will
configure the VDG and SAM chips for the 1R mode.

1022 POKE &HFFC1,1 'Set V0 in SAM
1024 POKE &HFFC2,0 'Clear V1 in SAM
1026 POKE &HFFC4,0 'Clear V2 in SAM
1028 POKE &HFF22,&H90 'Configure VDG

7.5.2 The resolution graphics 2 mode
This resolution graphics mode generates a display of
128 elements wide by 96 elements high. This means that
each element is 2 pixels by 2 pixels in shape. Its
memory requirements are 1536 bytes or 1 high-resolution
graphics page.

The checkerboard program may be modified for this
mode by redefining the equates as follows:

DSIZE EQU 1536

The 2R mode is supported by BASIC and can be invoked by
issuing a PMODE 0 command.

166

7.5.3 The resolution graphics 3 mode
This mode generates a 128 by 192 element display in two
colours. Each element is 2 pixels by one pixel and the
total memory requirement is 3072 bytes.

To reconfigure the pattern generator for this mode
only requires DSIZE to be equated to 3072. The mode is
supported by BASIC as PMODE 2.

7.5.4 The resolution graphics 6 mode
This is the highest resolution mode possible since each
pixel is controlled by a single bit in the video RAM.
The display is arranged as a 256 by 192 pixel grid and
therefore the video RAM size required for this is 6144
bytes. To set up the checkerboard routine for this mode
requires DSIZE to be equated to 6144 and the BASIC test
rig must be modified so that a PMODE 4 command is
issued.

7.6 SEMIGRAPHICS DISPLAY MODES

As well as graphics and alphanumeric modes, the VDG
chip has two Semigraphics modes where special-purpose
characters representing graphics symbols can be built
up and displayed on the screen. As the fundamental
display element is the character, it is possible to mix
these graphics characters with normal alphanumerics
thus allowing text and graphics to appear together on
the Dragon's display. Furthermore, the use of a
Semigraphics mode allows the use of eight-colour rather
than four-colour graphics, thus opening up more
creative possibilities for the graphics programmer.

The in-built Semigraphics modes are termed
Semigraphics 4 and Semigraphics 6 modes with the
associated number referring to the number of elements
making up a graphics character. As well as these in
built modes, it is also possible to set up three
additional Semigraphics modes (8, 12, 24) by setting
the VDG chip in alphanumeric mode and the SAM chip in
2C, 4C, or 6C colour graphics mode. Details of these
additional modes are briefly described below and fully
described in Appendix 2.

When in Semigraphics mode, each character is made up
of a number of elements. The character organisation
for Semigraphics 4 mode is shown as Figure 7.3. The
other modes have a similar pixel organisation although,
obviously, they offer higher resolution graphics as
each character is made up of more elements. In all
cases, the horizontal width of an element is 4 pixels
but the vertical width varies from 1 to 6 pixels. Apart
from the Semigraphics 6 mode, all of the Semigraphics
modes allow eight-colour graphics and use three bits in
each byte to represent the colour of the character
elements represented in that byte. Bits 4-6 in the
byte hold the colour information and the table below

167

defines the colours associated with each three-bit
colour value.

Fig. 7.3 Semigraphics 4 character organisation

A Semigraphics byte is arranged so that bits 0-3 hold
the settings of character elements, bits 4-6 hold the
colour and bit 7 is the mode bit. In Semigraphics 4
and 6 modes, bit 7 is 1, in Semigraphics 8, 12, or 24
modes, bit 7 is 0. All elements that are 'on' are
displayed in the colour specified in bits 4-6 and
elements which are 'off' are displayed as black. There
is no way that elements represented in the same byte
can take different colours.

7.6.1 The Semigraphics 4 mode
In Semigraphics 4 mode, each character is split into 4
elements of size 4 by 6 pixels. A single video RAM
byte is therefore needed to hold each character where
bits 0-3 are named L0-L3.

To experiment with this mode, you might like to
modify Program 7.2 which manipulates the INV bit in the
video RAM bytes. Rather than manipulate bit 6, you
manipulate bit 7 using AND, OR and EOR instructions.
These will turn the Semigraphic mode on and off.

7.6.2 Semigraphics 6 mode
The Semigraphics 6 mode splits each character into 6
elements of size 4 by 4 pixels giving a display
resolution of 64 horizontal by 48 vertical elements.
Each element is controlled by a bit in the video RAM

Colour
Green
Yellow
Blue
Red
Buff
Cyan

Magenta
Orange

Bit pattern
000
001
010
011
100
101
110
111

4

L3

L1

4

L2

LO

6

6

168

byte so, as a single byte is used for each character
position in this mode, six bits of that byte are
required to encode element settings. This leaves only
two bits (bits 6 and 7) for colour information so only
four colours may be represented. As in the colour
graphics modes, the setting of CSS determines which
colour set is used.

In fact, the number of colours available in this
mode is even more restricted as bit 7 has a double
function as a colour coding bit and as a mode setting
bit. In order to remain in Semigraphics mode, bit 7
must always be set to 1 so this means that only blue
and red from colour set 0 and magenta and orange from
colour set 1 may be used.

7.6.3 The Semigraphics 8 mode
The Semigraphics 8 mode is the first of the extra
Semigraphics modes which can be used by setting up the
VDG chip to alphanumeric mode and the SAM chip to one
of the colour graphics modes. In this mode, a standard
8 by 12 pixel character is split into eight elements of
4 by 3 pixels.

In order to set up the Semigraphics 8 mode from
BASIC you must issue a SCREEN 0,0 command to put the
VDG chip into alphanumeric mode then poke the bit value
Oil into the SAM control bytes as shown in the graphics
examples above.

In this mode, 4 bytes of video RAM are required to
represent each character position and only the bottom
two bits (LO and L1) are used to hold element settings.
As before, bits 4-6 hold the colour value and bit 7
should be set to indicate Semigraphic mode. Bits 2 and
3 are not used but should be set so that bit 2 has the
same value as bit 0 and bit 3 is the same as bit 1.

Each character is built up as 4 rows of 4 by 3 pixel
elements. However, the bytes representing these rows
are not contiguous but are actually spaced 32 bytes
apart. The reason for this is that the SAM chip is
configured to a colour graphics mode where the image is
built up row by row, with each complete row taking up
32 bytes. As Semigraphic elements consist of a number
of rows, this means that the bytes specifying the
element must be set up at this spacing.

As four bytes are used, it is possible to mix
element colours when using this mode as, obviously,
each pair of elements in a byte has its own colour
information. Furthermore, it also allows character
rows from different characters to be incorporated into
new characters and symbols. This means you can provide
facilities such as character underlining by switching
to Semigraphics mode at the appropriate time.

However, using this facility requires great care as
you must build up each character individually with each
row of elements defined in a separate byte. You also

169

have the problem of spacing character definition bytes
32 bytes apart as explained above so we recommend that
you write a program to help you organise byte layout if
you wish to use this facility.

7.6.4 The Semigraphics 12 mode
In this mode, the VDG chip is set to alphanumeric mode
and the SAM chip to colour graphics 4C mode. Each
character element is represented by twelve 4 by 2 pixel
elements held in six bytes. As in the Semigraphics 4
mode, only the bottom two bits per byte are used for
element settings and different bytes may be set to
different colours.

To set up this mode, you must issue a SCREEN 0,0
command from BASIC then poke the value 001 into the SAM
control bytes.

7.6.5 The Semigraphics 24 mode
In this mode, the SAM chip is set up to 6C mode and
each character element is made up of twenty four 4 by 1
pixel elements thus giving a screen resolution of 64 by
192 elements. A total of 12 bytes is required to hold
these element settings and, again, the colour of the
two elements represented in each byte may be set up
independently.

To set up this mode, you must issue a SCREEN 0,0
command from BASIC then poke the value 011 into the SAM
control bytes.

7.7 GRAPHICS UTILITIES

So far we have shown how the various display modes can
be set up from BASIC and we have assumed that this is
carried out before an assembly code graphics routine is
called. Sometimes, setting up the display hardware
from BASIC is neither possible nor desirable so in this
section we describe how BASIC commands such as SCREEN,
PMODE, PCLS, etc. may be implemented in assembly
language.

We have described, in section 7.1, the various
hardware control bits and have explained that they are
set up via memory-mapped I/O addresses. Remembering
which bit means what is difficult, so it is good
practice to set up mnemonic names for the various
control bit settings. A table of equates defining
these names, which we use throughout the remainder of
this chapter, is shown below.

* VDG/PIA and SAM addresses
*
VDGPIA EQU $FF22 ; Port B of PEA - VDG control
SAMVOC EQU $FFC0 ; Used to clear V0
SAMV0S EQU $FFC1 ; Used to set V0
SAMV1C EQU $FFC2 ; Used to clear V1

170

SAMV1S EQU $FFC3 ; Used to set V1
SAMV2C EQU $FFC4 ; Used to clear V2
SAMV2S EQU $FFC5 ; Used to set V2
SAMF0C EQU $FFC6 ; Base address of F0-F6
*
* VDG/PIA bit patterns - assumes CSS=0
*
ALPHAI EQU $00 ; Internal alphanumeric
ALPHAE EQU $10 ; External alphanumeric
M0DES4 EQU ALPHAI ; Semigraphics 4
M0DES6 EQU ALPHAE ; Semigraphics 6
MODES8 EQU MODES4 ; Semigraphics 8
MODS12 EQU MODES4 ; Semigraphics 12
M0DS24 EQU M0DES4 ; Semigraphics 24
*
* Full graphics modes
*
M0DE1C EQU $80 ; Graphics 1C
MODE1R EQU $90 ; Graphics 1R
MODE2C EQU $A0 ; Graphics 2C
MODE2R EQU $B0 ; Graphics 2R
MODE3C EQU $C0 ; Graphics 3C
MODE3R EQU $D0 ; Graphics 3R
MODE6C EQU $E0 ; Graphics 6C
MODE6R EQU $F0 ; Graphics 6R

Normally, the modes of the VDG and the SAM chip are the
same but for some of the extra Semigraphics modes they
must be set up differently. Therefore, rather than use
a single routine with complex parameters to set up
these devices, it is better to use two separate
routines. The routine to configure the VDG chip is
called VDGMOD and the routine to configure the SAM chip
is SAMMOD. They are shown below as Program 7.5.

* VDGMOD - sets up VDG chip

* Sets control lines A/G, GM0-2, and CSS
*
* Register input A - configuration bit pattern
* to be written to PIA
* Note only bits 3-7 of PIA are set so bits 0-2 must
* be preserved
*
VDGMOD PSHS A ; Preserve setup pattern

LDA VDGPIA ; Preserve bottom bits
ANDA #7 ; of PIA register
ORA ,S ; Or in setup pattern
STA VDGPIA ; Setup VDG
PULS A,PC ; Restore and return

*
* SAMMOD - Setup SAM chip
*
* Register input A - bit pattern used to set up VDG

171

* In general, V0,V1,V2 in SAM are set up as GM0, 1, 2
* in VDG but there are three special cases:
* If A/G = 0 then V0V1V2 = 000
* If A/G = 1 and GM0GM1GM2 = 000 then V0V1V2 = 100
* If A/G = 1 and GM0GM1GM2 = 111 then V0V1V2 = 01l

SAMMOD PSHS A ; Preserve VDG pattern
STA SAMVOC ; Clear V0
STA SAMV1C ; Clear V1
STA SAMV2C ; Clear V2
ANDA #$F0 ; Clear bottom 4 bits of A
BPL NOTGM0 ; Text mode (B7=0)
CMPA #MODE1C ; no, is it 1C?
BNE NOT1C
ORA #$10 ; yes, special case->lR

NOT1C CMPA #MODE6R ; Is it 6R
BNE NOT6R
ANDA #$E0 ; yes, special case->6C

NOT6R ROLA ; Get rid of A/G bit
BPL NOTGM2 ; GM2 set?
STA SAMV2S ; yes, set V2

NOTGM2 ROLA ; get rid of GM2 bit
BPL NOTGMl ; GM1 set
STA SAMV1S ; yes, set V1

NOTGMl ROLA ; get rid of GM1 bit
BPL NOTGM0 ; GM0 set?
STA SAMV0S ; yes, set V0

NOTGM0 PULS A,PC ; Restore and return

Program 7.5 VDG and SAM setup routines

These routines set up the SAM and VDG chips. Normally,
these devices are configured in the same mode so the
bit pattern defining the VDG's control bits is set up
in register A and each routine is called in turn.

* GMODE - sets up graphics hardware

* Register input A - VDG's control bit settings
*
GMODE BSR VDGMOD

BSR SAMMOD
RTS

You can use this routine in conjunction with the equate
table defined above to set up any of the graphics
modes. You simply have to load the A register with the
mode required then call GMODE to configure the VDG and
SAM chips. The exceptions to this are when Semigraphics
8, 12, or 24 modes are to be set up when VDGMOD and
SAMMOD must be called individually to configure the VDG
and SAM chips to different modes.

For example:

172

* SEMI8 - selects Semigraphics 8 mode
*
SEMI8 LDA #ALPHAI ; Alphanumeric mode

BSR VDGMOD ; for VDG
LDA #MODE2C ; and 2C mode
BSR SAMMOD ; for SAM
RTS

*
* FULL6R - Selects resolution graphics 6 mode
*
FULL6R LDA #MODE6R

BSR GMODE
RTS

These mode setup routines combine some of the features
of BASIC'S PMODE and SCREEN commands which, together,
set up the mode required, define the colour set and
determine which graphics pages are to be used. In fact,
it is better programming practice for a routine to do
one thing and one thing only so we have defined
separate assembly code routines to select the colour
set and to define the starting page. These are shown as
Program 7.6.

* CSS - Select colour set

* Input register A = 0 -> colour set 0
* = 1 -> colour set 1
*
CSS PSHS A ; Preserve A

LDA VDGPIA ; Read current state of VDG
TST ,S ; Check set selection
BEQ CSS0
ORA #8 ; Set the CSS line
BRA XIT

CSS0 ANDA #$F7 ; Clear the CSS line
XIT STA VDGPIA ; update the VDG

PULS A,PC ; Restore and return

* To set up the SAM control bits, we must manipulate
* 7 bits. We use the utility routine
* from page 16 of Appendix 2 to carry out
* this bit manipulation
*
* SAMSET - Configures SAM control bits
*
* Register inputs X - address in SAM control register
* A - SAM configuration bit pattern
* B - number of bits to be copied from
* A to SAMCR
* NB. This routine does not preserve registers
*
SAMSET LSRA ; Shift bit 0 to carry

BCC NOTSET ; Set corresponding CR bit?

173

LEAX 1,X ; Yes, odd address
STA 0,X+ ; set bit and adjust X for
BRA CHKCNT ; next address

NOTSET STA 0,X++ ; Clear bit and continue
CHKCNT DECB ; All done?

BNE SAMSET
RTS ; Yes, return

*
* SAMSET is used by PAGEX to set the page number
* in the control register. This is passed to PAGEX
* as a 16-bit address and PAGEX selects the top 7 bits
* to get the graphics segment base address. This means
* that you can pass an address within a segment
* not just the segment base address
*
* PAGEX - Set up graphics segment base address
*
* Register inputs X - Address of or within display area

PAGEX PSHS X,D ; Save registers
TFR X,D ; A = X(HI), B = X(LO)
LSRA ; We only need top 7 bits
LDB #7 ; as specified in B
LDX #SAMF0C ; Copy to F0-F6
BSR SAMSET
PULS X,D,PC ; Restore and return

Program 7.6 Colour set and graphics page setup

We have now defined those utility routines which allow
the assembler programmer to dispense with BASIC'S
SCREEN and PMODE commands and also with any POKEs that
are needed to set up extra graphics modes from BASIC.
We leave it as an exercise for the reader to convert
the BASIC test rig, defined as Program 7.1 to assembly
code.

Now let us look at other useful graphics utility
routines which may be used by the assembly language
programmer. The first of these is a routine to clear
the screen to a given colour.

* CLS - Clear screen to specified colour
*
* Register input B - colour specification
* 0 = Black, 1 = Green, 2 = Yellow,
* 3 = Blue, 4 = Red, 5 = Buff,
* 6 = Cyan, 7 = Magenta, 8 = Orange
*
CLS PSHS X,B ; Save registers

TSTB ; B = 0 is special case
BEQ SEMION ; as all elements turned off
DECB ; BASIC -> VDG colour code
ASLB ; Move colour code bits
ASLB ; into bits D4-D6

174

ASLB
ORB #$0F ; Turn on all elements

SEMION ORB #$80 ; Set up Semigraphics bit
LDX #$400 ; Set default screen address

NXTBYT STB ,X+ ; Colour element
CMPX #$5FF ; on the screen
BLS NXTBYT ; If not finished, repeat
PULS X,B,PC ; Restore and return

Program 7.7 Clear screen

When considering the graphics screen, the programmer
thinks in terms of row and column numbers but, in
memory, the screen is simply a one-dimensional
contiguous area. There are 32 character bytes per row
so it is useful to have a routine which, given a row
and column number, translates this to the appropriate
address. This routine, R32COL, is also useful for full
graphics modes which have 32 bytes of colour/resolution
information per row. Other graphics modes need a
variation of this which is easily derived by replacing
the LDB #32 instruction with an LDB #16 instruction.
The code for this routine is shown below.

* R32C0L - Calculate screen position

* Register inputs B - column number
* A - row number
* Register output D - screen position

* Calculates position as A * 32 + B
*
R32COL STB ,-S ; Save column on stack

LDB #32 ; Set up multiplier
MUL ; D = A * 32
ADDB ,S+ ; D = D + B
ADCA #0 ; Propagate carry
RTS

7.8 DESIGNING AND IMPLEMENTING GRAPHICS PROGRAMS

An essential first step in the design of a graphics
program is to sketch out the graphics symbols which you
would like to use in your program. Examples of such
symbols are space-ships, laser bursts, bombs,
explosions, etc. if you are writing games programs, and
character fonts, pie charts, maps, etc. if you are
concerned with more serious applications.

A well-designed graphics program is built up
incrementally with later developments built up on
earlier design stages. It is therefore very important
that assembly language routines should be as flexible
and as general-purpose as possible. In this section we
discuss various tools and techniques used in the design

175

and implementation of graphics symbols and we use the
Dragon logo as an example of a symbol that might be
used in a graphics program.

7.8.1 Graphic symbol design
The first stage in graphics symbol design is to make a
very rough sketch of the symbol required and, depending
on the details of the symbol, choose the most
appropriate screen resolution for that symbol. It
might seem that it is always best to use the highest
resolution but this may limit the colours available
and, in fact, may mean more work in symbol design as
the setting of more picture elements has to be
considered.

Another factor which must be taken into account is
the height to width ratio of your symbol. Some modes
have picture elements which are square and others have
elements which are longer than they are high. For our
example, the Dragon logo is slightly longer than it is
high so the most appropriate resolution to chose is 128
by 192 elements. This means using either the colour
graphics 6 mode, if a colour display is required, or
the resolution graphics 3 mode, if a foreground colour
on black is all that is wanted.

Fig. 7.4 Grid representation of Dragon logo

Once you have decided on the resolution to use, the
next thing to consider is the size of the symbol.
Obviously, you must choose a size which is appropriate
for the resolution. For our example, we have chosen

176

that the Dragon logo should be contained in a 16 by 16
element grid.

The next stage is to work out how to set up the
picture elements in this grid so that the shape of a
Dragon is produced. The easiest way to do this is to
use a graphics worksheet, which is simply lined graph
paper with the same height to width ratio as the chosen
resolution. If this is not available, squared paper can
be used but you must take into account any differences
in the height to width ratio. The grid representation
of the Dragon logo is shown as Figure 7.4.

Once the symbol has been mapped out on the graphics
worksheet, the binary patterns for each row must be
encoded and included as data for the assembly language
program. The simplest way to do this is to make up a
data array of constant byte values using the assembler
directives FCB and FDB. This process is
straightforward when resolution graphics is used but
requires rather more care when colour is required as
there is not a one-to-one relationship between symbols
on the worksheet and bits in the data byte.

Let us take the easiest case first and look at how
the graphic grid can be converted to resolution
graphics data bytes. Since there is a one-to-one
relationship between the screen elements and the grid
elements, row 0, byte 0 is encoded as $00 (all elements
off) and row 0, byte 1 is encoded as $3F (00111111).
Row 1, byte 0 is encoded as $20 (00100000), row 1, byte
1 as $3F, and so on. Therefore, the first few bytes of
the assembly language data table might be written as
follows:

FCB $00
FCB $3F
FCB $20
FCB $3F

However, as we are dealing with a 16-bit entity, it is
better practice to encode the information as a single
16-bit value using FDB directives. For example:

FDB $003F

After you have worked out the appropriate byte values,
you should then label the table with a symbolic name
such as DRAGON. The complete table for the Dragon logo
is shown below:

DRAGON FDB $003F ;Row 0 bit pattern
FDB $203F ;Row 1 bit pattern
FDB $F860
FDB $18DE
FDB $E9BC
FDB $2B7C

177

FDB $52E0
FDB $B6C0
FDB $BFFC
FDB $BFFE
FDB $C007
FDB $7FEB
FDB $3FFD
FDB $140A
FDB $2814
FDB $0000 ;Row 15 bit pattern

After encoding the graphics symbol, the next step is to
design a routine which takes the encoded symbol and
displays it on the screen. Because the display is
memory mapped, all that you need to do is to copy the
data from the graphics symbol table into the
appropriate locations in the video RAM. The copy
routine must map the row/column representation of the
screen onto the video RAM which is organised as a
linear sequence. As the Dragon logo only takes up part
of the screen, succeeding row addresses are actually
located 16 bytes from each other in this resolution
graphics mode.

This is an example of a situation where you should
write a general-purpose routine which can carry out the
mapping of data tables to screen locations for any
graphics mode. This routine has to satisfy the
following design criteria:

(1) It must be able to move data from any source ad
dress to any destination address.

(2) It must be able to cope with any row separation.

(3) It must be able to cope with any number of rows.

(4) It must not interact, in any way, with its cal
ling program.

A general-purpose copy routine which meets these
criteria is shown as Program 7.8.

* COPY2B - Copies 2 byte chunks to video RAM
*
* Register inputs X - destination address (in RAM)
* Y - source address
* B - row width (number of bytes
* between video RAM addresses)
* A - number of rows (number of words
* to copy)
*
COPY2B PSHS X,Y,U,A,B ; Save registers
NEXT2B LDU ,Y++ ; Pick up source word

STU ,X ; and store in row

178

ABX ; Add row width
DECA ; Repeat until all
BNE NEXT2B ; rows dealt with
PULS X,Y,U,A,B,PC ; Restore and return

Program 7.8 C0PY2B - update video RAM

An example of how this routine might be used is shown
in the program fragment below which displays the Dragon
logo in the top left hand corner of the screen.

DSTART EQU $0600 ; Display start
DWIDTH EQU 16 ; Display width

LOGOTL LDX #DSTART ; Destination address
LEAY DRAGON,PCR ; Source address
LDB #DWIDTH ; Display width
LDA #16 ; Number of rows
BSR COPY2B ; Transfer logo to screen
RTS

Now that we have managed to draw a dragon in the corner
of the screen, we can now go on to repeat the pattern
over and over again.

* FILLER - fills screen with dragons
*
* Register inputs NONE

* Registers destroyed X,Y,A,B

FILLER LDX #DSTART ; Destination address
LDB #DWIDTH ; Colour display row width
LDA #16 ; Number of display rows

NXTPOS LEAY DRAGON,PCR ; Address of source
BSR COPY2B ; Now start copying
LEAX DWIDTH+2,X ; dragons diagonally
CMPX #DEND-512 ; until no room left
BLS NXTPOS ; for another one
RTS

Program 7.9 FILLER - fills screen with dragons

Now let us look at how the Dragon logo can be displayed
using the colour graphics 6 mode which allows a four-
colour display at the same resolution. The first stage
in this process is to convert the grid pattern to the
appropriate four-colour data bytes.

The best way to tackle this is to encode the diagram
as if it was to be displayed in resolution graphics
then convert every element that is off (0) to the
chosen background colour (green in this case) and
convert elements which are on to the chosen foreground
colour (red, naturally). This means that the colour
data table is twice the size of the resolution graphics

179

data table because two bits rather than a single bit
are used to represent each screen element. Examples of
the conversion of resolution data to colour data are
shown below.

The conversion from the resolution grid data to colour
data is a tedious, mechanical, error-prone process
which means that it is ideal for automation. Program
7.10 below is a BASIC program which does the conversion
for you.

100 PRINT"RES0LUTI0N TO COLOUR GRAPHICS"
110 PRINT"DATA CONVERSION PROGRAM"
120 PRINT"COLOURS AVAILABLE ARE:"
130 PRINT"C0L0UR SET 0"
140 PRINT" GREEN 1, YELLOW 2"
150 PRINT" BLUE 3, RED 4"
160 PRINT"C0L0UR SET 1"
170 PRINT" BUFF 5, CYAN 6"
180 PRINT" MAGENTA 7, ORANGE 8"
200 INPUT"BACKGROUND COLOUR (1-8)";BG
210 IF (BG<1) OR (BG>8) THEN 120
220 INPUT"FOREGROUND COLOUR (1-8)";FG
230 IF (FG<<1) OR (FG>8) THEN 120
240 IF (BG<5) AND (FG<5) THEN 300
250 IF (BG>4) AND (FG>4) THEN 290
260 PRINT"FOREGROUND/BACKGROUND NEED TO"
270 PRINT"BE IN THE SAME COLOUR SET"
280 GOTO 120
290 BG=BG-4: FG=FG-4 'Convert to CS 0
300 BG=BG-1: FG=FG-1 'Convert to VDG code
310 PRINT"ENTER RESOLUTION GRAPHICS CODE"
320 INPUT"BYTE (IN HEX)";RB$
330 RB=VAL("&H"+RB$) 'Convert to numeric value
340 BM=1 'Bit Mask (first power of 2)
350 BP=1 'Bit Pair (first power of 4)
360 CW=0 'Colour Word value (16 bits)
370 BC=0 'Bit Colour (FG or BG)
380 'Now convert the single resolution
390 'bits into pairs of colour bits
400 FOR BIT = 0 TO 7
410 IF (RB AND BM) THEN BC=FG ELSE BC=BG
420 CW=CW+BC*BP 'Add colour pair to CW
430 BM=BM*2 'Next power of 2
440 BP=BP*4 'Next power of 4
450 NEXT BIT
460 PRINT"COLOUR CODE WORD (HEX) IS ";HEX$(CW)
470 PRINT:GOTO 310

Program 7.10 BASIC colour conversion program

Resolution data
$00
$3F
$20

Colour data
$0000
$0FFF
$0C00

180

The complete data table for the Dragon logo as a red
dragon against a green background is:

DRAGON FDB $0000,$0FFF
FDB $0C00,$0FFF
FDB $FFC0,$3C00
FDB $03C0,$F3FC
FDB $FCC3,$CFF0
FDB $0CCF,$3FF0
FDB $330C,$FC00
FDB $CF3C,$F000
FDB $CFFF,$FFF0
FDB $CFFF,$FFFC
FDB $F000,$003F
FDB $3FFF,$FCCF
FDB $0FFF,$FFF3
FDB $0330,$00CC
FDB $0CC0,$00CC
FDB $0000,$0000

With this colour data table, the COPY2B routine can now
be used to update the 128 by 192 colour graphics
display. However, the updating process is slightly
more complex since 16 bits of data are needed to
represent 8 elements. Therefore, it is best to modify
this routine so that 4-byte chunks may be copied. This
modification simply involves adding statements to copy
another word before the ABX instruction. The code for
this routine is provided as part of Program 7.12.

7.8.2 Animating a graphics display
Until now, all the graphics displays which we have
discussed have been static in nature. In this section
we describe how to create simple animation sequences.
The technique used in animating graphics are very
similar to those used in cartoon filming because the
animation relies on rapidly flicking through different
versions of a basic graphics symbol. If the flicking is
sufficiently rapid, the movement will be smooth but if
it is too slow, as is often the case with BASIC, the
movement of the symbol is very jerky.

To illustrate this technique we shall breath some
life into the Dragon logo introduced in the last
section. To be more exact, we shall breath some fire
into the beast as it is well-known that no self-
respecting dragon is without this mythical power. What
we shall do is to add flames which will flare out from
the dragon's mouth, flicker and dance and then die
down.

At first sight this might seem to be a difficult and
complex task but, in fact, if tackled one stage at a
time, it is relatively easy. The secret is to build up
the flames one at a time, flicker the flames with
slightly differing sequences and then extinguish the

181

fire in the opposite order to that used to build it up.
This is best illustrated by means of an example.

Say an 8 by 8 element grid is used to contain the
flame pattern and the flame colour chosen is yellow.
The data tables for building up the final flame
sequence labelled FLAME0 to FLAMES are shown below. It
is left as an exercise for the reader to reconstruct
the actual flame patterns which have been used to
derive this data.

FLAME0 FDB $0,$0,$0,$0,$0,$0,$0,$0
FLAME1 FDB $0,$0,$0,$5,$0,$0,$0,$0
FLAME2 FDB $0,$0,$50,$5,$0,$0,$0,$0
FLAME3 FDB $0,$0,$50,$5,$150,$0,$0,$0
FLAME4 FDB $0,$500,$50,$505,$150,$1400,$0,$0
FLAME5 FDB $5000,$500,$1050,$505,$4150,$1400,$5000,$0

The first flame sequence (FLAME0) is completely blank
as this is used to extinguish the flames completely.
The next flame sequence (FLAME1) is slightly more built
up than FLAME0, the sequence FLAME2 is more developed
than FLAME1 and so on.

Since 2 bytes of colour data has to be copied to the
video RAM we can make use of the COPY2B routine to set
up the display area in memory. However, if we had used
resolution graphics instead of colour graphics, then we
would only have needed to copy 1 byte of resolution
data to the video RAM. A routine called C0PY1B that
performs this function is provided in this section for
the sake of completeness.

* COPY1B - copy data in 1 byte chunks
*
* Register inputs X,Y,B as C0PY2B
* A - number of bytes to copy
*

C0PY1B PSHS X,Y,A,B ; Save registers
STA ,-S ; Save count on stack

NEXT1B LDA ,Y+ ; Pick up row byte pattern
STA ,X+ ; and store it
ABX ; Add row width indicator
DEC ,S ; Decrement count
BNE NEXT1B ; All rows done?
LEAS 1,S ; Discard local
PULS X,Y,A,B,PC ; Restore and return

Program 7.11 C0PY1B - video RAM update

The next stage in the development of the animated
sequence is to provide the means to display the
individual flame sequences. This is also the time to
consider the delay between sequence updates since too
short a delay will result in the animation sequence

182

lasting only a fraction of a second whilst too long a
delay will result in faltering effect. The following
routine is used to implement a short delay and is based
on a software delay loop.

* DELAY - hold up activity for a while

DELAY PSHS X ; Save register
LDX #$4000 ; This value may be changed

LOOP LEAX -1,X ; to adjust the timing
BNE LOOP ; delay
PULS X,PC ; Restore and return

The next routine is typical of routines needed to
display the individual sequences:

FIRE0 LEAY FLAME0,PCR ; Set up flame sequence address
FIRE BSR C0PY2B ; Update display with sequence

BSR DELAY ; Stop for a while
RTS

The two subroutine calls to C0PY2B and to DELAY are
common to all the updating routines so we can enter
FIRE0 at label FIRE to allow them to be called as a
subroutine. This is a fairly common and harmless trick
of assembly language programming which serves to reduce
the size of the finished code.

The next routine, to continue the animation, makes
use of this technique:

FIRE1 LEAY FLAME1,PCR
BSR FIRE
RTS

This process of routine development continues until you
end up with a complete animation program. Program 7.12
is an animated fire-breathing dragon which is an
appropriate conclusion to this chapter. For brevity,
we have not duplicated the code of routines which have
been described earlier in this chapter. Rather, we
have indicated by comments where these routines should
be included.

*
* ANIMATED DRAGON PROGRAM

ORG 20001
LBRA ACTION ; This preserves the entry point

* DRAGON - Data for the Dragon logo
* on a 16x16 colour grid

* INCLUDE DRAGON DATA TABLE HERE

183

* Flame data follows. This is on an 8x8 colour grid

* INCLUDE FLAME TABLE HERE

* Constants used in the program follow
*
DWIDTH EQU 32 ; Due to 128x196 colour mode
ROWS16 EQU 16 ; For a 16 row grid
ROWS8 EQU 8 ; For an 8 row grid
DSTART EQU $0600 ; May be changed
*

* INCLUDE VDG/PIA and SAM ADDRESS EQUATES HERE

* INCLUDE VDGMOD, GMODE and SAMMOD ROUTINES HERE

* FULL6C - Selects colour graphics 6 mode
*
FULL6C LDA #MODE6C

BSR GMODE
RTS

*
* INCLUDE CSS ROUTINE HERE
*
* INCLUDE SAMSET AND PAGEEX ROUTINES HERE
*
* INCLUDE COPY2B ROUTINE HERE
*
* COPY4B - Copies 4 byte chunks to video RAM
*
* Register inputs X - destination address (in RAM)
* Y - source address
* B - row width (number of bytes
* between video RAM addresses)
* A - number of words to copy
*
COPY4B PSHS X,Y,U,A,B ; Save registers
NEXT4B LDU ,Y++ ; Pick up source word

STU ,X ; and store in row
LDU ,Y++ ; Pick up next word
STU 2,X ; and store after first
ABX ; Add row width
DECA ; Repeat until all
BNE NEXT4B ; rows dealt with
PULS X,Y,U,A,B,PC ; Restore and return

* DELAY - hold up activity for a while

DELAY PSHS X ; Save register
LDX #$4000 ; This value may be changed

LOOP LEAX -1,X ; to adjust the timing
BNE LOOP ; delay
PULS X,PC ; Restore and return

* The following routines play with fire!

184

* FIRE0 - Deals with the first flame sequence

FIRE0 LEAY FLAME0,PCR ; Set up address first pattern
* FIRE - Used throughout the fire routines for display
FIRE BSR COPY2B ; Flames 8x8 in colour

BSR DELAY ; Wait briefly
RTS ; before returning

* FIRE1 - Deals with the second flame sequence

FIRE1 LEAY FLAME1,PCR
BSR FIRE
RTS

* FIRE2 - Third flame sequence

FIRE2 LEAY FLAME2,PCR
BSR FIRE
RTS

*
* FIRE3 - Fourth flame sequence
*
FIRE3 LEAY FLAME3,PCR

BSR FIRE
RTS

*
* FIRE4 - Fifth flame sequence

FIRE4 LEAY FLAME4,PCR
BSR FIRE
RTS

*
* FIRE5 - Sixth flame sequence

FIRE5 LEAY FLAME5,PCR
BSR FIRE
RTS

*
* KINDLE - Ignite (start the flame sequence) and
* gradually build the fire up.
*
KINDLE BSR FIRE0

BSR FIRE1
BSR FIRE2
BSR FIRE3
BSR FIRE4
BSR FIRE5
RTS

*
*
* FLARE - Plays flames by varying flame sequences.
*
FLARE BSR FIRE4

BSR FIRE5
BSR FIRE3

185

BSR FIRE1
BSR FIRE4
BSR FIRE3
BSR FIRE5
RTS

*
* DOUSE - Gradually extinguish the flames
* by reversing the sequence.
*
DOUSE BSR FIRE4 ; Was at full flame

BSR FIRE3
BSR FIRE2
BSR FIRE1
BSR FIRE0 ; Fire now out.
RTS

*
* FLAMES - Animates the fire-breathing dragon.
*
FLAMES BSR KINDLE ; Kindle the fire.

BSR FLARE ; Play the flames.
BSR DOUSE ; Now douse the fire.
RTS

*

* ACTION - Set up the display and start the animation.
*
ACTION LBSR FULL6C ; Select the graphics mode

LDA #0 ; Choose colour set 0
LBSR CSS
LDX #DSTART ; Set up the display start
LBSR PAGEX ; and select the page
LEAX 16,X ; Get breathing space
LEAY DRAGON,PCR ; Set up dragon data
LDB #DWIDTH ; and display width
LDA #ROWS16 ; and number of rows
LBSR C0PY4B ; for a 16x16 colour grid
LEAX -2,X ; Flames come out of mouth!
LDA #ROWS8 ; Now displaying flames

RETAKE BSR FLAMES ; on an 8x8 colour grid
BRA RETAKE ; Repeat the animation

Program 7.12 A fire-breathing Dragon

Chapter 8

Input/output programming

The topic of input/output programming is one that is
often neglected in books like this. The reason for
this is that the subject is so detailed and complex
that it is very difficult to present a coherent
overview of it in a single chapter. However, we have
tried to do so and, in this chapter, we explain some of
the general principles of I/O programming and describe
the specifics of the Dragon's I/O system.

As we explained earlier in the book, the Dragon's
I/O system is memory mapped which means that I/O
devices (or more accurately controllers) are accessed
by reference to specific memory locations. Reading or
writing to these locations results in an I/O transfer
from or to the I/O device.

The Dragon's offers a variety of I/O interfaces such
as a cassette interface, two joystick interfaces, a
printer interface, etc. These are shown in Figure 8.1
which is a block diagram of the Dragon's I/O system.
Some of the terms in this diagram will be unfamiliar to
the reader who is new to I/O programming but they will
be explained as the chapter progresses.

Because the I/O system is so complex, it is
impossible for us to provide a description here which
contains enough detail for the electronics enthusiast
to connect his own devices to the system. Rather, we
have concentrated here on information for the I/O
programmer and have avoided going into specific details
of the system electronics. Readers who want to
interface hardware to the Dragon must use the data
sheets presented in the appendices for complete
hardware details of the I/O system devices. These data
sheets have been provided by the chip manufacturer and
contain complete details of the chip functions and
signals.

There are four major sections in this chapter. The
first two are concerned with the generalities of I/O
programming and cover the concept of interrupts and I/O
programming techniques. The final two sections cover
details of the Dragon's I/O system, with section 3
concentrating on the PIA chip, which is the principal
interface controller on the system, and section 4
describing the various I/O ports built into the system.

186

187

188

8.1 INTERRUPTS

The central concept on which much I/O programming is
based is the notion of an interrupt. An interrupt is a
signal to the processor to temporarily stop what it's
doing and carry out some other task. We shall explain
the steps involved in this by means of an analogy.

Say you are busy programming your Dragon when your
doorbell rings. You stop what you are doing to answer
the door and you find the occupier of the apartment
below who tells you that water is dripping through his
ceiling. You immediately rush to the bathroom where you
find that you have left the water running and the bath
has overflowed. You turn off the water, mop up the
mess then go back to your programming. Whilst mopping
up the bathroom you ignore other interruptions unless
they are very urgent such as flames shooting from the
cooker.

In this scenario, events can be identified which
correspond to the events which occur in a computer
system when an interrupt is received and processed.

(1) The interrupt
This is the doorbell ringing to tell you to stop
what you are doing as some other task requires
your attention. A computer system has one or
more interrupt request control lines. A signal
on one of these lines is an interrupt which
causes the currently executing task to be
suspended and the interrupt processed.

(2) The interrupt vector
This is the front door. The interrupt (doorbell)
tells you to go to a known place in order to
start interrupt processing. In a computer there
are usually several pre-determined memory loca
tions, called interrupt vectors. The program
counter is automatically loaded with the contents
of one of these locations when the interrupt is
detected and this causes a transfer of control to
an interrupt service routine.

(3) The interrupt service routine
This is the mopping up of the bathroom or, in
other words, what you must do to clear the condi
tion causing the interrupt. In a computer the
address of this routine is held in the interrupt
vector and control is transferred automatically
to it.

(4) The interrupt mask
This is, effectively, what you do when you ignore
interruptions in order to get the water off your
bathroom floor. In a computer it is usually pos-

189

sible to set up a so-called 'interrupt mask'
which indicates that an interrupt is being pro
cessed and that no more interrupts should be ac
cepted until that processing is complete.

(5) The priority interrupt
This is the cooker catching fire. Some events
are so urgent that they must be handled in spite
of the fact that another interrupt-handling pro
cess is already underway. In a computer, there
is often a non-maskable interrupt control line.
A signal on this line means 'something urgent has
happened' and must be processed immediately.

(6) Process resumption
After handling the interrupt, you can breath a
sigh of relief and go back to programming. In a
computer, the interrupted process is restarted
and execution proceeds as if the interrupt had
not occurred.

Interrupts are very important in I/O programming
because they are one way that a peripheral controller
can tell the processor that data are ready for input or
that the peripheral is ready to accept more data for
output. If interrupts are not used the processor has
to examine all the peripheral devices at periodic
intervals to see if they have completed their input or
output operations.

The M6809 processor has a total of four interrupt
request control lines, a number of interrupt handling
instructions and uses three of the bits in the
condition code register in its interrupt processing.
Before going on to describe these in detail, however,
we describe a typical sequence of actions which take
place automatically when a 'normal' interrupt occurs.

The 'normal' interrupt control line on the M6809 is
called IRQ and a signal on this line causes the
processor to suspend the currently executing process
after it has completed execution of its current
instruction. The processor then sets the Entire flag
in the condition code register (CC.E) and pushes all
the processor registers, except S, onto the S-stack.

The processor then sets the IRQ Mask flag in the
condition code register (CC.I) to indicate that an
interrupt is being processed and that no more
interrupts on IRQ should be accepted. PC is then
loaded with the contents of the IRQ interrupt vector
(memory locations FFF8:FFF9) which causes a transfer of
control to the interrupt service routine whose address
is held in the interrupt vector.

The interrupt service routine services whatever
condition caused the interrupt then returns to the
interrupted process by executing a Return from

190

Interrupt instruction. This instruction restores the
register contents thus transferring control back to the
interrupted process when PC is restored and clearing
the interrupt mask bit CC.I when CC is restored.

As well as the standard interrupt request line IRQ,
the M6809 also has three other interrupt request lines
called NMI (non-maskable interrupt), FIRQ (fast
interrupt request) and RESET.

The RESET line is used when the system is switched
on. An interrupt on this line is not handled in the
same way as other interrupts as, obviously, there is no
executing process to be suspended. When the machine is
switched on, a RESET signal causes transfer of control
to a system initialisation routine in ROM which sets up
the S-stack and causes some other process, which is
usually the BASIC interpreter, to be initiated.

The FIRQ interrupt line signals that fast interrupt
processing is to take place. This is similar to the
processing of an IRQ interrupt but instead of all
registers being stacked and unstacked, only PC and CC
are stacked before control is transferred to the
interrupt service routine. The E flag in CC is unset
to indicate that only CC and PC have been stacked.

When an RTI instruction restores CC, the top stack
location, it examines the CC.E flag to see if it must
restore all other registers or if it is only necessary
to restore PC. An FIRQ request causes the FIRQ mask in
the condition code register (CC.F) to be set thus
locking out other interrupts on FIRQ.

The NMI interrupt line is used to signal an urgent
interrupt which should not be ignored. If CC.I or CC.F
is set, the processor ignores interrupt requests on IRQ
and FIRQ but NMI interrupts are always processed
irrespective of the settings of these flags. The
processing sequence is the same as that for an IRQ
request although, obviously, a different interrupt
vector is used.

As well as these hardware interrupts, the M6809 can
also process so-called 'software interrupts'. Software
interrupts occur when an SWI instruction is executed
and, like hardware interrupts, they have an associated
interrupt vector and service routine. Software
interrupts are handled in the same way as IRQ
interrupts and will be discussed in more detail in the
following section where the SWI instruction is
described.

In all, there are seven 'levels' of interrupt which
can be processed by the M6809. The table below shows
the locations of the interrupt vectors associated with
each of these.

Vector location
FFF2:3
FFF4:5

Associated interrupt
SWI3
SWI2

FFF6:7
FFF8:9
FFFA:B
FFFC:D
FFFE:F

FIRQ
IRQ
SWI
NMI
RESET

191

The interrupt priorities are as follows:

RESET > NMI > SWI > FIRQ > IRQ > SWI2 > SWI3

Notice that this order is not the same as the order of
the interrupt vectors.

8.1.1 Interrupt handling instructions
The sequence of actions described above which initiates
an interrupt device routine takes place automatically
whenever a hardware or software interrupt is detected.
No explicit instruction is needed to start interrupt
processing but a return from interrupt instruction is
necessary to restart the interrupted process.

We have already introduced, in Chapter 3, the four
M6809 instructions which are used in interrupt
processing. Now, we describe each of these
instructions, SWI, CWAI, SYNC, and RTI, in more detail.

RTI - Return from Interrupt
This instruction is always executed as the last
instruction in an interrupt service routine. The
instruction unstacks the CC register and examines CC.E.
If it is unset, RTI then unstacks the next two stack
bytes to PC thus returning control to the interrupted
process.

If CC.E is set, this indicates that all the
registers were stacked before entry to the interrupt
service routine so RTI restores all register values
from the stack. As PC is the last register restored,
control is thus returned to the interrupted process.

SWI - Software Interrupt
There are three levels of software interrupt which may
be used by the M6809 programmer. There are identified
by the instructions SWI, SWI2, and SWI3. Each of these
has a different priority in the order SWI > SWI2 >
SWI3. The SWI instruction also has a higher priority
than FIRQ and IRQ hardware interrupts and sets the
interrupt mask bits CC.F and CC.I.

The sequence of operations executed when an SWI
instruction is executed is the same as that which takes
place automatically when an IRQ interrupt is detected.
The register values of the interrupted process are
stacked and control is transferred, via the appropriate
interrupt vector, to the interrupt service routine.

The execution of an SWI instruction is not unlike
calling a subroutine. The advantage to the programmer,

192

however, is that SWI instructions can be used to call
system routines without the programmer having to know
the routine address at either load or run time.

CWAI - Wait
The wait instruction is used to suspend the execution
of a process until a hardware interrupt occurs. The
instruction takes a single-byte operand which is anded
with CC as the first step in the execution of the
instruction. This means that the programmer can set up
CC prior to its stacking and can guarantee the value of
CC when the interrupted process is resumed.

After the ANDCC operation, CWAI sets CC.E and stacks
all the processor registers. It then does
nothing (waits) until a hardware interrupt occurs. If
this is an NMI or RESET interrupt, it is immediately
processed but if it is an IRQ or FIRQ interrupt and the
corresponding mask bit is set in CC, the instruction
continues to wait until a higher priority interrupt
occurs or until the interrupt mask is cleared.

SYNC - Synchronise
The synchronise instruction, SYNC, is used to
synchronise the operation of the M6809 processor and
some other external device. A situation where this
might be necessary is when data are being transferred
from some fast I/O device, like a disk, to memory.

When a SYNC instruction is encountered, the
processor enters a wait-for-interrupt loop which is
called the 'syncing state'. If a hardware interrupt
occurs and is not masked, the appropriate interrupt
service routine is activated but the processor
registers are not stacked.

If the interrupt is masked and the processor is in
the syncing state, the effect of the interrupt is to
cause the wait-for-interrupt loop to terminate.
However, rather than cause a transfer of control to an
interrupt service routine, execution continues with the
instruction following SYNC. Thus processor and
peripheral operation are synchronised by the interrupt.

Note that the programmer must explicitly set and
clear the interrupt mask bits CC.I and CC.F by using
ANDCC and ORCC instructions.

8.1.2 Dragon-specific interrupts
In the above section we explained that the M6809 system
assumed interrupt vectors lying between addresses FFF2
and FFFF. In actual fact, the Dragon's address
decoder (the SAM chip) maps these addresses onto
alternative interrupt vectors in locations BFF2 to
BFFF. This means that the interrupt vectors are in the
BASIC read-only memory area and that their contents
cannot be altered by the user.

As a result, these locations do not contain the

193

address of the interrupt service routine but contain
the address of a secondary interrupt vector in RAM
which should be set up with a jump to the address of
the interrupt service routine. There is one exception
to this. The RESET interrupt which is issued when the
machine is switched on must, obviously, have a service
routine in ROM. Its address is stored in the RESET
interrupt vector.

The table below shows the how the interrupt vectors
are assigned.

The Dragon does not use all the M6809's interrupts but
only makes use of the IRQ and FIRQ interrupts.
Therefore, their secondary interrupt vectors are set up
with a jump to their service routines, namely JMP $9D93
and JMP $B469 respectively. All the other secondary
interrupt vectors are set to 0 and must be initialised
by the user if required.

8.2 INPUT/OUTPUT PROGRAMMING TECHNIQUES

In memory-mapped input/output, described in Chapter 2,
all I/O devices appear to the programmer as memory
locations called I/O ports. Although memory-mapped I/O
devices must communicate over the same bus structure as
memory devices, it is not normally possible or
desirable to connect a physical device directly to the
computer's bus structure. Instead, a device interface
is used to control the peripheral device according to
commands from the CPU and to isolate that device from
the bus structure. The interface may also convert data
into whatever format is required by the physical device
and vice versa.

However, unlike normal RAM memory where a read
returns the last value written to a location, read and
write operations to a particular I/O port address may
be completely independent. In other words, an input
port can occupy the same address as an output port and
which one is selected is dependent on whether the
operation is a read or a write.

Most device interfaces that have been designed for
microprocessor use are 'programmable' thereby allowing
them to be used in a variety of applications. A typical
example of such an interface is the PIA (Peripheral
Interface Adaptor) which is explained in detail in the

Vector
BFF2:3
BFF4:5
BFF6:7
BFF8:9
BFFA:B
BFFC:D
BFFE:F

Contents
$0100
$0103
$010F
$010C
$0106
$0109
$B3B4

Use
SWI3 secondary vector
SWI2 secondary vector
FIRQ secondary vector
IRQ secondary vector
SWI secondary vector
NMI secondary vector
RESET service routine

194

following section. This device has a number of built-
in registers corresponding to addressed locations which
can be accessed by the programmer. By writing the
appropriate bit patterns into these registers, the
programmer can configure the device in a variety of
ways. In addition to these control registers, such an
interface contains a status register which can be read
by the I/O program to determine the state of the
device; for example, 'is the data ready', 'can I send
data now', etc.

Given the programming model of a peripheral device's
interface, the programmer is faced with the problem of
what technique to use to transfer data across that
interface under program control. In this section we
describe three I/O programming techniques
unconditional I/O transfer, polled or conditional I/O
transfer and interrupt-driven I/O transfer.

8.2.1 Unconditional I/O transfer
This is the simplest method of I/O transfer where the
programmer always works on the assumption that the
peripheral controller handling the I/O is always ready
for output and always has up-to-date input information
available. Data to be input or output can therefore be
read from or written to the device at any time.

This, however, can lead to problems unless the exact
timing of the I/O process is known. If a request is
made for input before the peripheral controller has
received that input from the peripheral device, the
information returned will probably be that input in the
previous operation. Similarly, if output is sent
before the device has completed its previous operation,
information may be lost.

As a result of these timing problems, this I/O
programming technique is not advised unless the
programmer is forced into it by primitive I/O devices
which have no means of communicating their status to
the processor.

8.2.2 Polled I/O transfer
This is a widely used I/O programming technique which
involves a program polling the status of a device
periodically. When the controller status indicates
that input is available or that the device is ready for
output, the I/O transfer takes place. Because the
transfer is conditional on the controller status bits,
this method of I/O programming is sometimes called
conditional transfer.

In some cases the status bits of the peripheral
controller are continually examined and the program
waits for the I/O device to become available. In other
cases, the status bits are examined at periodic
intervals of, say, a millisecond. The program must
ensure that the intervals between checks are not so

195

long that information is lost in the intervening
period.

The following fragment of BASIC program illustrates
this I/O programming technique by polling the button on
a joystick to see whether or not it has been pressed.

100 BS = PEEK(&HFF00) ' BS = button state
110 IF (BS AND 1) = 0 THEN 100 'Wait for press
120 'Button pushed so deal with it here

The drawback of simply looping indefinitely until the
button is pushed lies in the fact that it is necessary
to 'busy wait' for the peripheral to become available.
This time is completely wasted as no useful work can be
done until the I/O transfer is complete. In our
example, the program will 'hang' until the right
joystick button is pressed.

In some situations this may be acceptable but it can
cause problems in situations where several I/O devices
have to be serviced. For example, say a two-player game
involves movement and firing, both controlled by
joystick. It would be impossible for one player to
move until the other fired thus making evasion very
difficult indeed!

However, the program can be modified to cope with
this situation. Rather than looping indefinitely until
an event occurs, the program can check the status bits
of each device in turn. This is illustrated in the
program below.

100 BS = PEEK(&HFF00)
110 IF(BS AND 1) = 0 THEN 140
120 ' Deal with right button
130 GOTO 100 ' Look at buttons again
140 IF(BS AND 2) = 0 THEN 100
150 ' Deal with left button
160 GOTO 100

However, the player with the left joystick still has a
problem as the right joystick button always takes
priority. It is polled first and, if it is held down,
the left button is ignored. The solution to this
particular problem is to poll the devices in a round-
robin manner where the program establishes a polling
order. The program polls each device in that order
then cycles back to the beginning of the order. Our
previous example can be converted to this form by
removing line 130.

8.2.3 Interrupt-driven I/O transfer
We have already introduced the idea of an interrupt and
suggested that they are very useful in I/O programming.
In fact, the use of interrupt allows a programming
technique to be devised which eliminates the need for a

196

'busy wait' or, indeed, any kind of polling system.
The disadvantage of the conditional transfer method

of I/O programming is the fact that the processor
cannot do useful work whilst it is waiting for a device
to become ready for I/O. A more satisfactory technique
is to have the device inform the processor when it is
ready thus eliminating the need for the processor to
check the device's status at periodic intervals. The
sequence of events that occurs upon an interrupt has
already been explained in the previous section and we
shall not repeat them here.

Interrupt-driven transfers can be used as an I/O
programming technique if the peripheral control
register has the following facilities:

(1) An interrupt enable/disable bit which allows the
programmer to switch interrupts off and on.

(2) An interrupt status bit which allows the service
routine to find out which device has initiated
the interrupt.

As it is common practice to connect a number of
peripheral devices to the same interrupt line, the
interrupt service routine must poll each of these
devices to see which one caused the interrupt. Once the
interrupt service routine has identified which
device/condition is responsible, the condition is dealt
with by normal instructions on an I/O port.

The service routine must also make sure that dealing
with the condition includes removing the cause of the
interrupt request otherwise, as soon as interrupts are
enabled again, that same condition will cause another
interrupt. The service routine will still, presumably,
fail to remove the condition causing the interrupt and
thus the system will hang indefinitely.

If you want to incorporate interrupts into a program
you must carry out the following steps.

(1) Write a suitable interrupt service routine.

(2) Set up the appropriate interrupt vector with a
reference to that routine.

(3) Configure the device/interface for interrupts.

(4) Enable (switch on) processor interrupts.

It is very important the steps 1 and 2 above be carried
out before steps 3 and 4 and equally important that
interrupts should be disabled whilst any changes to the
interrupt system are being made. If this is not done
and an interrupt occurs while the service routine is
being changed unpredictable consequences can ensue when

197

the interrupt is processed.
To illustrate interrupt processing, we describe how

to make amendments to the existing Dragon interrupt
system.

The normal interrupt (IRQ) is derived from the video
circuitry which provides an interrupt request every 20
milliseconds, that is, in correspondence with every
cycle of the mains frequency. This will be slightly
different in countries where the mains frequency is
60Hz rather than 50Hz. The role played by this
interrupt is to update the system clock which is used
by the BASIC function TIMER as well as the functions
SOUND and PLAY. As we saw earlier, the IRQ vectors
through a secondary vector at addresses $010C, $010D,
and $010E which normally contain a jump to the clock
update service routine at address $9D3D. Our example
replaces the existing interrupt service routine with
one that manipulates the text character in the top left
hand corner of the screen. This manipulation is
carried out as follows:

ADDCH LDA $400 ; Pick up character at top left
INCA ; alter it by adding one
STA $400 ; and return it to its place

To use this as an interrupt service routine, we must
provide an IRQ vector set up routine. An example of
this is::

IRQSET ORCC #$10 ; Disable IRQ
LDX #ADDCH ; Set up entry address
STX $10D ; and store into IRQSV
ANDCC #$EF ; Enable IRQ
RTS

The new service routine also has to be augmented by the
code that removes the interrupt request. In this case,
the interrupt request may be removed with a read
operation to PIAO's peripheral data register which is
mapped through address $FF00. We also have to add an
RTI instruction so that the interrupted process may be
restarted after the character has been altered.

We have excluded a check to see what device is
causing the interrupt since there is normally only one
IRQing device on the Dragon. We have also omitted the
code that configures/enables the device interface as
this required detailed knowledge of the PIA which will
not be described until later in this chapter. However,
it is configured by the system as part of the
initialisation sequence when the machine is switched
on.

The final version of the new service routine is
therefore:

198

* IRQSET - set up interrupt vector
*
* Must be called to install new service routine
*
IRQSET ORCC #$10 ; Disable IRQ and put entry

LDX #ADDCH ; address of new service
* routine

STX $010D ; in secondary IRQ vector
ANDCC #$EF ; Enable IRQ
RTS

* Interrupt service routine
ADDCH LDA $FF00 ; Clear interrupt condition

LDA $400 ; Pick up LH corner
INCA ; Alter it
STA $400 ; And put it back
RTI ; Return from interrupt

Once the interrupt vector has been set up and IRQ
interrupts enabled you should see the top left hand
character cycle through the 256 character set of the
Dragon at the rate of 50 characters/second.

You will now find that the TIMER, PLAY, and SOUND
functions will not work properly. We leave it as an
exercise to the reader to add the above code to the
existing service routine so that the clock is updated
and a character is updated on the screen.

8.3 THE PERIPHERAL INTERFACE ADAPTOR - PIA

The peripheral interface adaptors or PIAs which act as
the Dragon's I/O interfaces are multi-purpose
peripheral controllers. We saw in the previous chapter
how one of these PIAs played an essential role in the
graphics display hardware where it is used to set up
the video display generator. This section is an
overview of the functions of a PIA but, for those
readers who require further information, a full
technical description of the PIA chip is provided in
Appendix 4.

The function of a PIA is to interface a member of
the M6800 processor family (in this case, the M6809) to
various peripherals and, to do so, it provides various
peripheral data input/output lines as well as
peripheral control/interrupt lines. Each PIA has two
8-bit peripheral data buses and four control lines thus
giving a total of 20 lines which can be used to control
and interface peripheral devices.

The flexibility of the PIA is derived from the fact
that it is a 'programmable' device. This does not mean
that it can execute machine code instructions but
rather that the PIA is not dedicated to a specific
peripheral type. It contains various internal registers
which can be manipulated by the assembly language
programmer to configure the PIA to a particular mode of

199

operation. Each of the peripheral data lines can be
configured to act as an input or as an output and each
of the control/interrupt lines may be set up in one of
several control modes.

A PIA is functionally split into two, independent
sides called the A-side and the B-side. Each side is
configured and controlled by three internal 8-bit
registers. These are:

(1) The control register (CR)

(2) The data direction register (DDR)

(3) The peripheral data register (PDR)

Effectively, therefore, we have four programmable
input/output interfaces which may be used separately or
together. Figure 8.2 is a schematic representation of
this system.

Fig. 8.2 PIA organisation

The control register is used to configure/control the
four peripheral control lines which are named CA1, CA2,
CB1, and CB2. It also allows the assembly language
programmer to enable and disable the interrupt lines
IRQA and IRQB and to monitor the status of the
interrupt flags IRQA1, IRQA2, IRQB1, and IRQB2. A full
description of the functions of this register is
provided in the PIA Data Sheet (Appendix 4).

There is one bit in the control register which is
not used in the configuration of the peripheral
control/interrupt lines. This is the data direction
access bit which is used to select between the data
direction register and the peripheral data register.
The reason for this is that the PIA only responds to
four unique addresses and, as the programmer always
needs access to the control registers, the other two

200

addresses must be shared by the data direction register
and the peripheral data register.

The data direction register (DDR) is used to control
the direction of data through each corresponding
peripheral data line of the peripheral data register.
If a DDR bit is 0, this means that the corresponding
peripheral data line is an input whereas if the DDR bit
is 1, the associated data line is an output line.

Therefore, each peripheral data register may have
any combination of input and output lines thus
providing a good deal of flexibility when interfacing
the PIA to external devices. However, it is the
responsibility of the programmer to keep track of which
lines are inputs and which lines are outputs and to
make sure that when outputs are updated, other,
independent outputs are not affected.

The data direction register and the peripheral data
register share an address and the particular register
addressed depends on the setting of the data direction
access bit in the control register. This sharing does
not usually cause problems as typical usage involves
setting up the data direction register and then
accessing the peripheral data register without further
changes to the DDR.

The peripheral data register is used to transfer
data to and from peripheral devices. Each of the
peripheral data lines can be configured as an input or
as an output as described above. When a line is
configured as an output, it will go HI when the
corresponding bit in the PDR is set to 1 and will go LO
when the corresponding bit is cleared in the PDR. In
general, after an output has been written it can be
read back although this is dependent on the loading of
the line (see Appendix 4).

When a line is configured as an input, the data on
the peripheral data line appears directly on the
corresponding M6809 data line during a read operation.
As output line states are also read back, the
programmer has to explicitly mask them out when the PDR
is accessed.

8.3.1 The Dragon's PIAs
The Dragon's I/O subsystem makes use of two PIAs named
PIAO and PIA1. This means that there are 40 peripheral
data/control lines but, as some devices share lines,
more than 40 lines can actually be supported. Each PIA
responds to four unique addresses with PIAO associated
with addresses FF00 to FF03 and PIA1 associated with
addresses FF20 to FF23.

These address ranges can be further subdivided into
the individual addresses of the registers within the
PIA. In the examples in this chapter, we shall make
use of these addresses and shall refer to them using
the symbolic names defined in the table below.

201

* Equates for PIA 0

* A- side registers
P0DDRA EQU $FF00 ; Data direction register
P0PDRA EQU P0DDRA ; Peripheral data register
P0CRA EQU $FF01 ; Control register
* B-side registers
P0DDRB EQU $FF02 ; Data direction register
P0PDRB EQU P0DDRB ; Peripheral data register
P0CRB EQU $FF03 ; Control register
*
* Equates for PIA1
*
* A-side registers
P1DDRA EQU $FF20 ; Data direction register
P1PDRA EQU P1DDRA ; Peripheral data register
P1CRA EQU $FF21 ; Control register
* B-side registers
P1DDRB EQU $FF22 ; Data direction register
P1PDRB EQU P1DDRB ; Peripheral data register
P1CRB EQU $FF23 ; Control register

The connections of the Dragon's PIA registers to
specific devices is summarised in Appendix 7.

8.4 INPUT/OUTPUT DEVICES

Apart from the display, which we discussed in the
previous chapter, the Dragon is equipped with a variety
of input/output ports to which peripheral devices may
be connected. Some of these ports, such as the keyboard
port, are connected to I/O devices which are an
inherent part of the system. Others, such as the
printer port and cassette port, are available for the
user to connect his own peripherals.

Each I/O port in the system is connected to either
PIA1 or PIA0 so that each PIA is an I/O controller for
a number of devices. In particular, PIAO is responsible
for the keyboard, the joystick control, sound source
selection, the printer port and video synchronisation.
PIA1 is responsible for printer handshake control,
sound generation, the cassette port, VDG mode
selection, D-to-A voltage control, RAM type detection
and ROM cartridge detection.

In this section we shall look at how the user may
access these I/O ports and how to make use of
peripheral devices connected to these I/O ports.

8.4.1 Keyboard control
The Dragon's keyboard is of extremely simple design.
It consists of a number of keyswitches arranged in a 7
by 8 matrix with the columns of the matrix connected to
the peripheral data lines of the B-side of PIAO and the
matrix rows connected to the peripheral data lines on

202

the A-side of the same PIA. When a key is pressed, this
causes the row/column position of that key to be
short-circuited and this change of state can be
detected by the keyboard control routine.

The keyboard is connected so that the column
lines (PB0-PB7) are configured as outputs and the row
lines (PA0-PA6) are configured as inputs. With this
setup, a key depression can be detected by outputting a
0 to a column line then reading the input lines PA0-
PA6. If no key in that column has been pressed, the
result read back will be 1111111 whereas a key
depression causes a 0 to be read in one of PA0-PA6.

The keyboard scanning routine is activated
approximately every ten milliseconds and it outputs a
zero to each of the columns in turn. It immediately
looks at the inputs PA0-PA6 and, if the result is not
1111111, it knows that a key has been pressed. The
keyboard scanner keeps track of which column has an
associated row input containing a zero and from the
position of that 0 in PA0-PA6, it can work out which
key has actually been pressed.

The actual arrangement of the keys in the matrix is
shown in the table below.

To illustrate how a key depression can be detected, say
the user presses the 'U' key. The keyboard scanning
routine outputs a zero on lines PB0-PB7 and, when a
zero is output on PB5, an input pattern containing a
zero will be detected. This zero will be in position
PA4 thus indicating that 'U' (coordinate PA4/PB5) has
been pressed.

In order to keep track of which keys are pressed so
that it can ignore the same key closure on the next
scan (remember it scans about 100 times per second) and
perform key rollover, the keyboard scan routine
maintains a record of key closures in nine bytes of RAM
at addresses 151-159 inclusive.

The first byte (151) records the seven row states,
that is, it records whether any of the keys in a
particular row are pressed. When a key in a row is
pressed, the corresponding bit in location 151 is set
to 0. Thus, if the 'D' key is pressed, bit B2 in 151
is cleared to indicate that a key in row 2 has been
depressed. For other rows, where no key has been
pressed, the bits in byte 151 are set.

PA0
PA1
PA2
PA3
PA4
PA5
PA6

PB0
0
8
@
H
P
X
ENT

PB1
1
9
A
I
Q
Y
CLR

PB2
2
*
B
J
R
Z
BRK

PB3
3
;
C
K
S
Up
N/C

PB4
4
,
D
L
T
Down
N/C

PB5
5
-
E
M
U
Left
N/C

PB6
6
•
F
N
V
Right
N/C

PB7
7
/
G
0
W
Space
SHFT

203

The individual bits in 151 are used by the keyboard
scan routine to determine whether there has been a
change of state of any of the rows. The value read in
PA0-PA6 is compared with the value in location 151 and,
if these values are the same, the keyboard scanner
assumes that the same key is still held down by the
user. This is fairly sensible as, when you press a
key, you are likely to hold it down for more than a
hundredth of a second. If there has been a change to
any of the rows, because the user has taken his finger
off a key perhaps, then the value of location 151 is
modified to reflect this and a full keyboard scan takes
place to find out which key has been depressed or
released.

This two-stage scanning technique is used to speed
up the scanning routine although it does mean that key
rollover does not occur for keys on the same row. In
other words, holding the 'A' key down and then pressing
a key on the same row, say 'C, does not register the
new character but pressing a key on a different row,
say 'H', does register.

The remaining 8 bytes 152-159 are used to record the
state of all the keys in the matrix as each byte
records the state of the rows for its corresponding
column. Column 0 state is held in 152, column 1 in
153, etc. When a key is pressed, then the corresponding
bit in the column byte is cleared. For example, if
address 152 contains FE, this indicates that the '0'
key has been pressed.

One drawback of this technique is that it prevents
the same key from being recognised again unless it is
released and re-pressed. Furthermore, if a key is held
down, it prevents other keys in the same matrix row
from being recognised. This is illustrated by the BASIC
program below which, at first sight, seems to be able
to recognise all the arrow keys.

10 R5 = &H20 'Row 5's position in column byte
20 C4 = &H155 'Column 4's byte
30 C5 = &H156 'Column 5's byte
40 C6 = $H157 'Column 6's byte
50 C7 = &H158 'Column 7's byte
60 IF (PEEK(C4) AND R5) = 0 THEN PRINT "UP"
70 IF (PEEK(C5) AND R5) = 0 THEN PRINT "DOWN"
80 IF (PEEK(C6) AND R5) = 0 THEN PRINT "LEFT"
90 IF (PEEK(C7) AND R5) = 0 THEN PRINT "RIGHT"
100 GOTO 60

In fact, this program does not recognise more than one
arrow key being pressed at a time. As the arrow keys
are on the same row, the keyboard scan routine does not
do a full scan because the row state byte indicates
that the row state has not changed. This is perfectly
reasonable for most normal typing but can be limiting

204

for the game programmer who wishes to provide keys
which allow simultaneous movement and firing.

However, it is possible to program around this
limitation and to force a complete scan of the keyboard
by setting all bits in byte 151 before each IF
statement. This can be implemented by including the
statement POKE &H151,&HFF as statements 55, 65, 75, and
85 in the above program and changing line 100 to goto
55.

This has the effect of fooling the keyboard scanner
into thinking that all the keys on the row have been
released and so the next scan will register any keys
that are down as new closures. Notice that it is
necessary to poke the value FF to the column state byte
between every BASIC statement as the keyboard scan
routine is executed after every BASIC statement and
sets byte 151 to its old value. Although it works, this
technique is clumsy and we shall describe a better,
more elegant technique in Chapter 9 which does not
involve such program modifications.

A keyboard auto-repeat facility, where holding a key
down causes that character to be continuously input, is
very useful in applications such as games, where keys
may indicate movement, text preparation, where you
might want to input strings of the same character and
screen layout design.

This facility is not provided on the Dragon because
a complete keyboard scan is not carried out when a key
is held down. A complete scan can be forced, however,
by using a technique comparable to that above and
poking a value to the individual column bytes. By
setting a particular column byte, we can force an
already pressed key to be registered as a new key
closure.

The following BASIC program illustrates this
facility for the INKEY$ function

10 RB = &H151 ' Row state byte
20 CB = &H152 ' Column state byte
30 POKE RB,&HFF : POKE CB,&HFF
40 A$ = INKEY$: IF A$ = "" THEN 30
50 PRINT A$;
60 GOTO 30

It is left as an exercise to the reader to predict
which keys will auto-repeat given the above program and
to modify the program so that auto-repeat will work
with all keys.

It may seem that you could write your own simplified
keyboard controller in BASIC which directly manipulates
the PIAs using POKE and PEEK statements. Unfortunately,
this is not possible because there is no way of
disabling the keyboard polling routine. If you try to
control the keyboard yourself from within a BASIC

205

program, you are liable to get interactions between
your controller and the standard BASIC polling routine.
Naturally, you could write your own routine in assembly
code.

8.4.2 Printer control
The Dragon's printer interface is provided so that the
user may connect his own printer to the system. The
interface is configured as a so-called Centronics
interface which means any one of a number of printers
designed to use this interface type may be connected to
the Dragon. The user is not restricted to a single
specialised printer as is the case with some personal
computer systems.

Character data is output to the printer over eight
interface data lines D0-D7 which are connected to
P0PDRB's peripheral data lines. These PIA peripheral
data lines are also used by the keyboard column lines
but, in practice, this does not cause problems. When
characters are being printed, the I/O system knows that
the keyboard should not be scanned and vice-versa.

There are also a number of control (handshake) lines
which coordinate data transfer to the printer. These
are called 'printer strobe', 'printer busy', and
'printer acknowledge'. Although the Dragon hardware
supports all three of these control lines only two of
them (strobe and busy) are used by the standard Dragon
software.

The printer interface control lines are connected as
follows:

(1) The 'printer busy' line is connected to bit 0 of
PIA1's B-side peripheral data register
(P1PDRB/PB0). This line is set up in the associ
ated DDR as an input.

(2) The 'printer strobe' line is connected to bit 1
of PIA1's A-side peripheral data register
(P1PDRA/PA1). This line is configured as an out
put .

(3) The 'acknowledge' line is connected to PIA1's CAI
interrupt input but this line is not actually
used by the Dragon's I/O system. Naturally, how
ever, you can make use of it if you wish to write
your own printer control programs.

The printer interface connections are shown in the
block diagram of the I/O system (Figure 8.1) which
shows the interface port pins and their associated
control/data lines.

It is fairly straightforward to send characters to
the printer but appropriate control signals must be
organised so that a character is not sent before the

206

printer is ready for it. The printer's state of
readiness is indicated using the 'printer busy' line
which is HI when the printer cannot accept a character
for printing and goes LO when the printer is not busy.
To tell the printer that a character is to be printed,
that character must be set up on the data lines and the
'printer strobe' line must be taken from HI to LO and
then back to HI again.

To send a character to the printer, the sequence of
events is therefore:

10 IF 'printer busy' THEN GOTO 10
20 Printer data lines = Character to be printed
30 Printer strobe = LO : Printer strobe = HI

The strobe line is actually buffered through an
inverting buffer so that a 0 set up in PA1 results in a
1 on the actual strobe pin and vice-versa. Therefore to
set the strobe line LO and then HI, you must send
signals which first set it HI and then LO.

If you wish to use your own printing routine, you
must manipulate the PIA using assembler rather than
BASIC POKE and PEEK statements. The reason for this is
that the printer and the keyboard share PIA data lines
and it is not possible to disable BASIC'S keyboard
polling routine. Therefore, if you try to poke to the
PIA locations associated with the printer, to get
direct output say, the keyboard scanner resets the PIA
and your pokes will have no effect.

The standard Dragon printer output routine is called
LPOUT and it can be addressed through location 800F.
This routine expects register A to contain the
character code, in ASCII, of the character to be
printed.

Because a variety of printers can be attached to the
Dragon, some of the actions performed by this routine
are determined by a set of parameters stored in RAM
locations. The initial values of these parameters are
set up for the most commonly connected printers but
they can be modified to configure the routine for other
printers. Modification involves poking the values for
your printer to the appropriate location.

The table below gives the addresses of the RAM
locations used by the printer routine and briefly
describes the functions of the information stored at
these addresses.

Address
99

Initial value
$10 (16)

Function
Line printer comma field
width. This is used by BASIC
to determine which columns to
print items separated by a
comma in a PRINT statement.

9B

9C

148

14A

14B

14C

$84 (132)

$00 (0)

$FF (255)

$01 (1)

$0D (13)

$0A (10)

Line printer width, that is,
the length of the printed
line.
The line printer character
position. LPOUT keeps track
of the position of the next
character to be printed by
updating this byte.
Automatic line feed on buffer
full. If the line printer
does not automatically flush
its buffer when it is full
then setting this byte to 0
will cause the routine to
send an end-of-line sequence
to the printer which forces
the buffer to be flushed.
The number of characters in
an end-of-line sequence. The
end-of-line characters follow
in succeeding locations from
14B to 150. Thus there may
be a maximum of 6 characters
in an end-of-line sequence.
Carriage return (CR) code
(normal EOL sequence)
Line feed (LF) code. If the
printer needs a CRLF end-of-
line sequence, 14A should be
set to 2.

207

As an example of how the line printer routine may be
reconfigured, the following BASIC direct statements set
up the printer width to be the same as the Dragon's
display width.

POKE $H148,0
POKE &H9B,32
LLIST

The routine LPOUT carries out a number of
'housekeeping' duties such as forcing end-of-line
sequences, outputting extra spaces to cause line feeds,
etc. Sometimes, you don't really want this to happen
but all you really want is a routine which simply pumps
characters to the printer. If this is what you need,
there is a no-frills printer output routine called
TXLPCH with entry point at location BCF5. Again, this
routine expects register A to contain the character to
be printed.

8.4.3 Sound control
In common with many other modern personal computers,
the Dragon is equipped with facilities for sound

208

generation. In this respect, personal computers differ
from larger, professional machines and, unlike graphics
say, the creative use of sound in human/computer
interaction is a largely unexplored area. At the
moment, the sound generation system is mostly used to
provide sound effects for games but it seems likely
that applications for sound generation will be
discovered in many other areas of computer usage.

There are four possible sound sources in the Dragon.
These are:

(1) From the 6-bit digital to analogue converter.

(2) From the cassette unit.

(3) From the cartridge port.

(4) From PB1 of P1PDRB.

The first three of these sound sources above are
analogue sources which means that they generate a
varying voltage level which is converted to sound. The
PIA bit, on the other hand, is a binary sound source
which generates either a HI or a LO pulse. Sound output
is channelled to the television's speaker by modulating
the sound signal with the video signal that is fed to
the aerial (antenna) input of the user's television
set.

The analogue sound sources are connected to the
inputs of a device called an 'analogue multiplexor'.
This is a device which can accept a number of inputs
and, according to control line settings, switch any one
of these inputs to its output line. The Dragon's
analogue multiplexor has four input lines, a single
output line and three control lines. One of the input
lines is not used so it is permanently LO. Two of the
control lines are used to select which sound source is
to be routed to the output line with the third control
line used to enable and disable the multiplexor output.
This output must be disabled if a binary sound pulse
generated from the PIA is to be used as the input to
the sound generator.

The multiplexor control lines are connected to PIA
control lines. The lines used are PIA1-CB2 which is
connected to the output enable/disable multiplexor
control line and PIA0-CB2 and PIA0-CA2 which are used
for sound source selection. The table below shows the
values which these control lines may take and the
associated sound selections.

Sound enable
PIA1-CB2

1
1

Sound select
PIA0-CB2

0
0

PIA0-CA2
0
1

Sound source

6-bit DAC
Cassette

1
1
0

1
1
X

0
1
X

Cartridge
Not used
Single bit sound

209

To select a sound source, you must output an
appropriate value to the PIA control lines which are
connected to the analogue multiplexor. When you do so,
it is absolutely vital that you preserve the value of
the other bits in the PIA's control register otherwise
you are liable to cause all sorts of havoc. An example
BASIC subroutine which selects the 6-bit DAC sound
source is shown below.

2000 ' Select and enable 6-bit DAC sound source
2010 ' P0CRA = &HFF01: P0CRB = &HFF03 : P1CRB = &HFF23
2019 ' Now set PIA0-CA2 LO
2020 POKE &HFF01,(PEEK(&HFF01) AND &HF7)
2029 ' Set PIA0-CB2 LO
2030 POKE &HFF03,(PEEK(&HFF03) AND &HF7)
2040 POKE &HFF23,(PEEK(&HFF23) OR 8) ' Enable sound
2050 RETURN

Rather than write your own routine for sound source
selection, you can make use of an inbuilt system
routine which we shall call SNDSEL. This can be called
via address BD41. Its specification is:

* SNDSEL - Selects 1 of 4 input lines for analogue MUX
*
* Register inputs B - input line number
* 0 = DAC, 1 = Cassette
* 2 = Cartridge
* Registers destroyed U, A,B,CC

This routine does not enable the output of the
multiplexor so you must do this as a separate step.
The routine below will switch it on and select the
source required by calling SNDSEL.

* SNDON - Switch on sound output from MUX

* Register inputs - as SNDSEL
*
SNDON PSHS U,A,B ; Save registers

JSR SNDSEL ; SNDSEL equated elsewhere
LDA P1CRB ; Now enable the
ORA #8 ; source by setting
STA P1CRB ; PIA1-CB2 HI
PULS U,A,B,PC ; Restore and return

To switch off the sound source, a similar routine is
required although, obviously, SNDSEL is not called and,
rather than or 8 into P1CRB, you must and $F7 into that
register.

210

The 6-bit digital to analogue converter (DAC) is a
device which takes a 6-bit binary value and converts it
to an analogue voltage. Such a device is very useful
as many external devices rely on analogue rather than
binary signals whereas the M6809, obviously, deals only
with binary information. As well as being an integral
part of the sound generation system, the DAC is also
used in joystick manipulation and in the recording of
data on cassette. We shall look at these applications
in later sections of this chapter.

You don't have to understand how the DAC works to
make use of it. Basically, it converts a 6-bit value
between 0 and 63 to an equivalent voltage in the range
0.25V to 4.75V. The approximate output voltage
corresponding to an input signal may be computed
according to the following formula.

Output voltage = (Input value * 0.0715) + 0.25V

The DAC's six input lines are connected to P1PDRA's
peripheral data lines PA2-PA6. Because the top 6 bits
of P1PDRA are used to control these input lines, the
6-bit value to be input to the DAC must be offset by 2
bit positions before loading it into the PIA's
register. Furthermore, the bottom 2 PIA bits are used
for other purposes so their values must be preserved
before the PIA is set up for DAC input.

The following assembly code routine accomplishes
this by shifting the input value then oring it into
P1PDRA.

* DACOUT - Output a 6-bit value to DAC

* Register inputs A - 6 bit value
*
DACOUT PSHS A ; Save register

ASLA ; Move bottom 6 bits
ASLA ; into top 6 bits
STA ,-S ; and save until later
LDA P1PDRA ; Preserve the original
ANDA #$03 ; bottom 2 bits
ORA ,S+ ; and or in new value
STA P1PDRA ; Output to DAC
PULS A,PC ; Restore and return

The equivalent BASIC routine is:

1000 ' BASIC DAC output routine
1010 ' Input parameter N, 6-bit value
1020 POKE &HFF20,((PEEK(&HFF20) AND 3) OR (N * 4))
1030 RETURN

The DAC is used to support Extended Color BASIC'S SOUND
and PLAY commands. To create a sound waveform with this

211

device, suitable values must be sent to it at
appropriate intervals. The volume of the sound output
is determined by the magnitude of the values output to
the DAC and the pitch depends on how often the DAC is
updated with new waveform values.

We illustrate this with Program 8.1 which generates
a very crude approximation of a sine wave. This
program requires that a DAC sound selector routine be
available at line 2000 and a routine to send a value N
to the DAC be available at line 1000.

10 GOSUB 2000 'Select DAC sound source
20 FOR V = 1 to 15 ' V = volume
30 V2 = V*2: V4 = V*4 'V2=mid-volume,V4=max-volume
40 PRINT "MAX VOLUME = ";V4
50 TIMER = 0 ' Reset time period
60 FOR C = 1 to 50 'No. of cycles
70 N=0: GOSUB 1000 ' Vary the waveform
80 N=V: GOSUB 1000 ' from min volume
90 N=V2: GOSUB 1000 ' through mid volume
100 N=V4: GOSUB 1000 ' to max volume
110 N=V2: GOSUB 1000 ' and back down
120 N=V: GOSUB 1000 ' to min volume
130 NEXT C ' Start next cycle
140 CP = (TIMER/50)/50 'Cycle period
150 PRINT "CYCLE PERIOD = ";CP;" OF A SECOND"
160 NEXT V ' Repeat for next volume setting
170 END

Program 8.1 Sound output generation via the DAC

If you run this program, you should hear a steady but
ragged note with increasing volume. The print
statements giving details of the volume and the cycle
period give an indication of how long it takes to
update the DAC when using BASIC and the slowness of
BASIC does limit the upper frequency range. The note
sounds ragged because the DAC is not producing a
continuously varying voltage which is necessary to
produce a pure sine wave. Rather, the voltage steps
from one value to another and to produce a smoother
note you would have to include more approximations to a
sine waveform by reducing the differences in step
levels. Since this would slow the system down, this
would also reduce the upper frequency range of the
sound.

Because of the restrictions on the upper frequency
range when programming in BASIC, it is better to use an
assembly code subroutine for DAC sound generation.

The input signal from the cassette recorder can also
be used as a sound source. All that happens in this
case is that the multiplexor routes the cassette input
signal directly to the TV loudspeaker so you can play
back music, commentary or anything else you have

212

recorded on the cassette under the control of a
program.

This facility is directly supported in BASIC by the
AUDIO ON and AUDIO OFF commands which actually switch
the multiplexor to cassette input. You can use the
SNDON routine above to perform the equivalent action if
you are programming in assembly code.

Similarly, the cartridge ROM port has one of its
input lines connected to the sound multiplexor and an
input signal from the cartridge can be switched to the
loudspeaker. This is a rarely-used facility and if you
are using the cartridge input port to connect some
other device to your Dragon (we discuss this later), we
do not recommend that you use this sound input because
the voltage levels for it are unspecified.

Apart from the DAC, the alternative method of sound
generation on the Dragon is to use the single bit sound
source. In this case the sound multiplexor is bypassed
and must be disabled. The signal from the PIA, which is
the single bit sound signal, is fed directly onto the
output line of the multiplexor. Naturally, as this is
a binary value, the sound generated consists of a train
of pulses corresponding to the binary input to PB1 of
the PIA.

To make use of the single bit sound source, the
programmer must take the following steps.

(1) Disable the sound multiplexor output

(2) Select P1DDRB by clearing bit 2 of P1CRB

(3) Configure PB1 as an output by setting bit 1 of
P1DDRB

(4) Select P1PDRB by setting bit 2 of P1CRB

We demonstrate this in the following BASIC program
which shows how single bit sound may be used.

10 GOSUB 3000 ' Disable MUX output
20 GOSUB 4000 ' Select single bit sound
30 TIMER = 0 ' Reset timer
40 0V = PEEK(&HFF22) ' Save value of P1PDRB
50 HI = OV OR 2 ' To set PB1 HI
60 LO = OV AND &HFD ' To set PB1 LO
70 FOR C = 1 TO 50
80 POKE &HFF22,HI ' Set PB1 HI
90 POKE &HFF22,L0 ' and LO
100 NEXT C
110 CP = (TIMER/50)/50 ' Cycle period
120 PRINT "CYCLE PERIOD WAS ";CP;" OF A SECOND"
130 GOSUB 5000 'Switch off single bit source
140 END

213

We leave it as an exercise for the reader to write the
subroutines at lines 3000, 4000 and 5000 which disable
the multiplexor output and select the single bit sound
source. It is important to switch off the single bit
sound as it may interfere with the output when the
multiplexor is in use. To switch off this sound source,
P1PDRB-PB1 should be configured as an input rather than
an output.

8.4.4 Cassette control
One of the great advantages of personal computer
systems is that they can make use of commercially
available tape cassette recorders and standard cassette
tapes for input and output. These recorders are
designed for recording and playing back music or speech
so are analogue devices. Therefore, to use them for
data input and output, there must be a way of
converting a binary output to an analogue signal
recorded on the tape and vice-versa for inputs from the
tape.

The technique used in the Dragon to record programs
and data on a cassette tape is knows as Frequency Shift
Keying (FSK). This technique involves representing
ones and zeros as different frequencies as they are
recorded. A LO signal (binary 0) is recorded as a
single cycle of frequency 1200Hz and a HI signal
(binary 1) is recorded as a single cycle of frequency
2400Hz. This means that the effective data transfer
rate from Dragon to cassette recorder is 1800
bits/second as, on average, there will be an equal
number of ones and zeros recorded for a program or data
file.

The choice of recording frequencies is not entirely
arbitrary as the 6-bit DAC, described in section 8.4.3,
is used to generate the appropriate sine waves of
1200Hz and 2400Hz, with the signal attenuated to about
1V before output to the recorder. The choice of
frequencies is the result of a trade-off between the
number of approximations required to produce these sine
waves and the execution speed of the instructions
needed to update the DAC.

When a tape is used to store programs or data, it is
not sufficient simply to dump these on the tape and
hope that you will be able to read them back at some
later date. Rather, the information written to the tape
must be preceded by header information which gives a
name to the information stored, specifies its type,
and, perhaps, contains information which allows
hardware synchronisation. As well as this header, a
trailer or end-of-file block must also be written
marking the end of the data or program on the tape.

All the information on the tape, including the
initial information and end-of-file information, is
written out in a sequence of blocks which may store

214

from 0 to 255 information bytes. Each block also
contains header and trailer information as well as
actual data.

The overall tape format assumed by the Dragon splits
the tape into six logical sections:

(1) A leader consisting of 128 bytes where each byte
has the hex value 55.

(2) A namefile block.

(3) A blank section of tape to allow BASIC time to
evaluate the namefile block. Around 0.5 seconds
are needed for this.

(4) Another leader of 128 bytes where each byte has
the hex value 55.

(5) One or more data blocks.

(6) An end-of-file block.

Namefile, data blocks and end-of-file blocks all share
the same format with an identification byte used to
mark the block type. This format is:

(1) A leader byte - 55 (hex).

(2) A synchronisation byte - 3C (hex).

(3) A block type byte where 01 means data block, FF
means end-of-file block and 00 means namefile
block.

(4) A block length byte - 00-FF (hex).

(5) 0-255 bytes of data.

(6) A checksum byte which is the sum of all the data
+ block type + block length.

(7) A trailer byte - 55 (hex).

An end-of-file block has no associated data bytes and a
namefile block has 15 data bytes giving the name and
type of the file. These 15 bytes are organised as
follows:

(1) An 8-byte program name.

(2) A 1-byte file type where 00 indicates a BASIC
file, 01 indicates a data file and 02 a machine
language file.

215

(3) An ASCII flag byte which indicates if the file is
recorded as ASCII characters or as binary digits.

(4) A gap flag byte set to 01 when the tape is writ
ten as a contiguous stream of blocks and to FF
when there are gaps between blocks. When writing
data to the tape, the associated processing time
usually means that output is not continuous and
that the tape is switched off and on between
blocks. The gaps are the result of this switch
ing.

(5) Two bytes for the start address of a machine
language program.

(6) Two bytes for the load address of a machine
language program.

The length of the leader on the tape is held as a BASIC
system variable in locations 90:91 and it is possible
for the user to modify this length to increase the
length of the tape leader. By poking a value of 1 to
address 90, the leader is made 3 times longer and
poking a value of 2 gives a leader 5 times longer than
normal. The advantage of this is that it gives the
cassette recorder's automatic volume control more time
to stabilise thus reducing the probability of cassette
I/O errors.

After a program or data file has been recorded, you
can verify the tape by using the SKIPF command. This
reads the tape in exactly the same way as CLOAD/CLOADM
and reports any errors. It does not, of course, load
the contents of the tape.

We do not recommend that you write your own routines
for cassette input and output. Rather, it is much
better to use the built-in system routines which have
been implemented as part of the Extended Color BASIC
system. This provides routines to turn the cassette on
and off, to read and write blocks of data to the
cassette, to read and write single bytes to the
cassette and to read a single bit from the cassette.

A specification for each of these routines in the
form of a header comment is provided below.

* CASON - turn on cassette motor
*
* Register inputs - NONE
* Registers destroyed - X, A, CC
* Turns on motor and delays until motor comes up to
* speed. Delay value is a 16-bit value at location 95
* with initial value = $DA5C representing 0.5 seconds
*
* WRTLDR - Turn on tape for writing
*

216

* Register inputs - NONE
* Registers destroyed X, A, CC
* This routines disables IRQ and FIRQ interrupt lines
* to avoid interruption of recording then calls CASON.
* It then outputs a bit sync leader. The number of
* bytes in the leader is a 16-bit value at address 90.
* It has default value $0080.
*
* CSRDON - turn on tape for reading
*
* Register inputs NONE
* Registers destroyed ALL
* This routine disables FIRQ
* and IRQ, calls CASON and uses the bit sync
* information to synchronise the tape input.
*
* CASOFF - turn off cassette
*
* Register inputs - NONE
* Registers destroyed A,CC
* Re-enables IRQ and FIRQ and turns off cassette motor
*
* CBOUT - write byte to cassette
* Register inputs A - byte to be written
* Registers destroyed Y, B, CC
*
* CBIN - read byte from tape
*
* Register inputs - NONE
* Register output A - byte read from tape
* Registers destroyed A,B,CC
*
* BITIN - read a bit from cassette
*
* Register inputs NONE
* Register outputs - bit read is carry bit, CC.C.
* Registers destroyed B,CC
*
* BLKOUT - Output data block
*
* Register inputs NONE
* Registers destroyed ALL
* WRTLDR must be called before this routine to get
* the tape up to speed and to write out tape leader.
* Input parameters are passed in RAM locations
* $7C - block type
* $7D - number of data bytes
* $7E:7F - address in memory of start of block
* Interrupts remain disabled on exit from this routine
*
* BLKIN - read a block from tape
*
* Register inputs NONE

217

* Register outputs CC.Z = 0 if I/O error
* CC.Z = 1 if no I/O error
* Registers destroyed ALL except U and Y
* CSRDON must be called before this routine to get
* the tape up to speed and turn on bit sync.
* Input and output parameters are in RAM locations
* $7E:7F - 16-bit start address of block to be read
* $7C - block type read from tape
* $7D - Number of bytes read from tape
* $81 - Error indicator. No errors=0, Checksum error=l
* Memory error = 2
* On exit, interrupts remain disabled

The entry points to these routines are held in a direct
jump table starting at address 8000 and/or in an
indirect jump table located at address A000. The table
below shows which routine is located at which address.

We can illustrate the use of the output routines with
the following program which writes a data block to the
cassette.

CASOFF EQU $8018
WRTLDR EQU $801B
DBADR EQU $7E
BLKTYP EQU $7C
DBLEN EQU $7D
BLKOUT EQU $A008

LDX #BL0CK ; Set up address of
STX DBADR ; data block
LDA #$01 ; File type = DATA
STA BLKTYP
LDA #255 ; Number of bytes
STA DBLEN ; is set up
JSR WRTLDR ; Prior to writing tape
JSR (BLKOUT) ; Write block
JSR CASOFF ; Switch off tape

An input program which reads blocks from the tape and
displays their contents on the screen is shown below.
Assume that the equates in the above program have been
made.

Routine
CASON
CASOFF
WRTLDR
CBOUT
CSRDON
CBIN
BITIN
BLKIN
BLKOUT

Direct jump address
8015
8018
801B
801E
8021
8024
8027
-
-

Indirect jump address
-
-

A00C
-

A004
-
-

A006
A008

218

CSRDON EQU $8021
BLKERR EQU $81
BLKIN EQU $A006

LDX #$400 ; Screen RAM
STX DBADR ; as block copy area

NXTFIL JSR CRDON ; Turn on tape for reading
NXTBLK JSR (BLKIN) ; Read a block

BNE BINERR ; Abort on error
LDA #$FF ; Check for end of file
CMPA BLKTYP
BNE NXTBLK ; Not eof, get next block
BRA NXTFIL ; Otherwise, re-sync and get

* next file
BINERR JSR CASOFF

RTS

These routines have shown how blocks of data can be
read from and written to a cassette and the CASON and
CASOFF routines are generally used in this context.
However, there may be circumstances where you wish to
avoid using these routines as they both manipulate the
interrupt mask bits in the condition code register.

The relay used to control the cassette motor is
connected to the CA2 control line output of PIA1 and
you can switch the cassette motor on and off by setting
and clearing this bit. To switch on, the bit should be
set HI; to switch off, the bit should be cleared to LO.
This can be accomplished with the following BASIC
statement.

POKE &HFF21,(PEEK(&HFF21) OR 8) ' Switch on
POKE &HFF21,(PEEK(&HFF21) AND &HF7) 'Switch off

8.4.5 Joystick control
For game playing, where continuous movement is
required, typing different keys is not really the most
convenient way of specifying that movement. The
Dragon's designers have provided an input port which
can be used to connect joysticks to the system. These
joysticks can be moved in the X-Y plane to control
movement and have a button input for firing. Each
joystick has two potentiometers associated with it
whose output voltage is related to the X and Y
coordinates of the stick. These voltages can be
detected and their variations related to the movement
of a symbol on the screen.

The easiest way to read joystick values is to make
use of Extended Color BASIC'S JOYSTK command. This
command is a BASIC function which takes as a parameter
the axis number of a joystick and returns a numeric
value in the range 0-63 which represents the position
of that axis. The actual axes specified by JOYSTK are:

(1) JOYSTK(O) reads right joystick, X-axis (horizon
tal)

219

(2) JOYSTK(l) reads right joystick, Y-axis (vertical)

(3) J0YSTK(2) reads left joystick, X-axis (horizon
tal)

(4) J0YSTK(3) reads left joystick, Y-axis (vertical)

The arrangement of the axes potentiometers is such that
they return values relating to the screen graphics
coordinate convention of the top left corner being 0,0.
Therefore, reading the right joystick at the extreme
top left of its travel will result in JOYSTK(0) = 0 and
JOYSTK(1) = 0 and, at the extreme bottom right, the
readings will each be 63. In fact, these values may
vary slightly because of slight differences in the
potentiometers built into the joysticks.

A feature of the JOYSTK function is that new
joystick readings are only taken when JOYSTK(O) is
used. This means that JOYSTK(O) must be used before
other JOYSTK commands even if J0YSTK(2) and J0YSTK(3)
are the only values used in the program.

The reason for this becomes clear when we consider
how the JOYSTK function is implemented. It actually
calls a system routine called JOYIN which reads all the
joystick values and this routine is only activated when
JOYSTK(O) is used. When other JOYSTK parameters are
used, the value returned is simply that which was read
by the previous activation of JOYIN.

JOYIN can be used by the assembly language
programmer. It may be accessed through the direct I/O
jump table at location 8012 or through the indirect
jump table via location A00A. Its specification for
the assembly language programmer is as follows:

* JOYIN - read joystick values
*
* Register inputs NONE
* Registers destroyed ALL
* JOYIN returns a value in the range 0-63 for each
* of the joystick potentiometers.
* These values are returned in RAM
* locations as follows
* $15A - X-coordinate of right joystick
* $15B - Y-coordinate of right joystick
* $15C - X-coordinate of left joystick
* $15D - Y-coordinate of left joystick

The buttons on each joystick are arranged so that, when
they are pressed, they ground an input line. These
button outputs are connected to PA0 (right button) and
PA1 (left button) of P0PDRA. The following BASIC code
demonstrates how button pushes may be detected.

10 F0 = PEEK(&HFF00) AND 1 ' Read PA0 button state
20 F1 = PEEK(&HFF00) AND 2 ' Read PA1 button state

220

30 IF F0 = 0 THEN PRINT "FIRE1"
40 IF F1 = 0 THEN PRINT "FIRE2"
50 GOTO 10

As these button outputs are shared with the first two
rows of the keyboard matrix, the standard keyboard
scanning routine must make sure that spurious
characters are not generated due to the
misinterpretation of button closures as key closures.
Unfortunately, the only reliable way to do this is to
disable the keyboard completely so, even if you write
your own keyboard scanner, you should not try to use
the keyboard and joysticks at the same time.

If you use joysticks, we advise you to use the JOYIN
routine but for those readers who wish to write their
own joystick routines, we now describe, very briefly,
how an analogue voltage input from the joystick is
converted to a value between 0 and 63.

Each of the four joystick potentiometers produces a
voltage between 0V and 5V depending on the position of
the joystick. The technique used to convert this to a
digital value involves inputting a known value to the
DAC (described above) and then comparing the DAC output
with the potentiometer value. If they are
approximately the same, the DAC input is taken as the
digital representation of the potentiometer output
voltage. If the values are not the same, the DAC input
value is varied until the values match.

This simple analogue to digital conversion system
actually has three components. These are the DAC, an
analogue multiplexor which can select one of the
potentiometer, and a voltage comparator to compare the
DAC and multiplexor outputs. The comparator output is
connected to PA7 of P0PDRA. If the output from the
multiplexor exceeds the DAC output, the comparator
output is HI and if the DAC output is greater, the
comparator output is LO.

In performing the conversion, a value at the halfway
point in the DAC range, namely 32, is written to the
DAC and the resulting output voltage compared with the
multiplexor output. If the DAC voltage is higher than
the multiplexor output, a new DAC input value which is
half the old value is tried. If the DAC output is
lower than the multiplexor output, a new DAC value
which is half as much again as the current value is
attempted. This process continues until a DAC output
which is approximately equal to the multiplexor output
results.

This technique is called binary search and is often
used when values have to be compared. It is an
efficient searching technique which has applications in
many different kinds of program. The table below
summarises the approximations resulting from this
binary search.

221

The four joystick input lines are connected to the
analogue multiplexor in exactly the same way as the
multiplexor connection used for the sound source. The
same PIA lines are used for this connection so the
sound selection routine described above may be used for
joystick selection. The association of PIA bit values
and joystick source is as follows:

8.4.6 The cartridge expansion port
The final section in this chapter is devoted to a very
brief description of the cartridge/expansion port
fitted to the Dragon. This port is intended for a
plug-in cartridge containing ROM-based software but the
40-pin connector does provide access to most of the
M6809's bus signals. This means that other devices can
be interfaced to the Dragon via this expansion port.
It is beyond the scope of this section to discuss such
interfacing and the interested reader is referred to
one of the books on this topic listed in the reading
list.

The minimum information required to make interfacing
possible is a description of the signals available at
the expansion port connector. These are summarised in
the table below. Some of the signal names are suffixed
with an asterisk, indicating that these are 'active
low' signals, meaning that they must go LO (0 volts)
for action.

Range

0-63
32-63
32-48
40-48
44-48
44-46

DAC
Value
32
48
40
44
46
45

DAC
Voltage
2.53
3.69
3.11
3.40
3.54
3.47

Joystick
Voltage

3.5
3.5
3.5
3.5
3.5
3.5

Comparator
P0PDRA-PA7

1
0
1
1
0
1

New range

32-63
32-48
40-48
44-48
44-46
45-45

Joystick select
PIA0-CB2

0
0
1
1

PIA0-CA2
0
1
0
1

Right - X-axis
Right - Y-axis
Left - X-axis
Left - Y-axis

Pin No.
1
2
3
4

5
6
7

Use
+ 12V
+ 12V
HALT*
NMI*

RESET*
E
Q

Description
+12V Power supply connection
As above
Connected to HALT input of M6809
Non-maskable interrupt input to
M6809
Main reset/power-up signal
Main M6809 clock
Quadrature clock,
leads E by 90 degrees

8

9
10-17

18
19-31

32
33
34
35
36

37-39
40

CART

+5V
D0-D7

R/W*
A0-A12

CTS*
GND
GND
SND
P2*

A13-A15
DSD*

Interrupt input for cartridge
detection
+5V power supply connection
Pins 10-17 are connected to the
M6809's data lines
M6809 Read/Write signal
Pins 19-31 and 37-39 are connected
to the M6809's address lines
Cartridge select signal
Signal ground
Signal ground
Sound input
PIA2 address select
Top three address lines
Device selection disable interrupt

222

The signals supplied by the expansion port fall into
one of four categories:

(1) Power supply

(2) M6809 bus signals

(3) Device select signals

(4) Cartridge I/O signals

The Dragon power supply provides +5V and +12V and these
can be used to power the cartridge components.
However, you must be careful when using these as there
is not a great deal of spare power available.

The M6809 bus signals (D0-D7, A0-A15, R/W*, RESET*,
NMI*, HALT*, E and Q) are fully described in Appendix 1
and the device select signals are described in Appendix
2. The function of the other signals is summarised
below.

(1) CTS*
The expansion port occupies the address space
between C000 and FEFF inclusive. This line is
pulled LO by the SAM address decode logic whenev
er an address in this range is specified.

(2) P2*
There is provision in the address decode logic
for a third device select signal similar to the
ones that select PIAO and PIA1. P2* goes LO
whenever an address is specified in the range
FF40-FF5F.

(3) DSD*
When this signal is pulled LO by suitable car
tridge circuitry, it disables the Dragon's inter
nal device select logic. This has the effect of

223

switching off those devices which are normally
selected and, as a result, their address space
may be used by the cartridge hardware. This
avoids contention problems which can arise when
two or more devices are activated and try to
place data on the data bus at the same time.

(4) CART
This signal is tied to the CB1 interrupt input
pin of PIA1. This can be used for an auto-start
facility where a clock line (normally Q) is con
nected to this line to produce the appropriate
edge for PIA1's interrupt logic. This is the nor
mal arrangement for games cartridges.

(5) SND
This signal is connected to the sound multiplexor
and allows the cartridge to provide the sound
source.

Chapter 9

Dragon hints and tips

In a complex system such as the Dragon there are,
inevitably, many details which cannot be neatly
packaged under a particular heading. These details are
often of importance to the programmer who wishes to
exploit the capabilities of his machine so, in this
chapter, we present a pot-pourri of Dragon information
which we hope may be useful to you. We cannot explain
everything in great detail as this would require a book
in itself but we do provide enough information to get
you started with your own experiments.

In this chapter we describe what happens when you
switch on your machine, how BASIC programs and data are
stored, how to pass parameters to assembly code
programs and how to add new commands to BASIC. We also
provide tables of BASIC system variables, some of which
may be altered to tailor the system to your own
specification.

9.1 POWER-UP/RESET ACTIONS

When you switch on your machine a RESET interrupt
occurs and this causes a transfer to an initialisation
routine in ROM at address B3B4. The first thing that
this routine does is to configure the SAM chip as,
until this is done, RAM cannot be used. Then the PIAs
are configured to their default settings which, in
turn, sets up the VDG and I/O devices. The hardware
initialisation routine may also be accessed via the
direct jump table and a jump to this routine is stored
at location 8000. The routine expects the return
address to be in register Y as RAM is not available.

Once the hardware is initialised, a software
initialisation stage is entered which first sets up a
temporary stack for subroutine calling. The next step
is to find out whether this is a 'cold-start' or a
'warm-start' reset and this is determined by the
contents of the reset flag at address 71 and the
secondary reset vector at addresses 72:73. If the
reset flag is $55 and the secondary reset vector points
to a NOP instruction, a warm-start sequence is
initiated otherwise a cold-start takes place.

The software initialisation routine may be accessed
via the jump table (8003) and has neither input nor
output parameters.

224

225

9.1.1 Cold-start initialisation
When first switched on, the machine's random access
memory contains random bit patterns as the contents of
RAM are lost when the power is switched off.
Therefore, the first action of the cold-start routine
is to clear RAM to zeros so that system variables, etc.
have a default value of zero.

The next step is to clear the text screen and this
is followed by a RAM-sizing operation which detects the
top of the useable RAM on the machine. The size of RAM
can be determined by altering consecutive memory
locations in turn until an unalterable location is
detected. This is the start of ROM so the last RAM
address is the address which immediately precedes this.

The final step in the software initialisation is to
set up BASIC'S system variables and these are
initialised by copying their values from tables in ROM.

When software initialisation is complete, the reset
service routine looks for the occurrence of a disk
controller cartridge by checking if the characters 'DK'
occupy addresses C000:C001. If a controller is
present, the disk controller is initialised by jumping
to an initialisation routine at address C002.

If there is no disk controller, IRQ and FIRQ
interrupts are enabled by clearing the appropriate bits
in the condition code register. This allows an auto-
starting ROM cartridge to interrupt on FIRQ thereby
transferring control to the cartridge software. If no
ROM cartridge is present, the secondary reset vector is
set to point at the warm-start routine and the reset
flag set to $55.

Finally, the BASIC system is initiated and the
system is ready for use.

9.1.2 Warm-start initialisation
The warm-start initialisation routine is invoked on a
manual reset after the initial powering up of the
machine. The code in this routine is used to re
initialise those variables needed to restart an
existing program, to clear the text screen and to re-
enable the PIA and processor interrupts. The user's
BASIC program is left intact. However, if a BASIC
program or an injudicious POKE has corrupted some vital
system variables, then the only course of action left
to the user is to initiate a cold-start initialisation
by switching the machine off and on.

The following BASIC statements show how to perform a
warm-start from BASIC.

10 EXEC &HB3B4 'Execute the reset routine
20 PRINT "WE WON'T GET HERE AS STACK IS RESET"

When run, the above program will exit and display the
'OK' prompt but the program will remain intact and can
be listed, run, etc. However, if the statement POKE

226

&H71,0 is added as line 5, this will force a cold-start
and the full sign-on message will appear.

9.2 BASIC PROGRAM STORAGE

When you type in a BASIC program, the system saves it
in memory and operates on this saved program when you
type a RUN command. The format of a saved BASIC
statement is:

<link><line number><statement>EOL

The <link> field is a 16-bit field and holds the
address of the following line. The <line number) field
is also 16 bits wide and holds the statement's number
as an unsigned 16-bit integer. This is followed by the
text of the line and the end of the line is marked by
EOL which is a null byte. The end of a program is
indicated as two zero bytes.

The BASIC program below is a dump program which
scans a stored BASIC program and prints the stored form
of that program. In its present form, it actually
prints the stored form of itself but it may readily be
modified to print out the internal form of another
BASIC program.

10 'DUMP PROGRAM
15 'Peeks a word (16 bits)
20 DEF FNW(A)=PEEK(A)*256+PEEK(A+1)
30 DIM ZZ(2),XX(2,1),ZZ$(2),XX$(2,1)
40 DIM XY(1,2,3)
50 'DEFINING VARIABLES BEFORE USE
60 FOR I=0TO2
70 ZZ(I)=I:ZZ$(I)=STR$(I)
80 FOR J=0TO1
90 XX(I,J)=C:XX$(I,J)=STR$(C)
100 XY(J,I,0)=C
110 C=C+1
120 NEXTJ,I
130 PS=0 'Program Start
140 PE=0 'Program End
150 VS=0 'Variables Start
160 VE=0 'Variables End
170 AS=0 'Array Start
180 AE=0 'Array End
190 DA=0 'Dump Address
200 NA=0 'Next Address
210 DV=0 'Device number
220 DBYTE=0:AN$="":SBYTE=0
230 R=0:H3=0:H2=0:H1=0:H0=0
240 PA=&H19
250 PS=FNW(PA) '19:1A contain PS address
260 VS=FNW(PA+2) '1B:1C contain VS address
270 AS=FNW(PA+4) '1D:1E contain AS address

227

280 PE=VS-1 'Variables are after program
290 VE=AS-1 'Arrays are after variables
300 AE=FNW(PA+6)-l '1F:20 holds free space address
310 CLS
320 INPUT"OUTPUT TO PRINTER";AN$
330 IF AN$ = "Y" THEN DV=-2 ELSE DV=0
340 PRINT#DV,"PROGRAM START ADDRESS = ";:DBYTE=PS
350 GOSUB 1000:PRINT#DV
360 PRINT#DV,"PROGRAM END ADDRESS = ";:DBYTE=PE
370 GOSUB 1000:PRINT#DV
380 PRINT#DV,"VARIABLE START ADDRESS = ";:DBYTE=VS
390 GOSUB 1000:PRINT#DV
400 PRINT#DV,"VARIABLE END ADDRESS = ";:DBYTE=VE
410 GOSUB 1000:PRINT#DV
420 PRINT#DV,"ARRAY START ADDRESS = ";:DBYTE=AS
430 GOSUB 1000:PRINT#DV
440 PRINT#DV,"ARRAY END ADDRESS = ";:DBYTE=AE
450 GOSUB 1000:PRINT#DV
460 INPUT "DO YOU WISH A PROGRAM DUMP";AN$
470 IF AN$<>"Y" THEN GOTO 630
480 PRINT#DV,"PROGRAM DUMP"
490 DA=PS
500 NA=FNW(DA)
510 IF (NA=0) OR (DA=PE) THEN GOTO 620
520 PRINT#DV:PRINT#DV
530 DBYTE=DA:GOSUB 1000 'PRINT CURRENT ADDRESS
540 PRINT#DV
550 DBYTE=NA: GOSUB 1000 'PRINT NEXT ADDRESS
560 DA=DA+2
570 DBYTE=FNW(DA) : GOSUB 1000 'PRINT LINE NUMBER
580 DA=DA+2
590 SBYTE=PEEK(DA): GOSUB 2000 'PRINT LINE CONTENTS
600 DA=DA+1
610 IF DA<>NA THEN GOTO 590 ELSE GOTO 500
620 PRINT#DV
630 INPUT "DO YOU WANT A VARIABLE DUMP";AN$
640 IF AN$ <> "Y" THEN GOTO 690
650 PRINT#DV:PRINT#DV:PRINT#DV,"VARIABLE DUMP"
660 FOR DA = VS TO VE
670 SBYTE=PEEK(DA): GOSUB 2000
680 NEXT DA
690 PRINT#DV
700 INPUT "DO YOU WANT AN ARRAY DUMP";AN$
710 IF AN$<'>"Y" THEN GOTO 760
720 PRINT#DV:PRINT#DV:PRINT#DV,"ARRAY DUMP"
730 FOR DA = AS TO AE
740 SBYTE=PEEK(DA): GOSUB 2000
750 NEXT DA
760 PRINT#DV:PRINT#DV,"DUMP FINISHED"
770 STOP
1000 'PRINT 2 BYTES AS 4 HEX CHARS
1010 R=DBYTE
1020 H3=INT(R/4096): R=DBYTE-H3*4096
1030 H2=INT(R/256): R=R-H2*256

228

1040 H1=INT(R/16): H0=R-H1*16
1045 HW$=HEX$(H3)+HEX$(H2)+HEX$(H1)+HEX$(H0)
1050 PRINT#DV, USING "% %"; HW$
1060 RETURN
2000 'PRINT 1 BYTE AS 2 HEX CHARS
2010 H1=INT(SBYTE/16): H0=SBYTE-H1*16
2020 PRINT#DV, USING"% %";HEX$(H1)+HEX$(H0);
2030 RETURN

If you run this program, you will see that the BASIC
program is actually stored in a semi-compressed form
with reserved words (DIM, INPUT, PRINT, etc.)
represented as a single byte or token. This token
always has its top bit set to distinguish it from
normal ASCII characters which all lie in the range 0-
127. You can see this if you modify the above program
by printing each byte as an ASCII character rather than
as a pair of hexadecimal digits. The following
subroutine may be used to do this:

2000 ' Print 1 byte as a character
2010 PRINT CHR$(SBYTE);
2020 RETURN

If you now run the dump program with this amendment,
you will see most of the text as it was originally
typed into the machine. However, all reserved words
will have disappeared and will have been replaced by
Semigraphic characters.

There are two reasons for storing the program in
this semi-compressed way:

(1) Space is saved. Rather than reserved words like
INPUT taking up 5 bytes, only a single byte is
required to represent that command.

(2) Program execution speed is increased. The reason
for this is that the token representing the
reserved word is used as an index into a jump
table of routines to carry out the action speci
fied in the command. Therefore, the token
representing INPUT is a form of indirect address
to the INPUT routine.

All tokens representing reserved words have values
between 128 and 255 because the top bit of the token is
always set. Unfortunately, Extended Color BASIC has
more than 127 reserved words, by the time you take the
names of all system routines into account, so an
alternative technique is used to encode function names.

This involves use a 2-byte code for the function
name where the first byte is always FF. A byte whose
value is FF means that the following byte is the token
for a routine and, obviously, the value FF is not

229

itself used as a reserved word token. The table below
shows some examples of reserved word tokens as single
and as double bytes.

The addresses of the routines, called action routines,
which are used to execute the reserved words are held
in a table called the dispatch table. This is indexed
by the reserved word token. A complete list of
reserved words, associated tokens and dispatch
addresses is provided in Appendix 7. Obviously, there
must be separate dispatch tables for the normal
reserved words and the function reserved words so that
indices do not clash with each other.

Reserved words are converted to tokens by the BASIC
system's input routine which tries to match each input
character sequence against a reserved word list which
is a table of reserved words. The token associated with
each reserved word is taken to be its position in the
reserved word table plus 80 (hex) to set the top bit.
Thus the 17th reserved word has token value 91 (hex) ,
the 37th has value A5 (hex), etc. If a match is found,
the word is replaced by its token. The same table is
used by the LIST routine which converts tokens into
reserved words so that the program may be listed.

The BASIC program statement storage area is
immediately followed in memory by storage areas devoted
to simple variables and array variables. Simple
variables are either numeric or string variables and
only the first two characters of the variable name are
used to identify the variable. All others are ignored.
The variable area is made up of the variable name as a
pair of ASCII characters followed by a 5-byte
representation of the number or string. These
representations are described in section 9.3.

All names are represented as two characters so
single character names are made up of the single
character plus a zero byte. Notice that this does not
mean that A may be confused with A0 as the ASCII
character '0' does not have byte value 0. String type
variables are distinguished from numeric variables by
setting the top bit of the last character in the
variable name.

Array variables are held in a separate storage area
and array names are distinguished from simple variable
names by suffixing a '(' to the name. In the array
storage area, each array is stored as a structure:

Reserved word
DIM
FOR
=
STR$
PEEK

Token
$8C
$80
$CB
$FF8E
$FF8C

Address
$19:1A
$1B:1C
$1D:1E
$1F:20

Use
Holds address of start of BASIC program
Holds address of start of simple variables
Holds address of start of array variables
Holds address of start of unused memory

230

<array name><array descriptor><array values>

The array descriptor provides information about the
size and number of dimensions of the array. It is
structured as follows:

(1) Length of array in RAM - 2 bytes.

(2) The number of array dimensions - 1 byte.

(3) For each dimension, a list (2 bytes each) of the
number of elements in that dimension.

The array values are held as normal string type or
numeric type values.

The BASIC system uses a number of variables to keep
track of the program, variable and array storage areas.
These are:

9.3 BASIC'S INFORMATION REPRESENTATION

When devising any high-level programming language
system, the system designer must make some very
fundamental decisions regarding the way in which
numeric and character variables are represented in his
system. BASIC is very flexible in this respect,
allowing variable length character strings and allowing
numbers to be either real numbers (numbers with a
fractional part) or integers.

If you want to interface assembly language with
BASIC it is useful, although not essential, to have
some idea of how the BASIC system represents
information. Such knowledge also helps you to
understand some of the limitations of BASIC and why
some applications are particularly slow to execute. In
this section, therefore, we describe how numbers and
string variables are represented in BASIC.

9.3.1 Number representation
The original designers of BASIC made a very
important (and, in our view, a correct) decision that
no distinction should be made between real numbers and
integers. A BASIC numeric variable may be either a
real number or an integer and there is no need for the
programmer to indicate, in advance, the type of the
variables which he uses.

In this respect, BASIC differs from almost all other
programming languages which treat integers and real

231

numbers differently. The reason for this is that
operations on integers are easier to implement and much
more efficient than operations on real numbers. If no
distinction is made between them, the system must
assume that any number may have a fractional part. As
a result, integers in BASIC are represented as real
numbers with a fractional part equal to zero.

This explains why applications which involve a lot
of integer arithmetic are relatively slow in BASIC.
The integer arithmetic involved is actually carried out
using real number operations and it is not possible to
take advantage of the M6809's fast integer arithmetic
facilities. This is one reason why assembly language
programs which only use integers are so much faster
than corresponding BASIC programs.

The representation of real numbers in a computer is
made up of two parts. These parts are called the
mantissa, which is the number to be represented held as
an integer representing a fraction between 0 and 1, and
the exponent, which is also an integer, representing
the power to which that fraction is raised in order to
form the correct real number.

This is really quite a familiar system. If the
exponent represents the numbers of powers of 10 to
which a fraction is to be raised, the table below gives
some examples of how real numbers might be represented
using exponent/mantissa notation.

We have explained this representation in terms of
powers of 10 because that is the number base with which
we are most familiar. In the BASIC system, however, the
exponent represents the power of 2 to which the
exponent is raised. Therefore, in BASIC, the value of a
number is computed by multiplying the fraction by 2
raised to the power specified in the exponent.

Real number in BASIC are represented using 5 bytes.
These bytes are used as follows:

Byte 0 (leftmost byte) Exponent
Bytes 1-4 Mantissa

The leftmost bit of the mantissa, that is bit 7 of byte
1, represents the sign of the mantissa. If it is 0
this means a positive mantissa, if it is 1 this means
that the mantissa is negative. The mantissa itself is
not held as a two's complement number but is
represented as a positive integer. A mantissa of zero
means that the number represented is zero. In this

Real Number
5.55555
.0032

3456789
234.456

Exponent
1
-2
7
3

Mantissa
.555555

.32
.3456789
.234456

232

case, the exponent part is ignored by the BASIC system.
The exponent is held as a positive number between 0

and 255 which seems to imply that negative exponents
cannot be represented. However, to get the actual value
represented by the exponent, 128 must be subtracted
from it. Therefore, an exponent of zero means that the
number represented is raised to the power -128, a
exponent of 128 means that the number is raised to the
power 0 and an exponent of 255 means that the number is
raised to the power 127.

Given this representational system, the smallest
number which the BASIC programmer may use is 10.14 to
the power -38 and the largest number is 10.14 to the
power 38. In many cases, however, the actual number
represented is an integer between -32768 and 32767. If
this is the case, the system function INTCNV can be
called by the assembly language programmer. This
function returns the integer value of the BASIC number
in accumulator D.

INTCNV is designed to convert a real number to an
integer. If the number to be converted lies outside
the range of 16-bit integers, INTCNV causes an overflow
error and control automatically reverts to the BASIC
system. Similarly, if a string rather than a number is
passed as a parameter to INTCNV, a type mismatch error
is signalled and control reverts to BASIC.

The routine INTCNV uses a so-called floating-point
accumulator in memory locations 4F-54. The floating-
point accumulator (FAC) gets its name because real
numbers represented in exponent/mantissa notation are
sometimes called floating-point numbers. It is a 6-byte
area organised as follows:

Byte 0 Exponent of real number
Bytes 1-4 Mantissa value
Byte 5 Mantissa sign

The sign of the mantissa is factored out of the real
number representation and held as a separate byte on
its own. The reason for this is that it helps speed up
internal floating-point computations. As you would
expect, a byte value of zero means that the mantissa is
positive and a byte value of FF means that the mantissa
sign is negative.

There is no need for the programmer to write code
which explicitly converts a BASIC numeric variable to
FAC representation. Rather, there is an in-built
routine called MOVFM which carries out such a
conversion. MOVFM uses the system FAC in locations 4F
onwards and expects the address of a numeric variable
in the BASIC variable table or anywhere else in memory
to be in register X.

A complementary function called GIVABF is used to
convert an integer held in accumulator D to its

233

floating-point representation in a 6-byte floating
point accumulator. Again, the system's FAC is assumed
by this routine. The following example shows an
assembly code routine which uses INTCNV and GIVABF to
add 1 to a BASIC numeric variable.

*

* Input register X - Address of FAC
*
* The value in FAC is incremented by 1 by this routine
*
* Registers destroyed D, CC
*
ADD1 JSR INTCNV ; Convert to integer

ADDD #1 ; Add 1 to D
JSR GIVABF
RTS

9.3.2 String representation
The BASIC system maintains a string storage area where
the actual characters making up a string are stored and
holds string variables as references into this area.
However, rather than store the string length along with
the string characters, BASIC holds that length along
with the address, in the string storage area, of the
string characters. In fact, each string is represented
by a 5-byte object called a string descriptor. This is
structured as follows:

Byte 0 (leftmost byte) String length
Byte 1 Housekeeping byte
Bytes 2-3 String address
Byte 4 Housekeeping byte

The parts which we are interested in are bytes 0, 2 and
3. Bytes 1 and 4 are used by the BASIC system to hold
information which allows it to perform garbage
collection in the string storage area as discussed in
Chapter 6. The techniques used for garbage collection
are not important here and bytes 1 and 4 should not be
changed by the assembly language programmer.

The programmer may write assembly code routines to
manipulate string descriptors and call these routines
with a USR call. However, the modification of
descriptors is a dangerous business as it is possible
to corrupt other system information which could result
in inexplicable system failure. As the descriptor holds
the string length, the only really safe operation is to
shorten the string by modifying the length byte. On no
account should you try to lengthen the string or change
the actual string characters addressed by bytes 2 and 3
of the descriptor. The only safe operation on the
address field of the string descriptor is to change it

234

to point at some character rather than the first string
character. You must, naturally, also change the string
length byte if you modify the address field.

9.3.3 BASIC variables
The reader will have noticed that both numbers and
strings in BASIC are represented as 5-byte objects.
This means that the construction of a variable table
for the BASIC interpreter to use is straightforward.
This table has two components:

(1) The variable name

(2) The variable 'value'

We assume here that the value of a string is actually
the value of its descriptor.

The built-in BASIC function VARPTR returns a numeric
value which is an index to the system's variable table.
An example, in BASIC, of this is:

10 A$ = "HERE IS A STRING"
20 PRINT VARPTR(A$)

This code would cause the location in the variable
table of the string A$ to be printed. Note that the
value returned by VARPTR is a 5-byte BASIC numeric
variable which always represents an integer. The
assembly language programmer must therefore convert
this number using INTCNV before he can use it in his
program.

We conclude this section with a table listing the
conversion routines, their addresses and their
functions.

Name
VALTYP

INTCNV

GIVABF

Address
$06

$8B2D

$8C37

Function
This variable holds the type of a
parameter to a routine initiated by
a USR call and also the type of the
result returned to BASIC

This routine converts a BASIC
numeric variable to an integer. It
expects the X register to point at a
floating-point accumulator holding
the number to be converted and
returns its result in register D.

This routine complements INTCNV in
that it converts an integer in
accumulator D to a BASIC numeric
value. GIVABF also sets VALTYP to
zero.

MOVFM $D3BF This routine moves a 5-byte BASIC
floating-point number into the
floating-point accumulator. The
number to be converted is addressed
in register X.

235

9.4 PASSING PARAMETERS FROM BASIC TO MACHINE CODE

We have already shown, in Chapter 6, how the EXEC and
USR calls may be used to interface machine code
routines with BASIC programs. The parameter passing
technique described there involved poking parameter
values into known memory addresses and peeking the
results from other addresses. In this section we
describe how knowledge of BASIC'S internal data
representation allows parameters to be passed to
machine code routines via USR calls.

To help with its 'housekeeping', the BASIC system
keeps track of the type of parameter being passed to a
USR function in a memory location called VALTYP. If
the argument is a number, VALTYP is set to zero. A
non-zero value assigned to VALTYP means that the
argument to the USR function is a string. Type
mismatch errors, resulting in the message '?TM ERROR',
are caused by the contents of VALTYP and the actual
operand being incompatible. For example, if VALTYP is
zero and a string is used as an operand, a type
mismatch occurs.

On entry to a USR function (remember this is defined
by the assembly code programmer), the A accumulator
register reflects the contents of VALTYP. If A is zero,
the parameter is numeric, if A is non-zero, the
parameter is a string.

According to the BASIC manual, the parameters to a
USR call may be either a number or a string. However,
experimentation with this will show that the use of a
USR call with a string argument results in a type
mismatch error message 'TM ERROR' being printed. We
describe below how to pass numeric parameters to a USR
call and also how to program around the system bug
which causes an error when string parameters are used.

9.4.1 Numeric parameters
As a USR call is a BASIC function it may only take a
single parameter. When this parameter is a number, the
USR call sets up the X register to point at the FAC
holding the number and sets A to zero, indicating that
the type of the parameter is numeric. Usually, the
first thing that the assembly language routine does is
convert this number to an integer using INTCNV.
Computation may then proceed.

Because the USR call is considered to be a BASIC
function, it must return a result to the calling
program. If the USR call is to initiate a subroutine

236

rather than a function, where the value returned is
irrelevant, the convention adopted is for the assembly
language routine initiated by the USR call to return
its input parameter as a result. This is easily
accomplished by returning to BASIC using a RTS or
equivalent instruction with the X register pointing at
the FAC containing the result. As long as the
subroutine does not change the X register, the result
will be the same as the input parameter.

However, if the USR call initiates a proper
function, it is possible to return a result which is
not the same as the routine's input. The result is
computed as an integer and the routine GIVABF is called
to convert the contents of accumulator D and load the
floating-point accumulator. GIVABF also sets the type
indicator VALTYP to zero to reflect the fact that a
numeric variable is being returned to the BASIC system.

Any integer values may be returned in this way even
when a string is the input parameter to the USR call.
For example, consider the routine below which accepts a
single character string as an input parameter and
returns, as its result, the ASCII code of that input
character. The X register, on input, points to the
string descriptor so indirect addressing is used to
fetch the actual string character.

USRASC LDB (2,X) ; Fetch first character of string
CLRA ; Zero most significant byte of D
JSR GIVABF ; Return ASCII code in FAC
RTS

9.4.2 String parameters
Although the BASIC system signals a type mismatch error
when a string is passed to a USR call, it is perfectly
legal to pass a string as a parameter. The error
occurs when the result is returned rather than when the
parameter is passed via the USR call.

When a string is used as a parameter to a USR call,
the X register is set up to point at the 5-byte
descriptor for the string and VALTYP is set non-zero.
The string descriptor format is as described in section
9.1.2 and the assembly language routine may manipulate
the string as required.

The problems arise when an attempt is made to return
to the BASIC system. BASIC expects a numeric result
from the USR call so, if a string result is returned, a
type mismatch error is signalled. The assembly
language routine must somehow fool the BASIC system
into thinking that a numeric rather than a string
result has been returned if the error is to be
circumvented.

There are two ways of doing this. The BASIC system
carries out the type checking by calling a routine to
check that VALTYP is zero. If the assembly language

237

programmer explicitly clears VALTYP before returning to
the BASIC system, the return will execute normally
because the checking routine will see that VALTYP is
zero. However, this does mean that the result will be
treated as numeric and cannot, therefore, be assigned
to a string variable.

To return a string variable properly, the user must
cut out the call to the type checking routine by
discarding the normal return address on the stack. This
can be done by executing a LEAS 2,S instruction to pop
it off the stack before a normal RTS instruction. By
discarding the return address, you avoid a return to
the point where the checking routine is called. The
return which is actually executed is a return to the
statement immediately after the call to the this
routine.

The way to return strings from a USR function is
best illustrated by example. The example chosen is a
modification of the USRASC routine presented in the
previous section. The routine shown below accepts a
string as its parameter and returns the same string
with the first character incremented.

USRINC LDB (2,X) ; Fetch first character of string
INCB ; increment it
STB (2,X) ; and store it back
LEAS 2,S ; Discard return address
RTS

If this routine is assembled using the standard DREAM
settings, then the following BASIC program can be used
to test it.

10 DEF USRO = 20001 'Default code address
20 A$ = "123"
30 PRINT USR00(A$)
40 STOP

When this program is run "223" will be printed by line
30. If the program is then listed, statement 20 will
be converted to A$ = "223" showing that the string
descriptor associated with A$ points to the BASIC
program text area. Because string descriptors may point
into the text area, you must be very careful when
modifying strings as such changes can corrupt the
surrounding BASIC text.

To avoid string descriptors pointing into the BASIC
text area, it is possible to force space for the string
to be allocated in the string storage area. One
technique makes use of the fact that string catenation
results in the string descriptor referring to the
string storage area so catenating the empty string to
another string ensures that the string descriptor does
not point to the text area. In the above example, this

238

involves changing statement 20 to A$ - "123" + "".
An alternative technique may be used when it is not

important what characters are passed as an input string
as the string will be built up by the USR function and
then returned. The most convenient method of creating
a suitable string descriptor is to use BASIC'S STRING$
function. For example:

A$ = USR00(STRING$(" ",255))

This creates a descriptor to a string made up of 255
blanks. If you know the length of the string to be
returned, you can obviously set it up as required. If,
however, the length is unpredictable, you should create
a descriptor for the longest possible string (255
characters) then modify the length byte to reflect the
actual string length. This way, you can be sure that
sufficient space is always available for the actual
string characters.

A useful side-effect of using a string as a
parameter in a function call is that the Y register is
set up to point at the first character of the string.
There is therefore no need to extract the address from
the string descriptor. As a result, the indirect
reference, (2,X), to the first character of the string
in USRASC and USRINC can be replaced by a normal
indexed reference using Y.

This side-effect also applies to VARPTRed strings so
there is no need to convert the numeric value to an
integer with INTCNV to get the string descriptor.
Therefore, the code sequence:

JSR INTCNV ; Convert to 16-bit value
TFR D,X ; and transfer to index register
LDB (2,X) ; and reference character indirectly

may be replaced with the single statement LDB ,Y.

9.5 EXTENDING THE DRAGON'S CAPABILITIES

One way of extending the Dragon's capabilities is, of
course, to call your own assembly language subroutines
from BASIC and we have described how to do this in the
above section. However, it is also possible to augment
the BASIC system with new commands which carry out
functions which are not provided in Extended Color
BASIC.

To add new commands to BASIC, you must add new
reserved words to the language and this involves
extending the reserved word table described in section
9.2. Information concerning the reserved word tables is
contained in an area of RAM called a command
interpretation vector or 'stub'. This information is
structured as follows:

239

A number of such command interpretation vector tables
may be used provided that they are contiguous in RAM
and that the last used table is followed by a zero
byte. Extended Color BASIC uses two such tables
although the second table is simply a dummy stub with a
zero in its first byte indicating that it is a
terminator. The first stub occupies RAM space from
addresses 120-129 inclusive with each entry set up as
shown in the table below:

To add new commands, the user must define a new stub
following the normal BASIC command interpretation
vector table and this must be followed by a terminator.
The format of user-supplied stubs differs slightly from
the standard BASIC stub in that bytes 3 and 4 and bytes
8 and 9 should contain the addresses of new dispatch
routines for the added commands rather than the
addresses of dispatch tables.

We illustrate the process of extending BASIC by
showing how two new commands may be added. These
commands are a HELP command which prints some user-
supplied 'help' information and an OUTPUT command which
is exactly the same as PRINT. To add these new
commands requires that the following steps should be
carried out.

(1) Set up a new reserved word table.

(2) Set up a new reserved word dispatch routine.

(3) Define a new stub with references to this new
table and associated routine.

The first step, setting up the reserved word table, is
straightforward. This table is made up of the
characters in the word with the last character having
its top bit set to indicate 'end-of-word'.

Byte
0
1:2
3:4
5

6:7
8:9

Use
Number of normal reserved words
Address of normal reserved word list
Address of normal reserved word dispatch table
Number of function reserved words
Address of function reserved word list
Address of function reserved word dispatch table

RAM byte
120

121:122
123:124

125
126:127
128:129

Contents
4E

8033
8154
22

81CA
8250

240

NEWRDS FCC /HEL/
FCB $D0 ; 'P' with top bit set
FCC /OUTPU/
FCB $D4 ; 'T' with top bit set

The new reserved word dispatch routine performs similar
tasks to BASIC'S reserved word dispatch routine. These
tasks include checking the validity of the new token
value, calculating the appropriate index into the new
dispatch table and setting up the base address of the
new dispatch table. Once this has been done, the new
dispatch routine can re-enter BASIC ROM at the
appropriate point to deal with the new command.

The tokens associated with each reserved word are
computed by the system by counting the number of
reserved words scanned, including new reserved words if
present. As the last normal BASIC reserved word has a
token value of CD, the values for HELP and OUTPUT are
CE and CF respectively. We use equates to define the
first new token value and number of tokens and set up a
table of dispatch addresses for the new commands.

NEWTOK EQU $CE ; First new token value
TOKENS EQU 2 ; Number of new tokens
NEWTBL FDB HELP ; Address of HELP command

FDB $903D ; OUTPUT = PRINT

The new reserved word dispatch routine makes use of
this information when determining which action routine
to call. A text input routine called CHRGET is used by
the system to scan the BASIC text and passes the token
value to this routine in register A. A suitable
dispatch routine for these new commands is:

* NEWDSP - New dispatch routine

* Register input A - token value
*
* This routine checks token validity and invokes the
* appropriate action routines
*

NEWDSP CMPA #NEWTOK ; Check that
BLO NEWERR ; token given
CMPA #NEWTOK+TOKENS ; is within range
BHS NEWERR

*
* One of the new commands at this point
*

SUBA #NEWT0K ; Convert to table index
LEAX NEWTBL,PCR ; and set up table base
JMP ROMCMD ; before jumping to BASIC

NEWERR JMP SYNERR ; error jump into BASIC

The HELP routine is very simple and also makes use of a

241

ROM routine to perform some of its duties:

HELP LEAX HELPME-1,PCR ; Point to byte before

JMP OUTSTR ; string for ROM's OUTSTR

Notice that the above routines have no explicit RTS
instructions as the terminate by jumping to ROMCMD,
OUTSTR, etc. Returns from these routines therefore
return to the program which called the new dispatch
routine. These routines also use a number of equates
which are defined as follows:

OUTSTR EQU $90E5 ; String output routine
SYNERR EQU $89B4 ; BASIC syntax error routine
ROMCMD EQU $84ED ; BASIC dispatch point

The HELP message is held in an area of store named
HELPME and is output by a standard output routine
called OUTSTR. This routine takes as its parameter the
address of the byte before the string and expects the
string to be terminated with a zero byte.

HELPME FCB $0D
FCC /DON'T ASK ME I'M ONLY A MACHINE/
FCB 0

After defining the dispatch routine, a new stub must be
set up. Unfortunately, the address of the zero byte
required to mark the end of stubs clashes with the
first byte of USR vectors (134). However, this has
been allowed for in Extended Color BASIC as the USR
vector is referenced indirectly through the direct page
location B0:B1 and the USR vector area may be moved
elsewhere and these locations filled in with its new
address.

The following routine sets up a new stub and
relocates the USR vectors.

* NEWSET - set up new stub for reserved words

* Register input NONE
* Registers destroyed A,X,Y,CC
*
NEWSET LDX #STUB1 ; First of all copy

LDY #STUB2 ; old second stub
NXTBYT LDA ,X+ ; bytes into

STA ,Y+ ; third stub
CMPX #STUB2
BLO NXTBYT
LDA #TOKENS ; Number of reserved words
STA STUB1 ; set up new stub
LEAX NEWRDS,PCR ; New reserved word list
STX STUB1+1 ; set up
LEAX NEWDSP,PCR ; New dispatch routine
STX STUB1+3 ; set up

242

* No new functions so second part of stub unchanged
*

LEAX NEWUSR,PCR ; Relocate the USR
STX USRPTR ; vectors
LDY #FCERR ; and initialise
LDA #10

NXTVEC STY ,X++ ; them to FC ERROR
DECA ; continue until all
BNE NXTVEC ; done
RTS

This routine assumes that the following equates and
declarations have been made:

STUB1 EQU $12A ; Address of second stub
USRPTR EQU $B0 ; USR vectors
FCERR EQU $8B8D ; FCERR entry point
NEWUSR RMB 20 ; relocated USR vectors. Must be
* set up before defining any USR
* addresses

9.5.1 RAM hooks
The BASIC system designers allow new commands to be
added to BASIC so that extra commands needed to support
a disk version of BASIC may be included. However, some
of the existing commands such as OPEN and CLOSE also
need to be enhanced for disk BASIC and so addresses
have been set up in RAM which allow extra facilities to
be added to action routines. These addresses normally
contain an RTS instruction so that a reference to them
from within an action routine does nothing. The RAM
addresses are called 'hooks' and the RTS instruction
may be replaced by a jump to some other routine which
enhances the capabilities of the action routine.

There are a total of 25 RAM hooks available at
locations 15E to 1A8 inclusive. A brief description of
each is given in the following table.

Address
15E
161
164
167
16A
16D
170
173
176
179

17C
17F
182
185

Called from
B829
B7EC
B596
B54B
B50B
B624
B63D
B65D
B664
84DE

8792
B77C
B5C7
B6FE

Potential use
Open device or file
Check I/O device number
Return device parameters
Character output
Character input
Check device is open for input
Check device is open for output
Close all devices and files
Close a single device or file
About to deal with first
character of new statement
Disk file item scanner
Poll for BREAK and special keys
Read a line of input
Finish loading ASCII program

188
18B
18E
191
194
197*
197*
19A
19D
1A0*
1A0*
1A0*
1A0*
1A3
1A6

B801
8954
8344
8347
85A5
8C80
8424
849F
86D7
BA60
9EEB
AAF7
850F
8F67
8F08

End of file (EOF) function
Evaluate an expression
User error trap
System error routine trap
RUN statement
String copy check
CLEAR statement
Fetch next statement
LET string copy check
CLS statement
RENUM statement
PUT/GET statement
Function assignment
Compress BASIC line for storage
Expand BASIC line for listing

243

Starred addresses in the above table mean that several
hooks share the same address. The only way to
determine which is used is to check the return address!

In order to use some of these RAM hooks, you need an
in-depth knowledge of the BASIC interpreter and,
therefore, these hooks are not useful to the ordinary
programmer. However, some of the hooks are very useful
indeed and can be used to enhance the standard system
facilities. We shall illustrate this by showing how
the character output hook ($167) can be used to copy
all character output to the printer and how the new
statement hook ($19A) can be used to force a complete
keyboard scan.

Our first example involves setting up the character
output hook with the address of the printer output
routine.

LPTOUT EQU $800F ; Printer output address
HKCHR0 EQU $167 ; Character output hook
HKUPC0 LDX #LPTOUT ; Set up printer output address

STX HKCHR0+1 ; hook up to character output
LDA #$7E ; JMP opcode value
STA HKCHR0 ; into hook
RTS

This example may be set up using BASIC pokes as it
simply involves replacing the three bytes of character
output hook with a JMP $800F. However, you must be
very careful when setting up hooks from BASIC as the
hook may be called between each POKE statement. This
means that you must first set up the address in bytes 1
and 2 of the hook and, as the last step, replace the
RTS instruction with a JMP instruction. The following
BASIC statements set up the character output hook.

POKE &H168,&H80: POKE &H169,&H0F: POKE &H167,&H7E

It is not easy to find out which registers roust be

244

preserved when a hook is called so you must save all
registers, including CC, used in the hook routine. We
didn't do this in the example above as this routine is
also called by the normal character output routine when
a PRINT #-2 is used. We therefore assumed that the line
printer routine preserves the registers itself.

In our second RAM hook example we show how the new
statement RAM hook can be used to reset the row state
byte ($151) to a value which forces a complete keyboard
scan. The following code is made up of necessary
equates, the routine used to reset the row state byte
and a routine to set up the RAM hook.

HKNWST EQU $19A ; New statement RAM hook
KBROWS EQU $151 ; Keyboard row state byte
*
* RSROWS - reset row state byte
*
* Register inputs NONE
*
RSROWS PSHS A,CC ; Save registers

LDA #$7F ; This value forces a scan
STA KBROWS ; of the keyboard
PULS A,CC,PC ; Restore and return

*
* HKUPNS - set up RAM hook
*
HKUPNS LEAX RSROWS,PCR ; Address of hook routine

STX HKNWST+1 ; reset row state routine
LDA #$7E ; JMP opcode
STA HKNWST ; into hook
RTS

Setting up this hook means that all key depressions
will be recognised, even those on the same row. A
similar technique can be used to disable the BREAK key
thus stopping the user interrupting a program and to
provide auto-repeat facilities on some or all keys.
Both of these additions involve modifying RSROWS above
so that the appropriate column bytes are modified.

The BREAK key can be disabled by adding the
following code to the above program.

BRKCOL EQU $154 ; Break row byte
BRKCLR EQU $BF ; To clear BREAK'S bit

LDA BRKCOL ; Pick up BREAK column
ANDA #BRKCLR ; Force BREAK bit to 0
STA BRKCOL ; and store it back

9.6 BASIC SYSTEM VARIABLES

In this final section we list the reserved memory
locations used by the BASIC system and describe, very

245

briefly, what these locations are used for. As these
are RAM locations, you may modify them using POKE but
you must be very careful if you do so. If you make a
mistake or set up an invalid value, you may hang the
system. This means that you can do nothing except
switch the machine off and on again to reset it and all
your work currently in RAM will be lost.

We start with a list of variables held in the first
256 bytes of memory and accessed via direct addressing
with the direct page register set to 00.

Address
00
01
02
03
04
05
06
07
08
09
0A

0B:0C
0D:0E
0F-18
19:1A
1B:1C
1D:1E
1F:20
21:22
23:24
25:26
27:28
29:2A
2B:2C
2D:2E
2F:30
31:32
33:34
35:36
37-4E
4F

50-53
54
55

56-5B
5C

5D-60
61

62-67
68:69
6A-6E
6F

Use
BREAK message flag. If negative print BREAK
String delimiting character
Another delimiting character
General count byte
Count of IFs seen while looking for ELSE
DIM flag
VALTYP - 0=numeric, l=string
Garbage collection flag
Subscript allowed flag
INPUT/READ flag
Arithmetic use
String pointer - first free temporary
String pointer - last used temporary
Temporary results
Pointer to start of BASIC text
Pointer to start of simple variables
Pointer to start of array variables
End of storage in use
Stack base address
String space base address
Temporary pointer to new string
Address of top of RAM used by BASIC
Last BASIC line number
Input line number
Old text pointer
Another text pointer
DATA line number
Pointer for DATA
Pointer for INPUT
Evaluation variables
Floating point accumulator, FAC exponent
FAC mantissa
Sign of FAC
Temporary sign of FAC
String descriptor temporaries
Floating point argument, ARG exponent
ARG mantissa
Sign of ARG
Miscellaneous use
Current line number
Device parameters used in PRINT
Device number, 0-console, -l-cassette

70
71

72:73
74:75
76:77
78

79
7A:7B
7C

7D
7E:7F
80
81
82
83
84
85
86
87

88:89
8A:8B
8C
8D
8F

90:91

92

93

94

95:96
97:98

99

9A

9B

9C
9D:9E
9F:A0
A1:A2
A3:A4
A5-A7
A8-AA
AB-AE
AF

-2-printer
End of file flag
Restart flag ($55 warm, other cold)
Warm start vector (points to NOP)
Top of RAM minus 1
Unused
Cassette file status (0-closed, 1-input,
2-output)
Number of characters in CASBUF
Cassette buffer pointer
Block type (0=header, 1=data
FF=end of file)
Block length
Address of cassette buffer
Block checksum
Checksum error flag
Pulse width counter
Sync bits counter
Bit phase flag
Last sine wave value
Used in SET, RESET, and POINT
Single character keyboard buffer
Current cursor address
16-bit zero
Sound frequency
Sound timer
Cursor blink rate counter.
Initial value = 32
Count of number of leader bytes
Initial value 0080
Minimum cycle width of 1200Hz
Initial value = 12
Minimum pulse width at 1200Hz
Initial value = 0A
Maximum pulse width at 1200Hz
Initial value = 12
Cassette motor delay value
Keyboard debounce delay value
Initial value = 045E
Line printer comma field width
Initial value = 10
Line printer last comma field
Initial value = 74
Line printer width
Initial value = 84
Line printer head position
EXEC vector
INC $A7 ; CHRGET input routine
BNE $A5
INC $A6
LDA >0
JMP $BB26
Used by RND
Program trace flag, 0-trace off
non 0, trace on

246

247

B0:B1
B2
B3
B4
B5
B6

B7:B8
B9

BA:BB
BC

BD:BE
BF:C0
C1-DD
DE
DF
E0
E1
E2

E3:E4
E5

E6-FF

Pointer to USR vector base
Foreground colour
Background colour
Active colour
Active colour
Graphics mode
Top of current graphics screen
Number of bytes in graphics row
Base address of current graphics screen
Page number of graphics screen
Current X position
Current Y position
Used by graphics
MUSIC octave
MUSIC high volume
MUSIC low volume
MUSIC note value
MUSIC tempo
MUSIC duration count
MUSIC dotted note flag
Unused in Dragon 32

Address
100-102
103-105
106-108
109-10B
10C-10E
10F-111
112:113
114

115-119
11A-11F
120

121:122
123:124
125

126:127
128:129
12A-133
134-147
148
149

14A-150
151-159
15A
15B
15C
15D

15E-1A8

Use
SWI3 secondary vector
SWI2 secondary vector
SWI secondary vector
NMI secondary vector
IRQ secondary vector
FIRQ secondary vector
TIMER value
Unused
Random number seeds
Unused
Stub 0 - number of reserved words

address of reserved word table
address of dispatch table
number of functions
address of function table
address of function dispatch table

Stub 1
USR address table
Auto line feed flag
Alpha lock flag 0=lower case
FF=upper case
Line printer EOL termination sequence
Keyboard matrix state table
Right joystick X-value
Right joystick, Y-value
Left joystick, X-value
Left joystick, Y-value
RAM hooks

BASIC also uses a number of system variables between
addresses 100 and 3FF. Their use is summarised in the
table below.

248

1A9-1D0
1D1

1D2-1D9
1DA-2D8
1DA-1E1
1E2

1E3

1E4

1E5:1E6
1E7:1E8

2D9-2DC
2DD-3D8
3D9-3EA
3EB-3FF

String buffer area
Cassette filename length
Cassette filename buffer
Cassette file data buffer
Cassette filename (in buffer)
Cassette file type, 0=program
1=data, 2=machine code
Cassette ASCII flag, 0=binary
FF=ASCII file
Cassette gap flag, 0=continuous
FF=gaps
Execution address of machine code file
Load address for ungapped machine code
file
BASIC line input buffer preamble
BASIC line input buffer
Buffer space
Unused in Dragon 32

Reading list

This reading list is simply a list of books which may
be of interest to the Dragon user who wants to follow
up some of the ideas and techniques introduced in this
book. As there are literally thousands of books on
computing available, it does not pretend to be a
complete list of all relevant books.

As the Dragon is very similar to the Tandy Color
Computer, articles on this machine may be of interest
to Dragon users. Many such articles have appeared in
'BYTE', a US computing magazine, and back issues of
this may be available through your local library.

There are also many other magazines devoted to
personal computing, including one specifically for
Dragon users. Readers of this book will probably have
their favourite periodical but we think that 'Practical
Computing', 'Personal Computer World' and 'BYTE' are
amongst the best of these journals.

1. GENERAL BACKGROUND

Sommerville I. 1983. 'Information Unlimited'. London :
Addison-Wesley

Ullman, J.D. 1976. 'Fundamental Concepts of Programming
Systems'. Reading, Mass. : Addison-Wesley

Wirth, N. 1976. 'Algorithms + Data Structures =
Programs'. Englewood Cliffs, NJ : Prentice-Hall

Greenfield, J.D. & Wray, W.C. 1981. 'Using
Microprocessors and Microcomputers - the 6800 Family'.
New York : Wiley

Peatman, J.B. 1977. 'Microcomputer-Based Design'. New
York : McGraw-Hill

2. ASSEMBLY LANGUAGE PROGRAMMING

Wakerly, J.F. 1981. 'Micro-computer Architecture and
Programming'. New York : Wiley.

Leventhal, L.A. 1981. '6809 Assembly Language
Programming'. New York : Osborne/McGraw-Hill

249

250

Zaks, R. & Labiak, W. 1982. 'Programming the 6809'.
Sybex

3. DATA STRUCTURES

Knuth, D.E. 'Fundamental Algorithms'. Reading, Mass. :
Addison-Wesley

Shave, M. 1975. 'Data Structures'. Maidenhead, Berks. :
McGraw-Hill

4. GRAPHICS PROGRAMMING

Barden, W. 1982. 'Color Computer Graphics'. Fort Worth,
Texas : Tandy Corp.

Foley, J.D. & Van Dam, A. 1979. 'Fundamentals of
Interactive Computer Graphics'. Reading, Mass.
Addison-Wesley

Inman, D. & Inman, K. 1983. 'Assembly Language Graphics
for the TRS-80 Color Computer'. Virginia : Reston

5. I/O PROGRAMMING

Staugaard, J.R. 1981. '6809 Microcomputer Programming
and Interfacing'. Indianapolis : Sams &, Co.

Artwick, B.A. 1980. 'Microcomputer Interfacing'.
Englewood Cliffs, NJ : Prentice-Hall

Pritty, D.W. & Smeed, D.N. 1984 (to appear). 'Practical
Electronic Interfacing to Popular Microcomputers'.
London : Addison-Wesley

Lesea, A. & Zaks, R. 1978. 'Microprocessor Interfacing
Techniques'. Sybex

Witten, I.H. 1980. 'Communicating with Microcomputers'.
London : Academic Press

Andrews, M. 1982. 'Programming Microprocessor
Interfaces for Control and Instrumentation'. Englewood
Cliffs, NJ : Prentice-Hall

Appendix 1

MC6809E data sheet

Supplied courtesy of Motorola Semiconductors.

The information here has been carefully checked and is
believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Motorola
reserves the right to make changes to any products
herein to improve reliability, function or design.
Motorola does not assume any liability arising out of
the application or use of any product or circuit
described herein. No licence is conveyed under patent
rights in any form. When this document contains
information on a new product, specifications herein are
subject to change without notice.

2 5 2

2 5 3

2 54

2 5 5

2 5 6

2 5 7

2 5 8

2 5 9

2 6 0

261

262

263

264

2 6 5

2 6 6

267

2 6 8

2 6 9

270

271

272

273

2 7 4

275

2 7 6

277

278

279

280

2 8 1

2 8 2

2 8 3

2 8 4

2 8 5

Appendix 2

SN74LS783 data sheet

Supplied courtesy of Motorola Semiconductors.

The information here has been carefully checked and is
believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Motorola
reserves the right to make changes to any products
herein to improve reliability, function or design.
Motorola does not assume any liability arising out of
the application or use of any product or circuit
described herein. No licence is conveyed under patent
rights in any form. When this document contains
information on a new product, specifications herein are
subject to change without notice.

2 8 7

2 8 8

2 8 9

2 9 0

2 9 1

2 9 2

2 9 3

2 9 4

2 9 5

2 9 6

297

2 9 8

2 9 9

300

3 0 1

302

3 0 3

3 0 4

3 0 5

3 0 6

307

308

3 0 9

3 1 0

3 1 1

Appendix 3

MC6847 data sheet

Supplied courtesy of Motorola Semiconductors.

The information here has been carefully checked and is
believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Motorola
reserves the right to make changes to any products
herein to improve reliability, function or design.
Motorola does not assume any liability arising out of
the application or use of any product or circuit
described herein. No licence is conveyed under patent
rights in any form. When this document contains
information on a new product, specifications herein are
subject to change without notice.

312

3 1 3

3 1 4

315

3 1 6

3 1 7

3 1 8

319

320

3 2 1

Appendix 4

MC6821 data sheet

Supplied courtesy of Motorola Semiconductors.

The information here has been carefully checked and is
believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Motorola
reserves the right to make changes to any products
herein to improve reliability, function or design.
Motorola does not assume any liability arising out of
the application or use of any product or circuit
described herein. No licence is conveyed under patent
rights in any form. When this document contains
information on a new product, specifications herein are
subject to change without notice.

322

323

324

325

326

327

3 2 8

3 2 9

330

3 3 1

332

Appendix 5

The Dragon 64

The major design aim of the Dragon 64 was to ensure
upward compatibility with the Dragon 32 and yet provide
a machine with enhanced facilities. These extra
facilities are:

(1) An additional 32K of RAM.

(2) An RS232 (serial) interface.

(3) Auto-repeating keys.

As the Dragon 64 is virtually identical to the Dragon
32 in most other respects, we confine ourselves to
describing these extra features and detailing the
differences between the two machines.

1. SWITCHING IN RAM

The SAM chip, described in Appendix 2, can operate in
two modes called map type 0 and map type 1. This
allows the chip to map addresses to either a 32K or to
a 64K RAM address space and this facility means that
compatibility between the Dragon 64 and the Dragon 32
can be maintained.

Unlike the Dragon 32, the 64 can operate in both map
types provided by the SAM chip and yet still use
Extended Color BASIC. On power up, the 64 is
configured like a 32. In other words, it is in map
type 0 which provides access to 32K of RAM, addressed
from 0000 to 7FFF, 16K of BASIC ROM, addressed from
8000 to BFFF, and 16K (minus 256 bytes for I/O devices,
vectors, etc.) of expansion space addressed from C000
to FEFF. Switching in the extra RAM involves switching
to map type 1 which gives a 64K RAM address space (less
256 bytes) from 0000 to FEFF.

The extra 32K of RAM therefore 'overlays' the BASIC
ROM and expansion addresses which means that neither
the Extended Color BASIC ROM nor the cartridge ROM can
be accessed. It is therefore necessary to 'bootstrap'
the machine by first copying a small program into RAM
which selects a 'new' BASIC ROM and copies its contents
into map type 1. Naturally, the new BASIC ROM will
reside in map type 0 and therefore the bootstrap

333

334

operates by reading a byte (from the ROM) in map type
0, switching to map type 1, writing the byte, switching
back to map type 0 to read the next ROM byte and so on.

Because the new BASIC does not need to reside in the
same address space as the 'old' BASIC, it can occupy
the addresses C000 to FEFF. This relocation of the
BASIC results in 48K of RAM being made available for
system/user use. Naturally, if the BASIC interpreter
is not required, e.g. when using the OS-9 operating
system or machine code programs, the full 64K of RAM is
available to the programmer.

The bootstrap procedure is invoked by EXEC on its
own if no other EXECs have been used. The Dragon 32's
default entry in the EXEC vector has been replaced by
the entry point of the Dragon 64's bootstrap routine.
Alternatively, if an EXEC has been used, EXEC 48000
calls the bootstrap entry routine directly.

The 64K mode can be distinguished from the 32K mode
by the fact that the cursor flashes blue rather than
black. One point worth noting is that booting into the
64K mode will not wipe out an existing BASIC program as
it behaves like a CLEAR command. Subsequent resets
after the initial 64K coldboot will perform a 64K
warmboot so that the system remains in 64K mode and
does not revert to 32K mode.

Some extra 'housekeeping' bytes which are unused in
the Dragon 32 are used to keep track of the boot state.
FLAG64 (11A) indicates whether this is a warmboot or a
coldboot. A warmboot (FLAG64 = $55) indicates that the
new BASIC has already been copied into RAM in which
case a further two bytes (11B:11C) hold a 16-bit
checksum that was calculated during the BASIC copy

A checksum is a value that is calculated by adding
together the values of the bytes in the BASIC area of
RAM. If one or more of these bytes are changed, the
value of the checksum will change. Therefore, if the
BASIC system in RAM is changed, the change can be
detected because its checksum will not be the same as
the checksum for the original BASIC system.

When the system is reset, this checksum is checked
against a recalculated checksum of the BASIC RAM area.
If these do not agree then a coldboot, which copies
BASIC into RAM, is initiated. This avoids the problem
of users or programs poking the BASIC in RAM thus
causing the system to crash and then performing a
warmboot which would not restore the correct BASIC
system.

Because the BASIC in the 64K mode resides in RAM, it
is possible to experiment with it. Obviously, great
care has to be taken with such experimentation as it is
all to easy to accidentally crash the system. The
restoration of the original BASIC can be avoided if the
checksum is recalculated from the 'experimental' BASIC
so that it appears that the BASIC system is unchanged.

335

A routine which carries out this recalculation is shown
below.

* RECSUM - re-checksum the BASIC RAM and
* update the system checksum(CSUM64)
*
* Register inputs NONE
*
CSUM64 EQU $11B ; System checksum
RECSUM PSHS X,D ; Save registers

LDX #$C000 ; Base of 64K BASIC
LDD #$0 ; Zero running total

NXTADD ADDD ,X++ ; Add to checksum
CMPX #$FF00 ; until end of
BLO NXTADD ; BASIC reached
STD CSUM64 ; Update system checksum
PULS X,D,PC ; Restore and return

The original BASIC can be restored by clearing FLAG64
and then resetting the machine.

The 64K mode bootstrap is contained in the 'old'
BASIC ROM at address BF49 onwards. The ROM part of the
bootstrap copies the RAM part of the bootstrap into the
cassette buffer since this will not be used during a
boot, and then jumps into the RAM part to complete the
boot sequence. Once loaded, the secondary reset vector
(72:73) is set up to point to the 64K mode bootstrap so
that subsequent resets will invoke the bootstrap
automatically.

Once in 64K mode, there is no easy way to return to
the 32K mode since a reverse bootstrap has not been
provided. Whilst expanding into extra RAM (the 64K
bootstrap) holds no danger, trying to contract back to
32K of RAM may cause the existing program/variables to
be overwritten. It may appear that a safe reversion
technique, which works with programs contained wholly
in the bottom 32K of RAM is as shown below:

CLEAR 200,32766 'Default 32K settings
POKE &H72,&HB4 ' Restore normal 32K
POKE &H73,&H4F ' secondary reset vector

In fact, a reset after these statements does not cause
reversion to 32K mode. To revert requires resetting the
interrupt vectors and changing various other addresses
and pointers.

2. THE RS232 INTERFACE

An RS232 serial interface (via a 7 pin DIN connector)
is provided as standard with the Dragon 64 and can be
used in both the 32K mode and the 64K mode. This
facility supports the additional commands DLOAD and
DLOADM which enable BASIC programs, in ASCII format,

336

and machine code programs to be downloaded into the
Dragon 64 from a host computer. These extra commands
are very similar in operation to their cassette file
equivalents CLOAD and CLOADM. However, DLOAD and
DLOADM are limited to loading files of a particular
format and cannot be used for more general inter
computer communication.

The download facility of the Dragon 64 is supported
by three low-level routines, the entry points of which
are contained in the I/O jump tables. These routines
are, in actual fact, of more general use for serial I/O
and a brief description of each is given below.

* SERIN - Read a byte (8 bits) from the serial port
*
* Register inputs NONE
* Register outputs A - returns byte read
* Registers destroyed NONE
*
* SEROUT - Send a byte (8 bits) to the serial port

* Register inputs A - byte to be output
* Registers destroyed NONE
*
* SERSET - set up serial port baud rate
*
* Register inputs B - baud rate select byte
* Register outputs CC.C = 0 if select byte OK
* CC.C = 1 if select byte out of range
* Registers destroyed B,X,CC
*
* The routine supports 7 baud rate select values:
* B = 0 -> 110 baud
* B = 1 -> 300 baud
* B = 2 -> 600 baud
* B = 3 -> 1200 baud
* B = 4 -> 2400 baud
* B = 5 -> 4800 baud
* B = 6 -> 9600 baud
* The default baud rate on power-up is 1200 baud

The entry points in the I/O jump table for these
routines are:

802A SERIN
802D SEROUT
8030 SERSET

2.1 Using an RS232 terminal with a Dragon 64
The above routines can be used in conjunction with the
character input/output RAM hooks described in section
9.5.1, to replace the normal Dragon keyboard and screen
with an RS232 terminal. In this example, we show how
the character input RAM hook at 16A may be used to

337

redirect input to SERIN and the character output hook
at 167 to redirect output to the SEROUT routine.
However, these RAM hooks are also called for cassette
and printer I/O so you must inspect DEVNUM (6F) to
avoid redirecting their I/O.

The following program demonstrates this technique:

*
* Redirect console I/O to RS232 terminal
*
* Program equates
*
HKCHRO EQU $167 ; Character output hook
HKCHRI EQU $16A ; Character input hook
SERIN EQU $802A ; Serial input entry point
SEROUT EQU $802D ; Serial output entry point
DEVNUM EQU $6F ; Device number location

ORG $4E21
*
* SETIO - set up console I/O redirection
* Register inputs NONE
* Registers destroyed A,X,CC
*
SETIO LEAX INCH,PCR ; Set up address of input
* routine

STX HKCHRI+1 ; and redirect console input
LEAX OUTCH,PCR ; Do the same for
STX HKCHRO+1 ; console output
LDA #$7E ; Opcode for JMP
STA HKCHRI ; placed in I/O
STA HKCHRO ; RAM hooks

* Use a call to SERSET here for baud rate setting
* if not a 1200 baud device

RTS ; Return
*
* INCH - input a character from RS232 port
* Register inputs NONE
* Register outputs DEVNUM = 0 -> A contains character

DEVNUM <> 0 -> A unaffected
*
INCH TST DEVNUM ; Is this console input

BNE INXIT
JSR SERIN ; Yes, read RS232

*
* At this point, we have input the character from
* the RS232 port and therefore wish to avoid returning
* the code which will input from the normal keyboard.
* Simplest solution is to remove the return address
* from the stack
*

LEAS 2,S ; Remove latest return
INXIT RTS ; Return

338

* OUTCH - output a character to RS232 port

* Register inputs A - contains character

OUTCH TST DEVNUM ; Is this console output
BNE OUTXIT
JSR SEROUT ; Output to RS232
LEAS 2,S ; Remove return address

OUTXIT RTS ; Return

2.2 Using a serial printer with the Dragon 64
The RS232 port can also be used as the standard printer
interface instead of the Centronics (parallel)
interface. Which of these two options is selected is
determined by location PRNSEL (3FF). A 0 (default)
value in this location selects the parallel interface,
non-0 selects the serial interface. Therefore:

POKE &H3FF,1 'Selects serial printer
POKE &H3FF,0 'Selects parallel printer

In addition to this printer select byte, there are two
other bytes (3FD:3FE) which specify an end-of-line
delay period since some printers (especially serial)
require this. The time delay is in increments of 10
milliseconds. For example:

POKE &H3FE,100

will provide a delay of 100*10 milliseconds = 1 second.
The minimum delay (default) is 0 and the maximum delay
is 655.35 seconds.

2.3 Configuring the RS232 interface
The pinout of the RS232 connector is shown in Figure
A5.1. The device that drives this interface is an
R6551 Asynchronous Communication Interface Adapter
(ACIA) which, like the PIA, is a programmable device.
In its default configuration, this device is programmed
to produce 1 start bit, 8 data bits and 2 stop bits
with no parity at a baud rate of 1200 baud.

Fig. A5.1 RS232 Pin out connections

339

Like all I/O devices in the Dragon 64, the ACIA is
memory-mapped and occupies the following address space:

Address Register
FF04 Transmit data register (on write cycle)
FF04 Receive data register (on read cycle)
FF05 Status register
FF06 Command register
FF07 Control register

Because the ACIA is a sophisticated device with many
options, it is not possible to cover the operation of
this chip in detail here. In most instances, it is
easier to configure hardware (printers, terminals,
etc.) to the default configuration since this is a once
and for all operation compared to configuration by
software as this is necessary every time the Dragon is
switched on. However, we do provide the following
BASIC statement which can be used to select the baud
rate of the device.

POKE &HFF07,((PEEK(&HFF07) AND &HF0) OR B)

The variable B holds a value which specifies the baud
rate of the device connected to the RS232 interface.
Possible values are:

3. THE KEYBOARD AUTO-REPEAT FACILITY

This facility is provided in the 64K mode only and is
not implemented when the Dragon 64 is operating in 32K
mode. The reason for this is to maintain compatibility
with existing software, such as the DREAM assembler,
which provide their own auto-repeat facilities.

The auto-repeat makes use of the 50Hz (60Hz)
interrupt as the timing reference which determines the
delay before repeating the key and which also controls

B-value
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Baud rate
50
75
110
135
150
300
600
1200
1800
2400
3600
4800
7200
9600
19200

340

the rate of repeat. A byte location, REPDLY (11F) in
RAM contains the inter-repeat delay value. The default
value of REPDLY is 5 giving an auto-repeat of 10
characters per second. The same value is also used to
control the delay before starting the repeat but, in
this case, its value is multiplied by 8 giving a normal
delay of 0.8 seconds before auto-repeat starts. By
altering the value in REPDLY with a POKE statement, you
may increase or decrease the auto-repeat rate/delay.

Auto-repeat is incorporated in the 64K mode by
redirecting the secondary interrupt IRQ vector to an
additional piece of code (entry point FE18) which is
dedicated to updating the keyboard delay value. After
executing this code, a jump is made to the normal
interrupt service routine. Therefore, the auto-repeat
facility can be disabled by reinstating the normal
interrupt service routine entry point (DD3D) into the
secondary IRQ vector as described in section 8.2.3.
Conversely, auto-repeat can be incorporated into the
32K mode by altering the secondary IRQ vector to jump
to the normally unused keyboard delay update code
located at BF20 in the 'old' BASIC ROM.

There are two further 'housekeeping' bytes which are
also used in the keyboard repeat process. These are
LSTKEY (11D) which keeps a copy of the last key code
returned by the keyboard polling routine and CNTDWN
(11E) which contains the updated delay value which,
when it reaches zero, triggers the code which resets
the keyboard rollover table thus causing the current
key depressing to be recognised as a new depression. A
mechanism to do this has already been described in
Chapter 8.

4. DRAGON 64/32 DIFFERENCES

The most important differences between these two
machines have already been covered in the previous
sections in this appendix. However, there are a few
other minor differences and these are summarised below.

4.1 Differences in BASIC
The only differences between the two machines in terms
of Extended Color BASIC is that DLOAD and DLOADM are
implemented in the Dragon 64 and that the USR call bug
described in Chapter 5 has now been corrected. Recall
that this bug meant that USR calls 1 to 9 were not
recognised without a padding character so that USR1 had
to be written as USR01 , USR2 as USR02, etc. Now, you
must write these as USR1, USR2, etc. as USR01, USR02,
etc. are all (correctly) taken to be syntax errors.

Another slight difference is that the functions
VARPTR and MEM have been altered so that they return an
unsigned 16-bit value. Previously, if these functions
were used with an argument which was greater than 32767

341

they returned a negative result because negative
integers are represented in two's complement notation
and have values from 32768 to 65535. Now a positive
result is always returned.

4.2 RAM usage
The Dragon 64 in 64K mode provides an extra 16K bytes
for user/variable storage with 16K bytes used by the
BASIC and I/O space. The BASIC RAM area can also be
used for those applications which do not need a
resident BASIC interpreter such as the OS-9 operating
system and machine code programs. In addition, some
unused bytes in the system pages of the Dragon 32 are
now used by the Dragon 64. These are locations 11A to
11F inclusive and 3FD to 3FF inclusive.

4.3 ROM usage
There are very few differences between the BASIC ROM
entry points in the Dragon 32 and the Dragon 64 when in
32K mode. All the dispatch addresses given in Appendix
7 remain the same. However, there are a number of ROM
patches to previously unused areas of ROM in the Dragon
64 which repair some of the bugs in the Dragon 32.
More major differences apply to the area of ROM which
contains I/O driver code as, obviously, additions have
been made to support the RS232 interface, the latent
auto-repeat facility and the 64K mode bootstrap.

In the 64K mode, the entry points to the system
routines are now in RAM in the address space C000 to
FEFF so, obviously, old entry addresses are completely
incompatible. However, throughout most of this address
space there is a simple relationship between the old
ROM entry points and the new ROM entry point since they
are offset by 4000 (hex) bytes. In other words, the
direct jump table is located at C000 onwards, the
indirect jump table at E000 onwards, etc. This simple
relationship is maintained until the area of RAM that
corresponds to the old ROM initialisation sequence
(B39B/F39B) from which point the relationship no longer
holds.

The reason for this is that RESET automatically
selects map type 0 and therefore enters the 32K mode
ROM where the initialisation code (RESET service
routine) resides. This code is not duplicated in the
BASIC RAM area.

Appendix 6

The ASCII character set

The table below shows the characters in the ASCII
character set and their associated values. Notice that
the character values are given in octal (base 8) rather
than decimal notation. Each octal digit represents 3
bits from 000 to 111 and the octal representation means
that the bit pattern of each character may be readily
deduced.

342

000
006
014
022
030
036
044
052
060
066
074
102
110
116
124
132
140
146
154
162
170
176

nul
ack
np
dc2
can
rs $

*
0
6
<
B
H
N
T
Z
\
f
1
r
X

~

001
007
015
023
031
037
045
053
061
067
075
103
111
117
125
133
141
147
155
163
171
177

soh
bel
cr
dc3
em
us
%
+
1
7
=
C
I
0
u
[
a
g
m
s
y

del

002
010
016
024
032
040
046
054
062
070
076
104
112
120
126
134
142
150
156
164
172

stx
bs
so
dc4
sub
sp
&
,
2
8
>
D
J
P
V
\
b
h
n
t
z

003
011
017
025
033
041
047
055
063
071
077
105
113
12 1
127
135
143
151
157
165
173

etx
ht
si
nak
esc
!
'
-
3
9
?

E
K
Q
W
]
c
i
o
u
{

004
012
020
026
034
042
050
056
064
072
100
106
114
122
130
136
144
152
160
166
174

eot
nl
dle
syn
fs

"

(
.
4
J

@
F
L
R
X
^
d
j
P
V

|

005
013
021
027
035
043
051
057
065
073
101
107
115
123

131
137
145
153
161
167
175

enq
vt
dcl
etb
gs

)
/
5
9

A
G
M
S
Y

e
k
q
w
}

Appendix 7

Dragon-specific tables

This appendix is made up of detailed, Dragon-specific
information collected together in a tabular form.
Rather than include such information in the text, we
have collected a number of tables together in this
appendix. First, we summarise the functions and
connections of the individual bits in the Dragon's PIA
registers.

1. PIA SUMMARY

(1) P0DDRA - A-side data direction register PIA0
All bits in this register DA0-DA7 are set to 0
meaning that the corresponding bits in the PDR
are inputs.

(2) P0PDRA - A-side peripheral data register PIA0
Bits PA0-PA6 are connected to keyboard rows 0 to
6. Bits PA7 is a joystick comparison input and
bits PA0 and PA1 are connected to the right and
left joystick buttons respectively. PA0 and PA1
are also shared by keyboard rows 1 and 2 thus the
keyboard must be disabled when joysticks are
used.

(3) P0CRA - A-side control register PIA0
The table below shows the functions of the bits
in this register.

CRA0 CA1 control, 0->disable IRQA, l->enable IRQA
CRA1 CA1 control, 0->set IRQA1 on HI to LO, l->

set IRQA1 on LO to HI.
CRA2 0->P0DDRA, 1->P0PDRA
CRA3 CA2 control, 0->CA2 LO, 1->CA2 HI
CRA4 1 -> CA2 in CRA3 in bit follow mode
CRA5 as above
CRA6 IRQA2 flag, not used
CRA7 IRQA1 flag

(4) CA1 - Horizontal sync interrupt input (63.5 mi
croseconds)

(5) CA2 - LSB of two analog multiplexor select lines

343

344

(6) P0DDRB - B-side data direction register PIAO
All bits in this registers are set to 1 thus con
figuring the corresponding bits in P0PDRB as out
puts.

(7) P0PDRB - B-side peripheral data register PIAO
This register is shared by the keyboard input and
printer data lines. Bits PB0-PB7 are either con
nected to keyboard matrix columns 0 to 7 or are
printer data bits 0 to 7.

(8) P0CRB - B-side control register PIA0
The table below summarises the functions of the
bits in this register.

CRB0 CB1 control 0 -> disable IRQB,
1 -> enable IRQB

CRB1 CB1 control 0 -> set IRQB1 on Hi to LO,
1 set IRQB1 on LO to HI

CRB2 0 -> P0DDRB, 1 -> P0PDRB
CRB3 CB2 control, 0 -> CB2 LO, 1 -> CB2 HI
CRB4 =1 CB2 in CRB3 bit follow mode
CRB5 =1 CB2 in CRB3 bit follow mode
CRB6 IRQB2 flag, not used
CRB7 IRQB1 flag

(9) CB1 - field sync interrupt (20ms, 50Hz)

(10) CB2 - MSB of analog multiplexor select lines

(11) P1DDRA - A-side data direction register PIA1
Bit 0 in this register is 0 thus configuring bit
0 in the peripheral data register as an input.
All other bits are 1, configuring associated
peripheral data bits as outputs.

(12) P1PDRA - A-side peripheral data register PIA1
Bits 2 to 7 in this register correspond to bits
0-5 of a 6-bit DAC input value. Bit 0 is a
cassette data bit input and bit 1 is the printer
strobe output.

(13) P1CRA - A-side control register PIA1
The functions of the bits in this register are
summarised in the table below.

CRA0 CA1 control, 0->disable IRQA,
1 -> enable IRQA

CRA1 CA1 control, 0->set IRQA1 on HI to LO,
1 -> set IRQA1 on LO to HI

CRA2 0 -> P1DDRA, 1->P1DDRA
CRA3 CA2 control, 0->CA2 LO, 1->CA2 HI
CRA4 =1 -> CA2 in CRA3 bit follow mode
CRA5 =1 -> CA2 in CRA3 bit follow mode

345

CRA6 IRQA2 flag, not used
CRA7 IRQA1 flag

(14) CA1 - printer acknowledge interrupt input, not
used

(15) CA2 - cassette motor control, 0 -> off, 1 -> on

(16) P1DDRB - B-side data direction register PIA1
Bits 0 to 2 in this register are 0, configuring
associated bits as inputs. Bits 3-7 are 1, con
figuring associated bits as outputs.

(17) P1PDRB - B-side peripheral data register PIA1
Bits 3 to 7 in this register are VDG control
lines. Bit 0 is a printer busy input, bit 1 is
used for single bit sound and bit 2 is a RAM type
detect bit. If it is 0, available RAM is 32K or
64K type. If it is 1, available RAM is 16K type.
In the Dragon 64, bit 2 is programmed as an out
put to select between the 32K mode BASIC ROM (bit
2 = 1 , default) and the 64K mode BASIC ROM (bit 2
= 0).

(18) P1CRB - B-side peripheral control register PIA1
The table below summarises the functions of the
bits in this register.

CRB0 As P0CRB
CRB1 As P0CRB
CRB2 0->P1DDRB, 1->P1PDRB
CRB3 CB2 control, 0->CB2 LO, 1->CB2 HI
CRB4 =1 CB2 in CRB3 bit follow mode
CRB5 =1 CB2 in CRB3 bit follow mode
CRB6 IRQB2 flag, not used
CRB7 IRQB1 flag

(19) CB1 - ROM cartridge interrupt detect

(20) CB2 - sound source enable

2. RESERVED WORD TABLE

The following tables list the reserved words of
Extended Color BASIC, their internal tokens and the
addresses of associated action routines.

Reserved word
FOR

GO(TO/SUB)
REM

'

ELSE

Token
80
81
82
83
84

Dispatch address
8448
85B9
8616
8616
8616

IF
DATA
PRINT

ON(GOTO/SUB)
INPUT
END
NEXT
DIM
READ
LET
RUN

RESTORE
RETURN
STOP
POKE
CONT
LIST
CLEAR
NEW
DEF
CLOAD
CSAVE
OPEN
CLOSE
LLIST
SET

RESET
CLS

MOTOR
SOUND
AUDIO
EXEC
SKIPF
DELETE
EDIT
TRON
TROFF
LINE
PCLS
PSET

PRESET
SCREEN
PCLEAR
COLOR
CIRCLE
PAINT
GET
PUT
DRAW
PCOPY
PMODE
PLAY
DLOAD
RENUM

85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA

8647
8613
903D
8675
872B
8532
8829
8A8B
8777
86BC
85A5
8514
85F3
8539
8E9D
8560
8EAA
8571
8415
9C81
B6D5
B683
B829
B64D
8EA4
B9D3
BA04
BA60
B982
BA9B
BADF
B771
B81F
9D61
9965
9AD9
9ADA
A749
A8C0
A6EF
A6F3
A9FE
AA19
A8D4
B238
AC87
AAF0
AAF3
B051
AABE
A9AF
ADBD
A049
9DFA

346

The tokens which have a dispatch address 'N/A' are
normally handled by other action routines and are not
the first word of a BASIC statement. For example, the
MOTOR action routine looks for OFF or ON, the FOR
action routine looks for STEP and arithmetic and
logical operators are handled by an expression
evaluation routine.

This evaluation routine uses its own dispatch table
to initiate actions for each operator and intrinsic
function.

347

TAB(
TO
SUB
FN

THEN
NOT
STEP
OFF
+
-
*
/
©

AND
OR
>
=
< •

USING

BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Operator/Function
+
-
*
/
©

AND
OR
SGN
INT
ABS
POS
RND
SQR
LOG
EXP
SIN
COS
TAN
ATN
PEEK
LEN
STR$

Token
C3
C4
C5
C6
C7
C8
C9
FF80
FF81
FF82
FF83
FF84
FF85
FF86
FF87
FF88
FF89
FF8A
FF8B
FF8C
FF8D
FF8E

Dispatch address
910E
9105
9275
933C
96A0
8A12
8A11
9425
9499
943E
9ADE
9772
9697
923C
9713
97D1
97CB
9816
9877
8E96
8DC7
8C40

VAL
ASC
CHR$
EOF

JOYSTK
FIX
HEX$
LEFT$
RIGHT$
MID$
POINT
INKEY$
MEM

VARPTR
INSTR
TIMER
PPOINT
STRING$

USR

FF8F
FF90
FF91
FF92
FF93
FF94
FF95
FF96
FF97
FF98
FF99
FF9A
FF9B
FF9C
FF9D
FF9E
FF9F
FFA0
FFA1

8E5C
8DE6
8DD2
B801
BB0D
9956
A00E
8DF1
8E0E
8E15
BA45
B797
8C31
9AF4
9BB4
9D59
A6C7
9B84
9D1D

Address
8000
8003
8006
8009
800C
800F
8012
8015
8018
801B
801E
8021
8024
8027
802A
802D
8030

Routine
Hardware initialisation
Software initialisation
Keyboard input
Cursor blinking
Screen output
Printer output
Joystick input
Cassette on
Cassette off
Write leader to cassette
Byte output to cassette
Cassette on for reading
Byte input from cassette
Bit input from cassette
Read a byte from another computer
Send a byte to another computer
Select baud rate of communication line

Address
A000
A002

Routine
Keyboard input
Character output routine

348

3. I/O JUMP TABLES

As we have indicated in the text, system I/0 routines
may be accessed via a direct jump table starting at
address 8000 and an indirect jump table at address
A000. The routines accessible through the direct jump
are listed below:

The routines accessible via the indirect jump table
are:

Almost all of these routines have been described in the
text. Those which we have not described are the three
routines used when the Dragon is set up to communicate
with another machine and support the DLOAD/DLOADM
features of Extended Color BASIC. These features are
not supported in the Dragon 32 but are available in the
Dragon 64.

The character output routine which may be accessed
through indirect jump address A002 is a general-purpose
routine which can output a character to either the
screen, the printer, or the cassette. The character to
be output should be in register A and location 6F
(DEVNUM) should be set up with a device number. To
output to the screen, DEVNUM should be 0, to the
cassette, DEVNUM should be -1 and if output to the
printer is required, DEVNUM should be -2.

349

A004
A006
A008
A00A
A00C

Cassette on for reading
Block input from tape
Block output to tape
Joystick input
Write leader to cassette

Address
600-604
605-609
60A
60B:60C
60D:60E
60F:610
611
612
613
614
615:616
617:618
619
61A:61B
61C-621
622-627
628-62D
62E-633
634-63A
63B-641

Usage
Temporary storage
Controller variables
Default drive number
Address of FWRITE buffer
AUTO, current line number
AUTO, current increment
RUN/LOAD flag
FREAD/FLREAD flag
AUTO flag, 00=OFF, FF=ON
ERROR falg, 00=OFF, FF=ON
ERROR destination line number
Line number in ERROR
ERROR type
Address of start of statement in ERROR
Drive 1 details
Drive 2 details
Drive 3 details
Drive 4 details
Disk buffer 1 details
Disk buffer 2 details

Appendix 8

The disk operating system

The internal workings of the Dragon's disk operating
system (DOS) are too complicated for us to describe in
detail here. Therefore, we restrict ourselves to a
brief description of the differences between the normal
Dragon 32 system requirements and the system
requirements of the DOS.

1. DOS WORK SPACE

The Dragon's DOS reallocates the memory area normally
occupied by the first graphics page, 600 to BFF, for
its own use. This means that the graphics pages and
BASIC program/variable areas are offset by 1536
(decimal) bytes from their normal position as shown in
Figure 1.3. Fortunately, Extended Color BASIC has been
designed with this in mind so it has no effect on
existing BASIC programs other than reducing the free
space available to them by 1.5K.

This 1.5K DOS work space is used for variables,
buffers, etc. and a breakdown of its organisation is
provided in the table below.

350

351

In addition to the workspace area 600 to BFF, the DOS
makes use of some of the base page locations which are
unused by Extended Color BASIC. These are:

2. DOS LINKS WITH BASIC

The Dragon's DOS extends the facilities of Extended
Color BASIC using the same techniques as described in
section 9.5. Most of these extended facilities are
directly associated with floppy disk file management
such as SAVE, LOAD, BACKUP, etc. However, there are a
number of other commands which extend the BASIC itself
such as AUTO, ERROR, GOTO, WAIT, etc. These disk and
BASIC commands are described in detail in the booklet
supplied wth the DOS and we do not describe them
further here. Rather, we concentrate on the details of
how these new commands are linked to the existing BASIC
system.

As we described in section 9.1.1, part of the
initial power-on/reset sequence is to look for a disk
controller cartridge and, if it is present, jump to its
initialisation routine (entry point C002). The DOS
initialisation routine sets up a second command
interpretation vector table (stub) from 12A-133
inclusive with each entry point set up as shown in the
table below.

642-
649-
650-
683-
697-
6Ab-
6BD-

7F3-
800-

-648
-64F
-682
-696
-6AA
-6BC
-7F2

-7FF
-BFF

Disk buffer 3 details
Disk buffer 4 details
Current drive information
USR vector table (relocated from 134-
Drive descriptor table
Directory sector status
File control blocks (10)
Each FCB is 32 bytes long
Temporary variables
Disk buffers (4)
Each disk buffer is 256 bytes long

-147)

Address
EA
EB
EC
ED

EE:EF
F0
F1
F2
F3
F4
F5
F6

Use
Disk command byte
Drive unit number
Track number
Sector number
Address of disk buffer area
Disk status byte
Current file control block number
Number of bytes in disk buffer area
Number of bytes to transfer to/from buffer
Record length flag, 00=don'tcare, FF=do care
Read/write flag, 00=read, 01=write, FF=verify
IRQ time out flag, 00=check for time out
Non-00=skip time out check

Address
12A
12B:12C
12D:12E
12F
130:131
132:133

Contents
1A
DED4
C64C
07
DEBB
C667

Use
Number of DOS reserved words
Address of DOS word list
Address of DOS word dispatch routine
Number of DOS functions
Address of functions list
Address of functions dispatch routine

Reserved word
AUTO

BACKUP
BEEP
BOOT
CHAIN
COPY

CREATE
DIR

DRIVE
DSKINIT
FREAD
FWRITE
ERROR
KILL
LOAD
MERGE

PROTECT
WAIT

RENAME
SAVE
SREAD
SWRITE
VERIFY
FROM

FLREAD
SWAP

Function
LOF
FREE
ERL
ERR

HIMEM
LOC
FRE$

Token
CE
CF
DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7

Token
A2
A3
A4
A5
A6
A7
A8

Dispatch address
DADC
C520
DB90
DC03
D503
D332
D725
DA35
DC3C
C397
D7FB
D8A5
DC49
D774
D4A7
D3E5
D781
DBC1
D7A5
D53F
DC79
DCC8
DD36
89B4
D7C7
DBD5

Dispatch address
DD88
DDA3
DDBB
DDC1
DDC7
DD7A
DDCB

352

The third stub acts as the terminator and occupies RAM
at 134-147. This means that the USR vector table which
normally occupies that address space has to be
relocated into the DOS workspace (683-696).

The following tables list the reserved
words/functions of the DOS, their internal tokens and
the addresses of associated action routines.

In addition to these new reserved words and functions,

353

some of the existing BASIC commands such as CLOSE and
RUN now relate to the DOS. Such commands are linked
into the DOS via the RAM hooks described in section
9.5.1. There are several new entries in the RAM hooks
as summarised in the table below.

Ram hook
15E-160
167-169
176-178
17C-17E
182-184
188-18A
191-193
194-196

Jump address
D902
D8FA
D917
D960
D720
DD4D
C69E
D490

Index

354

A register, 22, 23
A-D conversion, 220
accumulator offset indexed

addressing, 34
action routines, 229
add instructions, 47
alphanumeric display modes,

159
analogue multiplexor, 208,

220
and instructions, 52
animation, 180
animation delay, 182
arithmetic expression

evaluation, 86
arithmetic instructions, 46
arithmetic shift

instructions, 54
arrays, 107
ASCII, 7
assembler directives, 75
assembler facilities, 69
assembler memory map, 76
assembler program counter,

77
assembly code,

hand-translation, 39, 75
assembly language program

development, 67
assembly language

programming
advantages, 66
disadvantages, 66

assignment statements, 84
auto increment/decrement,

11, 24, 73
auto increment/decrement

indexed addressing, 33

B register, 22, 23

BASIC
adding new commands,

239
array descriptors, 230
array storage, 229
dump program, 226
graphics display, 158
I/O routines, 146
information

representation, 230
largest number, 232
number representation,

230
program storage, 226
reserved words, 228
smallest number, 232
system variables,

244-248
text display, 152
variable storage, 229
variables, 234

binary arithmetic, 4
binary numbers, 3
binary search, 220
bit test instructions, 55
BITIN, 216
BLKIN, 216
BLKOUT, 216
branch instructions, 57
BREAK key, disabling of,

244
bus, 1, 37

connections, 222
byte test instructions, 56
byte, 4

cartridge expansion port,
221

CASOFF, 216

355

CASON, 215
cassette control, 213
cassette routines, entry

points, 217
CBIN, 216
CBOUT, 216
Centronics interface, 205
character input routine,

102
character output routine,

103
character representation, 7,

159
character strings, 132

fundamental operations,
133

manipulation routines,
137-142

representation
techniques, 134

storage area, 133
checkerboard pattern, 162
CHKHP, 137
CHRGET, 240
clear instructions, 49
clear screen, 173
CLOADM statement, 149
clock, 1
CLS, 173
CMPSTR, 140
cold-start initialisation,

225
colour conversion program,

179
colour graphics

1 mode, 163
2 mode, 163
3 mode, 164
6 mode, 164
display modes, 161

colour set, 154, 162
selection, 172

command interpretation
vector

defining new, 241
(stub), 239

comments field, 74
compare instructions, 56
complement arithmetic, 5, 6
complement instructions, 53
compound conditional

expressions, 94
computer architecture, 2

condition code (CC)
register, 11, 26, 40,
124

conditional constructs, 89
constant offset indexed

addressing, 34
C0PY1B, 181
C0PY2B, 177
CPSTR, 137
CSRDON, 216
CSS, 172
cursor

addressing, 160
blinking, 160

D register, 23
DAC, 213, 220
DACOUT, 210
data highway, 1
data movement instructions,

41
decimal adjust instruction,

50
decimal arithmetic, 8, 9
decimal system, 3
DELAY, 182
digital-to-analogue

conversion, 210
direct addressing, 28, 72,

78, 147
dispatch table, 229
DP register, 25
Dragon block diagram, 15
Dragon logo, 175

animation, 182
colour data table, 180
data table, 176
flame data table, 181
grid pattern, 176
repetition, 178

Dragon memory map, 17
Dragon memory organisation,

16-19
DREAM assembler, 70
dynamic RAM, 16

EQU directive, 77
exchange instructions, 43
EXEC statement, 148
EXEC vector, 148
extended addressing, 27, 72

356

FCB/FCC directive, 78
FDB directive, 79
FIB, 131
Fibonacci numbers, 130
FILLER, 178
FIRQ, 190
floating point accumulator

(FAC), 232
for loops, 97
FREESP, 135, 136, 139
frequency shift keying, 213
FULL6R, 172

garbage collection, 135
general purpose register,

10
GETSP, 135, 136, 138
GIVABF, 232, 234
GMODE, 171
goto statements, 101
graphics

display hardware, 152
hardware setup, 170
modes, 153
page selection, 173
segment size, 156
symbol design, 175
symbols, 174
test rig, 158
utilities, 169

heap, 135
hexadecimal notation, 7, 8
hexadecimal system, 3
high-level language

programming, 65

I/O hardware diagram, 187
I/O programming techniques,

193
Iliffe vectors, 109
immediate addressing, 27,

72, 144
index registers, 23-24
index registers for array

accessing, 108
indexed addressing, 31, 72
indirect addressing, 29, 30,

73
input and output, 101

instruction format, 26, 27,
74

INTCNV, 232, 234
integer representation, 5
interrupt handling

instructions, 62, 191
interrupt mask, 188
interrupt priority, 189,

191
interrupt processing, M6809,

general, 189
interrupt service routine,

188, 197
interrupt vector, 188, 190,

193
interrupt-driven I/O

transfer, 195
interrupts, 188

adding new service
routines, 196

Dragon-specific, 192
software, 191

INV control bit, 161
IRQ, 189, 197
IRQSET, 198

JOYIN, 219
joystick

buttons, 219
control, 218
I/O, 194
selection, 221
values, 219

JOYSTK, 218
jump instructions, 63
jump tables, 80, 145

direct, 146
indirect, 146
initialisation of, 147

keyboard
auto-repeat, 204
conrol, 201
matrix, 201
scanning, 202, 220,

244
state bytes, 203

label field, 71
load effective address

instructions, 44

357

load instructions, 42
local variables, 129
logic instructions, 51
logical shift instructions,

54
LOGOTL, 177
loop constructs, 96
low-level language

programming, 65
LPOUT, 206

M6809 programming model, 21
M6809 registers, 21
machine code loader, 82
machine code monitor,

111-120
machine instructions, 11,

12, 38
MAXMIN, 129
memory addresses, notation,

41
memory-mapped input/output,

36
mnemonic field, 71
MOVFM, 232, 235
multi-armed conditionals,

93
multiplication and division

88
multiply instruction, 49

negate instructions, 50
NEWDSP, 240
NEWSET, 241
NMI, 190
no-operation instruction,

63
number conversion, 232
numerals, 3

operand field, 72
optimisation, 68, 91, 93,

98, 100, 106
or instructions, 52
ORG directive, 80

PAGEX, 173
parameter passing

in registers, 123

using parameter area,
125

using stack, 125
PATGEN, 162
PC-relative addressing, 143
PCLS, 158
PEEK and POKE, 88
PIA, 155, 193, 198

control lines, 199
control register, 199
data direction

register, 199
data register, 199
equate table, 201

PIAs, Dragon-specific, 200
PMODE, 157
polled I/O transfer, 194
position-independent code,

35, 78, 142
postbyte, 27, 31, 32
power-up/reset actions, 224
print routine, 243
printer control, 205
printer control lines, 205
printer routine parameters,

206
problem solving, 121
processor architecture, 9
program counter, 12
PULL, 14
pull instructions, 46
PUSH, 14
push instructions, 45
PUT directive, 81

R32C0L, 174
RAM hooks, 242-244
read-only memory, 16
real number representation,

231
recursion, 125, 130, 131
register addressing, 29, 72
register, 9, 10
relative addressing, 35
relative branch

instructions, 143
repeat loops, 100
RESET, 190
resolution graphics

1 mode, 165
2 mode, 165
3 mode, 166

358

6 mode, 166
modes, 164

return instruction, 64
returning results on the

stack, 128
RMB directive, 80
rotate instructions, 54

SAM chip, 156
SAM control register, 156
SAMMOD, 170
SAMSET, 172
SCREEN, 157
SEM18, 172
Semigraphics

4 mode, 167
6 mode, 167
8 mode, 168
12 mode, 166
24 mode, 166
character organisation,

167
display modes, 166

shift instructions, 53
sign bit, 5
sign extend instruction, 50
signed conditional branch

instructions, 59
simple conditional branch

instructions, 59
single-armed conditionals,

90
SNDSEL, 209
sound control, 207
sound output generation,

211
sound source selection, 209
sound source, single bit,

212
sound sources, 208
special purpose register,

10
SQUARE, 123, 126, 128
stack, 12, 13
stack frame, 126, 127
stack pointer, 13
stack pointer registers, 24,

25
STINIT, 136
store instructions, 43
STRCAT, 140
string descriptor, 233

string representation, 233
subroutines, 105, 121

assembly language, 122
call sequence, 129
disadvantages of BASIC,

121
entry/exit sequence,

129
parameter passing, 106
register conventions,

106
SUBSTR, 141
subtract instructions, 48
synchronous address

multiplexor, 14

tape file format, 214
tape leader

format, 214
length, 215

tape verification, 215
test instructions, 55
transfer instructions, 43
two's complement, 6
two-armed conditionals, 92
two-dimensional arrays, 108,

110
TXPCH, 207

unconditional branch
instructions, 58

unconditional I/O transfer,
194

unsigned conditional branch
instructions, 60

USR calls, 149, 235
bugs, 149
numeric parameters,

235
string parameters, 236
string results, 237

USRASC, 236
USRINC, 237

VALTYP, 234
VARPTR, 234
VDG, 153, 159

control lines, 154,
155

VDG/SAM addresses, 169

VDGMOD, 170
video RAM, 155

warm-start initialisation,
225

while loops, 99
word, 4

X register, 23

Y register, 23

zero offset indexed
addressing, 34

359

