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Preface

The advent of the microchip has resulted in the
invention of a product which, ten years ago, was
conpletely unthinkable. This product 1s the personal
conputer and there are now mllions of famlies who own
their own conputer. This book is about one such
machi ne, the Dragon.

The Dragon is a second-generati on personal conputer.
In contrast to early personal machi nes which were slow,
had snall menories and |owresolution nonochrone
disglays, the Dragon offers a fairly large nenory,
hi gh-resol uti on col our graphics, sound synthesis and a
pr of essi onal-qualitel keyboard. There are two versions
of the Dragon available, the Dragon 32 and the Dragon
64, and the nmaterial in this book is relevant to both
of these nachi nes.

Personal conputers are renarkable value for rmneK.
Most of them are nore powerful than machines of the
early 1960's which cost hundreds of thousands of pounds
or dollars. Furt hermore, personal nachines are well -
built and reliable, nmuch nore so than early large
conput ers. However, the weakest aspect of nost
personal nachines is the descriptive docunentation
ﬁrovided with the machine. Wilst this is no real
ardship to those who only use their nachine for gane
ﬁl aying, the hobbyist who w shes to nmake the nost of
is machine has a tough time finding out technical
details of his system

This book is intended for such readers and for those
readers who have explored the BASIC programming
capabilities of their machine and now want to go
further. VW& do not assume any technical know edge of
conputing apart froman ability to wite and understand
BASI C programs. Inevitably, this neans we nust include
some introductory material which can be skipped by
readers with experience in conputing.

Wen this book was witten, the only Dragon
available was the Dragon 32. As a result, the material
here was witten for that nachine but nost of the
exanples are equally relevant to the Dragon 64. Time
has not permtted us to include Dragon 64 details in
the text, but we have provided an appendi x (Appendi x 5)
summarising the differences between the Dragon 32 and
the Dragon 64. Ve have also included an appendix



(Appendi x 8) which covers details of the Dragon's disk
operating system

Many readers wll be aware that the Dragon and the
Tandy Golor Conputer nmake wuse of the same M809
rocessor chip and the same BASI C system devel oped by
crosoft. As a result, much of the naterial here is
also relevant to the Tandy machine and users of that
?yste_m may be able to pick up useful hints and tips
romit.

The book is about the internal workings of the
Dragon rather than about programm ng. W describe the
MB809 processor which is used in the Dragon and show
how machine code prograns for that processor can be
witten in assenbly [anguage. W also describe the
gaphi cs system and the input/output system on the

agon and, finally, we provide bits and pieces of
technical information which may be valuable to the
assenbl y code progranmer.

It is inpossible for us to be conprehensive in our
di scussions of assenbly code programm ng, graphics,or
whatever. Rather, we provide Dragon-specific details
rather than an extensive discussion of (general
techniques. W hope to encourage the reader to delve
further into these application areas and we provide a
reading list which will help you get nore information
about specific techniques.

Printing prograns in a book like this can somnetimes
be wvery wuntidy. Accordingly, we have taken sone
liberties with program comrenting and have used | ower
case letters for comrenting in all of our prograns. W
may also have made sone other minor changes to the
program | ayouts so that they are easier to read but the
actual program code has not been changed.

There are many ﬁeople who have contributed in one
way or another to the ideas and techniques presented in
this book anongst them our coll eagues at the Depart nent
of Conmputer Science, University of Strathclyde. Ve
would also like to express our gratitude to those at
Dragon Data Ltd., in particular to Tony O arke, R chard
Wadnan and Derek WIIians. Permssion to use the
Dragon logo in our exanples was kindly granted by
Dragon Data Ltd.

Finally, special thanks nmust go to our famlies
especially our w ves Pauline Sreed and Anne Sommerville
for their support, encouragenment and tol erance of |ost
gveEi ngs and weekends throughout the witing of this
00K.

lan Sommerville
Duncan Sneed
August 1983



Chapter 1
| ntroducing the Dragon

Every conputer, be it minframe, mniconputer or

mcroconputer, is made up of a very large nunber of
el ectroni ¢ conponents which can be viewed at greater or
| esser levels of detail. At the highest level, the

conputer can be considered as an organised collection
of devi ces nanely:

(1) A processor.
This is the device which actually carries out the
conputations (add, multiply, conpare etc.) on
el enents of data.

(2) A store.
This is the device which is used to store infor-
mation so that it may be readily accessed by the
processor. This information can be transferred
to and from ot her system devi ces.

(3) e or nore peripheral controllers.
Every conputer needs sonme way of getti n% i nf or ma-
tion from and passing information to the outside
world. This is acconplished through peripheral
devices such as floppy disks, printers, Kkey-
boards, video displays, etc. Each of these dev-
ices needs a controller built into the conputer
system to ensure that information is properly
transferred to and from the processor and menory.

(4) A cl ock.
This is not a clock to tell the tine but is real-
ly a pulse generator which ensures that the
operation of all the other devices making up the
system is synchroni sed.

There are various different ways of connecting these
devices together so that they operate as a conputer.
he of the nost comon interconnection techniques,
particularly in mniconputer and m croconputer systens,
Is to connect all the system devices to a comon data
hi ghway. This connection is sonetimes called a bus. A
di agram of such an interconnection is shown in Figure
1.1 where P1, P2, and P3 are peripheral controllers.
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Fig. 1.1 Microcomputer organisation

Notice that the clock has a separate connection to
the other system conponents and that some of the
peri pheral devices are 'one-way' devices. For exanple,

a printer is a wite-only device - you can only
transfer information to it, and a keyboard is a read-
only device - you can only transfer information from

it.

O mcroconputer systens (like the Dragon), the
processor is built onto a single mcrochip as are each
of the peripheral controllers. The menmory is normally
built as a nunber of connected m crochi ps.

These chips are bonded into holders which have a
nunber of pins sticking out of each edge. Sone of
these pins are connections to the data highway and
others are connections to control lines (like the clock
connection). The number of pins on a chip depends on
the type of information which nust be transferred and
the nunber of control signals input and output.
Normally, nore conplex chips, |like mcroprocessor
chi ps, have nore pins than (relatively) sinpl e
peripheral controller chips.

The next level down from the conputer organisation
is sonetimes called the conputer architecture. In the
same way as a buil di n? has an architecture which is an
overall structure tailored to the building s users, so

too does a conputer. In the case of a conputer,
however, the architecture is the structure as seen by
conPut er prograns running on the machine. Just as
building architecture is seen as an organisation of
r oons, corridors, wal | s, etc. r at her than an

organi sation of elenentary conponents such as bricks,
fl oorboards and pipes, conputer architecture is not
concerned with basic electronic logic conponents.
Rather, it is the collection of these conponents into
larger functional units.

The conputer architect is nostly concerned with the
design of the processor and how it can be set up to
transfer information to and from other system
conponents. The most inportant of these is the store.
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Therefore, a major part of the architect's job is to
design the processor so that it makes optinmm use of
the systenmi s nenory.

In this chapter, we introduce basic ideas of how

information is represented in a computer and we
describe, in general ternms, the principles of conmputer
architecture. W then go on to describe the Dragon's

har dwar e organi sation and the chapter concludes with a
description of how the Dragon's nenory is used.

1.1 | NFORMATI ON REPRESENTATI ON

At their nobst fundanmental level, all the components of
a conputer are fabricated out of electronic swtches
which can only be in one of tw states - they can be on
or off. This neans that the ideal way to represent
information in a conputer is as a binary pattern, a
pattern of 1s and 0s. These patterns can represent
nunbers, characters, states of a device, colours, etc.
As long as the interpretation of a pattern is known in
advance, any information can be encoded in binary form

The nobst common use of binary patterns in a conputer
is to represent nunmbers. Binary nunmbers are nunbers
whose base is 2 and digits in a binary nunmber represent
powers of 2. For exanple, the binary nunber

10010111

can be converted to our npre famliar decinal notation
by considering it to be:

| (27) +0(2°%) +0( 2% +1 (2%) +0( 23) +I (2%) +1 (2%) +I (29)

If we carry out these multiplications and additions, we
find that the above binary nunber represents the
deci mal nunber 151. Starting from the right, each
place in a binary number represents an increasing power
of 2. This is a famliar idea which is the basis of
all nodern nunber systens. Deci mal nunbers, nunbers
whose base is 10, are organised so that each place
represents a power of 10. Therefore, the nunmber 3506
can be considered as:

3(10%) + 5(102%) + 0(10%) + 6(10°)

The nunber of distinct nunerals needed to represent any
nunber depends on the base of that nunber system In
general, if the nunmber system base is m m1 distinct
nunerals plus zero are needed. Therefore, for the
deci mal system we need the nunerals 1, 2, 3, 4, 5, 86,
7, 8, 9, 0. For a hexadecimal system whose base is
16, these nust be extended wth extra synbols
representing 10, 11, 12, 13, 14, 15 and the nuneral set
is1l 2, 3, 4, 5 6, 7, 8 9, A B C D E F 0. The
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bi nary system has a base of 2 so only a single digit,
1, plus 0 is needed in the representation of any binary
number .

Normal arithmetic operations such as subtraction,
addition, nmultiplication, and division can be carried
out on binary nunmbers in exactly the same way as on
deci mal nunbers. The follow ng suns show exanpl es of
bi nary arithnetic.

11001101 10011001
+01101101 -00010111
100111010 10000010

The rules to renmenber are that 1 + 1 is 0 carry 1 and
that 0 - 1 is 1 borrow 1.

The other computations (0+0=0, 1+0=1, 1-1=
0O, 1-0 = 1) are as you wuld expect and have no
associated carry or borrow

Binary arithnetic is tedious and error prone for
humans but, fortunately, is very straightforward for
comput ers. It is relatively easy to build logic
circuits which add binary nunbers and, as we shall see
later in this section, these are all that are required
to inplement all the arithmetic operations of add,
subtract, multiply, and divide.

Normal ly, when we wite down nunbers their length is
unbounded. That is, each nunmber can have as many
digits as we like. The designer of a conputer nenory,
however, doesn't have this flexibility. Conputer nenory
is made up of many distinct cells each of which can
store a fixed nunber of binary digits or  bits.
Normally, each cell stores 8 bits (a byte) and the
nunber of bits used to represent a number nust be a
mul tiple of 8 Combinations of 2 or nore bytes used to
store numbers are usually called a machine word.

The bytes in the conputer's nmenory each have a
uni que address which distinguishes that byte from all
ot hers. Addresses are sinply nunbers which start at
zero and increase by 1 for each byte. Oh a
m croconputer like the Dragon there are 32768 bytes in
user nenory so addresses range from O to 32767. For
conveni ence, menory bytes are divided into blocks of
1024 (called 1K) so we say that the Dragon has 32K or
64K bytes of store.

An anal ogy can be drawn between a conputer's nenory
and the lockers in a sports stadium Each |ocker has a
nunber (its address) which distinguishes it from all
other lockers and items can be stored in the |ocker.
The |ocker nunber doesn't affect what's stored in it
nor does the nmenory address in a conputer. The byte
with address number 23456 can have any number in it.
Just as the Jlockers in a stadium can have names
associated with them as well as nunbers (John Brown's
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| ocker, Mary Jones's locker etc.) so too can menory
byt es. Nanmes are often nore convenient than nunbers
en referring to nenory bytes and we shall see in a
later chapter how this facility can be used.
O nost microconputers, the nunber of bits used to
represent an integer (a nunber without a fraction) is

16, with 32 bits used to r epr esent real
nunbers (nunbers wth fractions). This means that
integers occupy 2 menory bytes and real nunbers occupy
4 nenory bytes. This size limtation restricts the

magni tude of nunbers which can be directly stored and
mani pul ated by the conputer and it is very inportant
that the conputer user bears this in nmnd when using
his machine for nuneric conputations.

However, the restriction on the nunber of digits in
a nunber has a hidden advantage. It allows us to
represent negative nunbers in such a way that the
operation of subtraction can be carried out by adding
the nunbers concerned. This representation of negative
nunbers is called tw's conpl ement representation.

Conpl enent  arithmetic, which depends on nunbers
having a fixed, maxi mum nunber of digits, works wth
nunbers of any base. The nunbers invol ved, however,
nmust have a special binar tag, called a sign bit,
which indicates whether the nunber is positive or
negative. Negative nunbers have a sign bit of 1,
positive nunbers a sign bit of O.

Ve illustrate the principles of conpl enent
arithnetic wusing decimal nunbers rather than cl um;%/
bi nary nunbers but we assume that the naxi num length o
a nunber is 3 digits. That is, we place the
restriction on our nunber systemthat only nunbers from
0O to 999 may be represented. Say we want to carry out
the subtractions 327 - 104 and 96 - 297. These are, of
course, equivalent to the additions 327 + (-104) and 96
+ (-297). The results of these additions are, in the
first case, 223 and in the second -201.

Positive nunbers in conpl ement notation are
represented by the nunber itself wth an associated
sign bit of 0. Therefore, 327 is 0327 and 96 is 0096.
The value of negative nunbers in conpl ement notation is
fornmed according to the follow ng formula:

(maxi mum possi bl e nunber) +l - (absol ut e nunber val ue)
Therefore, where 999 is the maxi num possible nunber,
-104 and -297 have the followng conpl enent
representati ons:

999 + 1 - 104
999 + 1 - 297

1896
1703

Notice that we have added a sign bit (=1) to the left
of the nunber to indicate that it is a negative nunber.
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The subtractions above can now be carried out by adding
the nunmbers in conplenent form In the first case,
0327 + 1896 = 2223. However, because the sign bit is
al ways binary, 2 is actually '10' so we get an answer
of '10'223. Because the length of the nunber s
restricted, we throw away the 1 in the |eftnost
position to get the correct answer 0223.

Simlarly, 96 - 297 is 0096 + 1703 = 1799. This is
a negative number (sign bit =1), so we nust convert it
back to our nore conventional representation using the
same fornmula as was used to convert to conplement form
The conversion therefore is:

-(999 + 1 -799) = -201

Thi s whol e business mght seemto be a bit of a fiddle
with digits being discarded in an apparently arbitrary
fashion and with binary and deci mal nunbers being m xed

up in the sign bit and the nunber itself. However, it
can be mathematically proven that conplement arithnetic
al ways wor ks. The proof isn't relevant here - what is
relevant is that two's conplenent works very well on

computers and that it is very easy to form the two's
conmpl enent of any binary nunber.

To formthe two's conplenent of a binary number, all
the 1 bits are changed to O and all the 0 bits to 1.
This operation is called conplenenting. One is then
added to the number to get the twd's conplenent
representation. For exanpl e, the binary nunbers
01101100 and 00101101 have two's conplenents 10010100
and 11010011 respectively. The leftmpst bit is the
sign bit and operations on it fit in naturally wth
other binary arithmetic.

Notice, however, that the need for a sign bit
reduces the maxi mum and mninum nunbers that can be
represented on a conputer. On a nmachine which uses 16

bits to represent integers, the leftnmost bit nust be
the sign bit so only 15 bits are used for the nunber

representation. This means that the largest positive
integer on such a machine is 32767 and the |argest
negative integer is -32768. It is left as an exercise

for the reader to work out why there is one extra
negati ve nunber.

Normal Iy, mcroprocessors are only equipped wth
hardware units which allow them to add nunbers
t oget her. Subtraction is inmplemented as described
above and nmultiplication and division are inplenmented
in software as sequences of repeated additions for
mul tiplications and subtractions for division.

So far, we have concentrated on the representation
of nunmbers in a conmputer but character processing is at
least as inportant as numeric computation for nost
m croconmputer users. As we said at the beginning of
this section, anything can be represented as a binary
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pattern as long as we know how to interpret it so
characters are normally held in a nenory byte as an 8-
bit binary pattern.

There exist a nunber of different conventions
governing which patterns represent which characters but
the nost commonly used representation on nicroconputers
is the ASAl (standing for Anerican Standard Characters
for Information |Interchange) representation. Under
this system 7 bits are used for char act er
representation and the 8th (leftnmost) bit is always
zero. As well as codes for the upper and |ower case

letters, 'A-'Z, 'a-'z', the digits, '0-'9, and
punctuation characters the ASOIl system also defines
speci al unprintable characters neani ng "end of
transmssion', ‘'ring a bell', 'please acknow edge',

etc. A table of characters and their associated I
values is provided in Appendi x 6.

1.1.1 Hexadeci mal notation

The sequences of 1s and Os which make up binary nunbers
are very awkward for people to use. Because the
nunbers are so long, it is very easy to mss out a
digit or to interchange a 1 and a 0. Naturally, this
changes the value of the nunber and this can conpletely
change the neaning of a conputation.

Ideally, it is best to work in terns of decinal
nunbers and names because these are the types of synbol
that we learn to nanipulate at an early age. However,
it is, unfortunately, sonetimes necessary to talk in
the conputer's terns, that is, in binary. A shorthand
notation for binary nunbers allowing us to wite down
binary equivalents in as few digits as possible reduces
the nunber of errors which we nake. Hexadeci nal
notation is one possible shorthand for binary nunbers.

Hexadeci nal nunbers are nunbers whose base is 16.
This neans that the rightnost hexadecinal (hex for
short) digit represents 0-15, the next digit represents
the nunber of 16s to the power 1, the next the nunber
of 16s to the power 2 and so on. As discussed earlier,
we need 15 digits plus zero for a nunber system whose
base is 16. The hexadecimal digits are:

01 2 3 456 7 9 ABCDEF

The nunber 10 is represented by A° 11 by B, 12 by C 13
by D 14 by E and 15 by F Sone exanples of
hexadeci mal nunbers and their associ ated deci mal val ues
ar e:

9 9
1F 31 (16 + 15)

23 35 (2(16) + 3)

C7 199 (12(16) + 7)

FF 255 (15(16) + 15)

5BE 1470 (5(256) + 11(16) + 14)
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It is very easy to convert from binary nunbers to

hexadeci mal nunbers and vice versa. Hexadeci mal
nunbers represent values from 0O to 15 and this is
exactly 2 to 2 - 1. We need 4 binary digits to make
a hexadeci mal digit so converting from binary to
hexadeci mal involves chopping the binary nunmber into
groups of 4 bits and then witing down the associated
hexadeci mal digit. For exanpl e:

10110111010110111 16EB7Y
1110011011011100 E6DC

Conversion from hexadecimal to binary is equally easy
as long as you nenorise the binary patterns for the
digits fromO0 to F. These are:

0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

These patterns can be calculated very easily but after
using binary and hexadeci mal nunbers for a while, you
will find that you have, in fact, nenorised them Sone
exanpl es of hexadecimal binary translations are:

AlC4 1010000111000100
4FFF 010011111111
5670 0101011001110000
As you read through the book, you will see lots nore

exanpl es of hexadecimal nunbers as we always use them
in preference to binary when discussing particular

representations. In particul ar, we al ways use
hexadeci mal nunbers to refer to nenory addresses so
when vyou see an address of 433, say, this is

hexadeci mal 433 which is decimal 1075.

1.1.2 Decimal arithnetic
One of the problens which arise when binary arithmetic
is used in a computer, where 16-bit words are used to
store integer nunmbers, is that the maximum integer
which can be represented is 32767 and the m nimm
integer is -32768. One way round this is to use so-
called 'decimal notation' where nunbers are represented
as a sequence of digits rather than in absolute binary
form

From the table above, it is clear that the
representation of the digits 0-9 requires that 4 bits
be set aside for each digit. Therefore, each nenory
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cell can hold 2 digits. The table bel ow shows exanples
of nunbers represented in both decinmal and binary form

Nunber Bi nary representation Deci mal representation
2 00000010 00000010
55 00110111 01010101
438 000110110110 010000111000
2583 101000010111 0010010110000011

There is a marked difference between the decimal and
the binary representation of a nunber so special
routines are required to perform decimal arithmetic.
Al t hough decimal nunbers take up nmore space than their
bi nary equival ents, they have the advantage that it is
easier to wite special routines to performarithnetic
on large decimal nunbers than it is to wite such
routines for bi nary nunbers whose representation
requires nmore than 16 bits. The Dragon has an in-built
i nstruction, call ed Decimal Adj ust, to help the
progranmer in witing such routines.

Al t hough decimal arithmetic is very inmportant for
comrercial applications prograns, the hobbyist and
scientific conputer user has no real need of it. W
have introduced it here for conpleteness but we do not
use it in this book. Rat her, we assune that al
nunbers may be represented as integers in the range
-32768 to 32767.

1.2 PROCESSOR ARCHI TECTURE

The central device in a mcroconputer system like the
Dragon is the mcroprocessor chip. The processor is
that device which carries out all data transformations.
That is, given input information, the processor can
mani pul ate this and transformit to the output required
by the programmer. The function of a conputer program
be it in BASIC or sonme other programm ng |anguage, is
to define how the processor should transformits input
into the appropriate output.

The processor has an internal structure, its
architecture, which consists of |ower |evel conponents
and their interconnections. As far as the programer

who wants to get the nobst out of his nachine is
concerned, the nost inmportant of these components are
the processor registers.

A register is sinply an electronic device which can

be used to store information. Usual ly, its width (the
nunber of bits it can hold) is wequal to or sone
multiple of the basic nenory cell size. In the

Dragon's processor, register widths are either 8 or 16
bits and they can therefore hold 1 or 2 nenory bytes.

There are two inmportant distinctions between a
register and an ordinary nenory byte or word:
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(D The processor can access information in a regis-
ter nmore quickly than it can access infornation
in amenory cell. The reason for this is partly
due to the way in which registers are constructed
and partly due to the fact that a bus transfer
bet ween processor and nmenory is not required.

(2) Regi sters may be connected, via an internal pro-
cessor bus, to other processor conponents ich
can transform information held in registers or
which can recognise particular data patterns in
the register. These patterns can be used to
trigger corresponding actions by other processor
conponent s. he nost inportant of these com
ponents, which are present in every processor,
are the arithnmetic and logic unit (AL and the
control unit. These are discussed later in this
chapter.

Registers in a processor nmay be classified as either
gener al - pur pose registers or as speci al - pur pose
registers. General -purpose registers may sinply be
thought of as extensions of the conputer's mermr?/.
Nor nal Idy, information which is accessed very frequently
is held in such registers. It is up to the progranmrer
to transfer frequently accesse information to
general - purpose registers before it is accessed and to
save it in nmenory when the register is needed for other
pur poses.

Speci al - purpose registers nmay also be used to store
frequently accessed information. However, instead of
general information, that is, anything the programmer
wants, being stored in such registers particular itens
of information are always held there. QGher types of
speci al -purpose register are accunulator registers and
condition-code registers which are used as ALU input
and output registers.

The notion of an arithnetic and logic unit has
already been introduced. This is a conmponent whose
function is to carry out arithmetic operations such as

add, negate, etc. and logical operations such as
conpare, conplement, etc. he particular operations
available on the Dragon are described in a later
chapter - you don't need to know these details to

understand the general purpose of an ALU.

Accunul ator registers are those registers which nay
act as ALU inputs and outputs. It is not wusual to
connect all registers to the ALU  Rather, only one or
two accumulator registers are directly connected to
this unit and all traffic to and fromthe ALU nust pass
t hrough these accumul at ors.

Wien sonme arithmetic and logical operations take
pl ace, particular conditions resulting from these
operations nust be ' renenber ed' for subsequent
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operations. For exanple, if tw values are conpared
for equality, it nust be renenbered whether they are
equal or not. Simlarly, if an addition produces a
carry, this nust be remenbered. It is the function of
the condition-code register (CCR) to hold this kind of
information for subsequent use by the programmer. The
exact conditions noted in this register differ from
machine to machine - the details of the Dragon's QOCR
are described in the follow ng chapter.

Al though general arithmetic operations nust all take
pl ace through the accunul ator registers in a processor,
It is sometimes possible to perform very linted
addition and subtraction operations in other special-
purpose registers. These operations can take place
automatically before or after the contents of a
register are accessed. Typi cal |y, this auto
i ncrenment/decrenent facility allows 1 or 2 to be added
or subtracted fromthe value in the register. This is
particularly useful when using so called index
addressing where a register contains the address of a
menory location. Indexed addressing is fully described
in the next chapter of this book.

W have already introduced the idea that a conputer
program specifies how pro%am input is transformed to
the appropriate output. iting a program in BASIC
say, is a convenient way for the user to specify this
transformation but, at the processor level, a BASIC
program can't be directly executed.

Rat her, a translation process nust take place where
the BASIC program is converted to a sequence of
primtive machi ne i nstructions. Thi s sequence
specifies the information transfers between the
conputer's menory  and the pr ocessor and t he
Oﬁerat_ions (add, conpare, etc.) to be carried out on
this information.

Wthin the processor, the nmachine instructions
always make use of the processor's registers. Sone
instructions are dedicated to data novenent to and from
menory, sone to arithnetic and |ogical operations, and
sone to controlling the order of execution of the
instruction sequence.

Each instruction has a unique operation code (o,o-
code) which distinguishes that instruction from all
others. This op-code is sinply a binary nunber which
is used by the control wunit in the processor to
determne which operation to carry out. As Dbinary
nunbers (or even hexadecinmal nunbers) are alien to
humans, we normally refer to instructions by nmeans of a
mmenonic related to the function of the Instruction.
Typi cal instruction menonics are:

LD Transfer (LoaD) information into a register
aRr Set a register to zero (CLeaR
INC  Add 1 (INCenment) the contents of a register.
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As well as an op-code, each instruction may have one or
nore address fields which specify the registers and/ or
menory | ocations used by the instruction. These address
fields specify where the instruction can find the data
on which it operates (its operands). They can be
specified in a nunber of different ways (addressing
nodes) and an understanding of these addressi n% nodes
is vital for the programrer who wishes to wite his own
machi ne | anguage prograns. Because, they vary so nuch
from machine to nachine, addressing nodes are not
di scussed further here but those of the Dragon's
processor are covered in the follow ng chapter.

The machine instructions making up a program are
thenselves stored in the conputer's nmenmory and are
fetched, one by one, fromthe nenory to the processor.
Each instruction may occupy one or nore nenory cells -
in the Dragon, for exanple, instructions nay take up 1,
2, 3, 4 or 5 bytes.

The processor control unit fetches instructions from
menory, identifies each instruction and initiates those
conmponents which actually carry out the specified
operati ons. In every processor there is a special-
ﬁurpose register called the program counter (PC) which
olds the menory address of the next instruction to be
executed by the processor.

There is no direct way for the programmer to affect
the operation of the processor's control wunit in its
fetching and decoding of the machine instructions.
However, the address in the PC register can be changed
by the programrer thus allowing himto nodify the order
in which instructions are executed. This facility means
that it is possible to repeat groups of instructions
(loops) and to skip over one or nore instructions if
sonme particular condition holds (conditions). To the
BASIC programmer, the famliar forns of these are FCR
statenents and |F statenents.

1.2.1 Stacks

The nmachine instructions for a particular Program are
nornally held in a linear sequence of cells in the
conputer's nenory. This sequence may be accessed in any
order by nodifying the value of PC so that the
instruction to be executed is the next one fetched by
the processor's control unit.

Sonetines it is also convenient to store and access
data in the sane way. You nay nornal I(}/ access the data
sequentially using a register to hold the address of
the next data item to be selected. By nodifying the
value in this register, you can change this sequenti al
data access pattern and get to any item of data which

you need.
On other occasions, however, it is convenient to
restrict the way in which data is accessed.

Restrictions of this sort are not arbitrary but are a
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safety feature which reduces the chance of the
pr ogr ammer maki ng  m st akes. There are various
different ways in which restrictions can be applied and
the particular technique chosen nust depend on the
aﬁplication bei ng programmed. For a full discussion of
these data structures the reader nust look at the
specialised texts on this topic such as those suggested
in the reading |ist. However, one of these data
structures is so inportant that you nust understand it
if you are to understand the rest of the book. This
structure is the stack.

Arranging data in a stack is a technique of limting
data storage and access so that the last data item
placed on the stack is the only item which may be
renoved from the stack. Ohce this item has been
renoved, we can then get to the itembelow it, renove
it, and so on.

This can be imagined by conparing the data on the
stack to a pile of plates in a restaurant kitchen.
Assune that a dishwasher is adding plates to this pile
after cleaning them and that a waiter is renoving
plates for serving food. The plate which the waiter

takes fromthe pile is always the last plate ﬁut on the
pile by the dishwasher. Like a data stack, the pile of
plates is a last-in, first-out (LIFO structure. Itens

are renmoved in the inverse order to that in which they
are placed on the stack.

Stacks are easily inplenented in a conputer system
by reserving an area of nmenory for the stack and b
associating a special -purpose register called a stac
pointer (SP) with this nenory area. The stack pointer
al ways holds the address of the last itemplaced on the
stack, that is, the top of the stack. Wen an itemis
added to the stack, the SP register is increnented and
the item placed at this address. Wien an item is
renoved from the stack, the item pointed to by SP is
first copied to a register and SP is then decrenented
to point at the new top stack el enent.

In the traditional stack nodel, the base of the
stack is at a low nenory address and the stack grows
upwards so that elenents placed on the stack have
increasing menory addresses. However, this is an
arbitrary convention and it is equally straightforward
to inplement a stack which grows downwards in menory.
This neans that push in element on the stack involves
decrenenting the stack pointer and popping an elenent
fromthe stack involves incrementing the stack pointer.

Stacks in the Dragon are inplenented in this way so
that the base of the stack is at a high nenory address
with stack el ements in successively |ower addresses.

VW shall see in later chapters how stacks can be
extrenely useful to the programrer. They are so
inportant that many processors (including the one built
into the Dragon) provide special instructions to add
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information to and renove information from the stack.
These instructions are:

PUSH This instruction copies one or nore
registers onto the stack and noves
the stack pointer ‘'up’ by the
nunber of register bytes copied.

PULL (or POP) This instruction coples one or nore
itens fromthe stack into registers
and noves the stack pointer 'down
by the nunber of bytes copi ed.

The provision of instructions like these is one of the
features of the Dragon which makes it such a powerful
conput er .

1.3 THE CRGAN SATION OF THE DRACON

VW now nove on from generalities and general principles
of conputer organisation to details of the organisation
of the Dragon itself. Ever%/ m croconputer is Inherently
conpl ex and the Dragon's hardware is nade up of about
20 mcrochips and their interconnections plus a power
suppl y, eripheral device connectors, etc. The usual
way of describing system hardware is by neans of a
bl ock di agram showi ng the various hardware conponents
and their interconnections. Figure 1.2 is such a block
di agram of the Dragon's hardware organi sation.

As we suggested above, the hardware on a
m croconputer system can be considered as being
conposed of three interacting subsystens. These are:

(1) The processor
(2) The menory
(3) The input/output system

The processor built into the Dragon is a single
mcrochip which is designated the 809E or, si Y,
the M6809. This is an advanced 8-bit processor ich
nmeans that its data highways are 8-bits wide but it
also nakes provision for operations on 16-bit data
el enent s. shall not discuss any details of this
system here as both Chapter 2 and Chapter 3 are devoted
to the architecture of the Ms809 processor.

There is no explicit clock component shown in the
bl ock diagram although we explained in the previous
section that the clock was an inherent part of every
conput er system In fact, t he 0X | abel | ed
"Synchronous address multiplexor' is a multi-function
chip which includes a clock and which acts as the
interface between the processor and the random access
nmenory.
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The MB809 processor is designed to operate with data
addresses of 16 bits so the nmaxi num nmenory size which
can be built into the Dragon is nmade up of 2'°® or 65536
bytes. The term 1K is used to nean 1024 bytes so the
maxi num nenory size on the Dragon is 64K bytes. The
Dragon 32 actually has 48K of inbuilt menory with the
capabili:[r% to expand this to 64K using the cartridge
sl ot. e Dragon 64 has 80K of in-built nenory but
only 64K may be in use at any one tine.

In the block diagram of the hardware, the wunits
marked '32K Dynamic RAM and '8K ROM nake up the
nenory of the Dragon. The two ROM (read-only nenory)
units hold the BASIC system and, because this nenory is
read-only, it is inpossible to change any information
stored in these wunits. However , you can read
information stored there and we shall describe |ater
how to nake use of sone of the BASIC systemfacilities
by calling themdirectly from assenbly code.

The dynamc RAM on the Dragon 32 is the user's
nmenory area which is used for the storage of BASIC and
machine code prograns, user data, etc. As the nane
inplies, the Dragon 32 has 32K bytes available for this
purpose whereas the Dragon 64 has twice as nuch
avallable to the wuser. For nmany applications, 32K
bytes is a perfectly adequate amount of nenory but when
conplex disk operating systens are used, you really
need 64K to get the most out of your nachine. The way
in which the use of nmenory is organised is very
i nport ant and we describe the logical nenory
gr anisation of the Dragon 32 in a separate section
el ow

The Dragon's input/output systemcontrollers are the
units labelled PIAO, PlIA1, and VDG These have
associated peripheral interfaces to the keyboard,
di splay, <cassette, etc. The conplexity of the 1/0
system is such that we cannot describe it adequately
here so we have devoted a conplete chapter to the 1/0
system (Chapter 8) later in the book.

1.3.1 Menory organisation

In a system like the Dragon, the nenory is not sinply
considered as a single honmogenous chunk to be used in
sone arbitrary way by the user or the BASIC system
Rat her, decisions have to be nade about which areas of
nenory are to be dedicated to which function and these
decisions have to be clearly communicated to the
sgst em s programrers so that they know how to organi se
their own prograns and data.

The usual way to communicate this information is by
means of a menory map which is sinply a schematic
di agram of how the systemis nenory is used. Like any
map, this can be presented at greater or |esser levels
of detail and the overall nenmory nap of the Dragon 32
is shown as Figure 1.3.



Address
(Decimal)
65535
MPU VECTORS
65522
NUSED (RESERVED
65504 SINIeU A )
SAM CONTROL REGISTER BITS
65472
UNUSED (RESERVED)
65376
INPUT/OUTPUT DEVICES
65280
¥ CARTRIDGE MEMORY ¥
49152
3 BASIC INTERPRETER =
32768
32767
STRING SPACE
32566 -
STACKlSPACE
3 PROGRAM AND VARIABLE STORAGE =
o EXTRA [__
NORMAL
BASIC
PAGE 7 _/
ww2#__-_§£aﬁ____
; J
PROGRAM/
smaL____fﬂ%f,___
MEMORY J VARIABLES
7680 _____fc?(iEf____._
NORMAL ! EXTRA
oy PAGE 4 gt L e o]
GRAPHICS /
BASIC
4608 PAGEEE3 ______________
SCREEN __Y PROGRAM/
3072 N;;::;i / --------------
S VARIABLES B
= PAGE 1
NORMAL TEXT SCREEN
1024
o EXTENDED PAGE — LINE INPUT BUFFER, ETC
- EXTENDED PAGE — CASSETTE BUFFER, ETC
e EXTENDED PAGE — SYSTEM VECTORS, ETC
o DIRECT PAGE — SYSTEM VARIABLES, ETC

Address
{Hex)

FFFF
FFF2
FFEQ
FFCO
FF60

FFOO

7FFF

7F36

3600
3000
2A00
2400
1E00
1800
1200

0Co0

0400
0300
0200
0100
0000
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The 64K bytes of menmory which is potentially avail able
on the Dragon 32 can be |ooked at as being partitioned
into eight distinct areas.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Sést em vari abl es

This is the area of 1K bytes in RAM from address
0000 to address 3FF. It holds various data val ues
and /O buffers used by the BASIC system As
these are in RAM you may nodify variables in
this area but this nust be done with care as in-
cautious nodification can cause the BASIC system
to fail and require that the machi ne be reset.

Text screen

This is the 512 byte area from address 400 to ad-
dress 5FF whose contents are reflected on the
user's display when graphics are not being used.
The use of this area is described in Chapter 7.

Q aphi cs screens

The area of nmenory from address 600 to address
3600 is used by the BASIC graphics systemto im
plenent its graphics conmands. Agai n, we
describe the use of this area in Chapter 7. |If
graphics are not used or, if only limted graph-
ics are used, all or part of this area may be
used for the storage of the user's BASI C program
and its variabl es.

Program and variable store
The area of menory from address 3600 to address
7F36 is used for the storage of the user's BASIC
programand its variabl es.

BASIC string store

Wien character strings are used in a BASIC pro-
gram the string characters are held in a
separate storage area. This area extends from
address 7F36 to the top address in the dynamc
RAM  7FFF.

The BASIC interpreter

The 16K of nenory required by the BASIC inter-
preter is provided as ROMon the Dragon 32 and is
addressed from 8000 to BFFF.

Cartridge menory

Menory addresses from Q000 to FEFF are allocated
to the cartridge slot on the Dragon 32. Wen you
plug in a cartridge, this contains its ow read-
only menmory and this is addressed via these ad-
dresses.
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| nput/ out put area

The Dragon's |1/O systemis a 'nenory-nmapped sys-
tem where reference to specific menory |ocations
cause |/O operations to take place. Therefore,
it is necessary to dedicate some menory |ocations
to input/outgut and, in the Dragon 32, this 1/0O
area is a 256 byte area at the very top of menory
fromaddress FFOO to address FFFF.  Broadly, this
area is partitioned into three secloarate parts.
Addresses FFOO to FF5F are reserved for the use
of peripheral controllers, addresses FFQO to FFDF
are used to control the synchronous address nul -
tiplexor and addresses FFF2 to FFFF are reserved
for interrupt vectors. The other addresses in I/O
area are unused and reserved for future system
expansion. Mre details of the function of these
é/Odedi cated addresses are provided in Chapter



Chapter 2
The architecture of the M6809

The mcroprocessor used in the Dragon has been given
the code nunber M809 by its designers at Mtorola
Sem conductors. The M809 processor devel oped from an
earlier Mtorola mcroprocessor, the M800, and it
shares sone of the features of this earlier system In
fact, one of the design criteria for the Ms809 was that
it should be possible to run prograns witten for the
MB800 on the Ms809 processor.

The MB809 is called an 8-bit processor, indicating
that its data highways are 8 bits wide. This means
that a sinultaneous transfer of 8 bits of information
can be nade from the processor to and from nmenory and
peri pher al controllers. However , the M809 al so
Includes a nunber of instructions which operate on 16
bits rather than 8 bits of data and this considerably
i ncreases the power of the processor.

Such 16-bit instructions provide extra power because
8-bit data manipulation is inadequate in nany cases.
For exanple, consider integer arithnetic. If only 8-bit
representation is allowed this limts the range of
integers to 0-255. This is clearly unacceptable in
nost cases so 16-bit arithnetic operations have to be
simulated on an 8-bit machine by using conbinations of
8-bit instructions. Naturally, this slows down the
execution of prograns.

The provision of many 16-bit operations of the M809
nmeans that prograns can be witten wusing fewer
instructions. Therefore, these prograns execute nore
qui ckly. Because of these extra instructions and
because of the variety of ways in which nenory can be
accessed, the MS809 is sonetines called a second-
generation mcroprocessor or, nore extravagantly, the
programrer' s dream rmachi ne'.

In this chapter and in the following chapter we
describe those aspects of the M809 machine
architecture which are of inportance to the proigrammr
who wishes to wite machine |anguage prograns for his
Dragon. This chapter covers the register organisation
of the MB809, the multitude of ways in which machine
menory nmay be addressed (addressing nodes), and
i ntroduces sone of the nachine instructions avail able
to the M6809 programer. A description of all the M809
machi ne instructions is provided In Chapter 3.

20
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2.1 THE M809 REAQ STER SET

In the previous chapter we introduced the idea of a
register as a fast storage element built into the
processor. The Ms809 has nine such registers, all of
which may be considered as special-purpose registers
rather than general -purpose registers. Figure 2.1 is
the so-called 'prograamamng nodel' of the M809. It
shows, diagrammatically, the M809's registers and
their conparative sizes.

. — - = = e = — e

X — Index Register | )
Y

Index Register
2 > - — } Pointer registers
U — User Stack Pointer |
S — Hardware Stack Pointer )

PC Program counter

A B Accumulators

L ] DI?‘ J Direct page register
7 0
! _E_ ‘F!‘_i | !J_I\'I {_‘VJE | CC — Condition code register
Entire Flag - J ! | | L— Carry
FIRQ Mask — i L overfiow
Half Carry — 1 | | — Zero
IRQ Mask - =b 1 —— Negative

Fig. 2.1 The programming model of the M6809

The names of the M809 registers, their width in
bits, and a very brief description of their functions
are listed bel ow

(1) A register (8 bits) - accurul ator register

(2) B register (8 bits) - accurnul ator register
(3) X register (16 bits) - index register

(4) Y register (16 bits) - index register

(5) U register (16 bits) - stack pointer register
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(6) S register (16 bits) - stack pointer register
(7) DP register (8 bits) - direct page register

(8) PC register (16 bits) - program counter register
(9) CC register (8 bits) - condition code register

The bits in an M8B09 register are nunbered from right
to left starting at 0. This nmeans that bit 0 is the
rightnmost bit and, for 16-bit registers, bit 15 is the
leftmost  bit. Dfferent nachines have different
conventions in this respect. Sone processors nunber
bits from left to right others, like the M809, from
right to left.

2.1.1 The A and B registers
The A and B registers are accunul ator registers which
are used to hold the operands and results of arithmetic
operations. There are a variety of nmachi ne
instructions which mnmake use of these registers and
exanpl es of these are given bel ow

The instruction exanples in this chapter are set out
according to the follow ng general format:

<machi ne code> (rmmenoni c) <operand> (conmrent)

V¢ use dianond brackets <> to nean 'an instance of' so
(rmmenoni c) neans any instruction mmenonic nay repl ace
the character string (mmenonic). W also use the
notation MEM (address)) when referring to particular
addresses in nenmory so MEM AOE4) nmeans the nenory
| ocation whose address, in hexadecimal, is AOE4 and
MEM FRED) nmeans the nenory |ocation whose synbolic
address is FRED. Al nenory addresses are given in
hexadeci mal or are synbolic addresses unless explicitly
stated ot herw se.

The machine code, in hexadecimal, is provided for
each instruction exanple in this chapter. This is the
actual code loaded into the MsB09 nenmory whereas the
instruction menmonic and operand is a form of the
instruction which is nore understandable to the
pr ogr anmer . Most exanples also have a  brief
descriptive comrent explaining the function of that
i nstruction.

Exanpl es of instructions which use the A and B
registers are:

860A LDA #10 ;7 A=10
1E89 EXG A B ; Trp = A A=B B=Tnp
F7F1C5  STB $F1C5 ; MEMF1C5) =B
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5F CLRB ; B=0
8B02 ADDA #2 ; A« A+ 2
FOF1C5 SuBB $F1CG5 ; B = B - MEMF1C5)

The A and B registers are both 8-bit registers which
nmeans that only a limted range of values, fromO to
255, nmay be stored in them For many arithnetic
operations we need to operate on larger or snaller
values than can be represented in 8 bits so the
desi gners of the Ms809 have provided instructions which
allow the register pair AB to be considered as a
single register. Wen the registers are catenated in
this way, they are called the D register.

Effectivel%, the A register nakes up the leftnost 8
bits of the register (bits 8-15). is is sometimnes
called the hi-byte. The B register forns the rightnost
8 bits of D (bits 0-7). This is called the |o-byte.
Many of the machine instructions which operate on
the A and B registers have counterparts which operate

on the D register. However, rather than 8-bit
operations which take place automatically when A and B
are used, the use of the D register or, indeed, any

16-bi t register automatically results in 16-bit
operations taki ng? pl ace. The address in the instruction
refers to the Teftrmost (nost significant) byte when
16-bit operations are specified. For exanple:

CC1000 LDD #4096 ; D = 4096

F31E62 ADDD $1E62 ; D = D + MEM 1E62)

FDO0O56  STD $56 ; MEM56) =

* MEM 56) = hi-byte of D

* MEM 57) = lo-byte of D

VW shall look at nore instructions which operate on the
A B and D registers when we describe the M809
instruction set in detail in Chapter 3.

2.1.2 The X and Y index registers

The X and Y registers in the M809 nay be used as
general -purpose registers to store data but, nore
commonly, they act as special-purpose registers called
i ndex registers.

The information which is normally held in an index
register is the address in nenory of some other data
itemwhich nay represent anything at all, even another
menory address. The M809 as several ways of
accessing nmenory which nakes wuse of these index
registers to determne the address in nenory which is
bei ng used.

Index registers are a particularly efficient way of
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determning data addresses when data itens stored in
consecutive locations are to be accessed and processed
in turn. The X and Y registers in the M809 each have
an associated auto-increnent/decrenment facility which
nmeans that a nmenory location can be accessed and,
without additional 1nstructions, the index registers
can be wupdated to refer to the next item to be
pr ocessed.

This neans that the nost inportant use of the X and
Y index registers is for array processing. The index
register is set up to refer to the first item of the
array and the auto increnent/decrement facility used to
sel ect succeeding itens in turn.

The index registers may also be used as stack
pointer registers if the user needs nore than two
stacks. The U and S registers are provided as stack
ointer registers but the auto increnent/decrenent
acilities of the X and Y registers nmeans that they can
also function efficiently in this role.

Exanples of instructions which use these index
registers are:

AG84 LDA , X © A= MEM X

A680 LDA , X+ D A- MEMX): X=X+ 1

AG82 LDA ,-X © X=X- 1. A= MEMX)

ECA012C LDD 300,Y ; D= MEM300 +Y)

E7A6 STB AY . MMA+Y) =B

There are a nunber of other variants of index
addressing available on the M809. These will be

di scussed later in section 2.2.6.

2.1.3 The U and S stack pointer registers
The U and S registers are 16-bit registers which nay
act as index registers in exactly the same way as the X

and Y registers described above. However, in nany
appl i cati ons, these registers are best used as
speci al - purpose stack pointer registers. Push and pull
instructions are available to the programer i ch

assume that these registers are being used for this
pur pose.

In practical use, the S register is alnost always
used as a stack pointer register referring to the so-
called Sstack or hardware stack. The hardware stack
is used when calling subroutines and when swapping
control from program to program  The state of the
programwhich Is interrupted is saved on this stack and
restored when that program is restarted. This use of
the hardware stack is described later in the book when
interrupt-driven programming is descri bed.
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The U re%_ster nmay be used as a stack pointer to the
so-cal | ed stack or user st ack. However , t he
rogrammer may not need this facility in which case the

register may be used as an index register in exactly
the same way as the X and Y registers.

The M809 stack convention is that stacks grow
downwards in nmenory. That is, when an el enment is pushed
onto the stack, the stack pointer is decrenented before
the push operation so that that element has a |ower
nmenory address than the previous top stack el ement. The
stack pointer registers S and U always point at the top
byte on the stack. In this respect, the MS809 is
different from some other stack-based systens where the
stack pointer refers to the next available location on
t he stack.

Sone exanples of how the U and S registers nay be
used are:

3602 PSHU A ; U=U- 1: MMU =A
3436 PSHS A B, XY ; S=S-1: MEMS)=Y: S =S2
* MEM S)=X. S=S-2: MEM S)=B
* S=S 10 MEMS)=A

3536 PULS A B, XY ; ASMEMS) : S=S+1 : B=MEMS)
* S=S+2: X=MEM S): S=S+2

* Y=MEM S) : S=St+1

3704 PUWU B ; BEMEMU): U=U+1

The push and pull instructions for stack manipul ation
are described in nore detail in Chapter 3.

2.1.4 The DP register
The M809's DP (Drect Page) register is an 8-bit
regi ster which always contains the address of the start

of a 256 byte chunk (page) of mermory. This register is
used exclusively in the so-called direct addressing
node. In this node, the contents of the register are

added to an 8-bit value specified bK the user as part
of the nmachine instruction to formthe effective menory
address. For exanpl e:

96E9 LDA $E9 ; A = MEMDP + E9)
D710 STB $10 ; MEMDP+10) = B

2.1.5 The PC register

The PC register is the Ms809's program counter. It a
16-bit register which always contains the address in
menory of the next machine instruction to be executed
by the M5809.
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2.1.6 The CC register
The OC register is an 8-bit condition code register
where individual bits mark the occurrence of particul ar

condi ti ons. The bits in the register have the

follow ng functions:

Bit O carry bit, set in arithnetic operations

Bit 1 two's conplenent overflow bit

Bit 2 zero bit, set when result of an operation or
data transfer is zero

Bit 3 negative flag, set when result of an
operation or data transfer is less than zero

Bit 4 nornal i nterrupt mask, used by M809
interrupts

Bit 5 half-carry flag, used to indicate a carry
frombit 3 to 4

Bit 6 fast interrupt mask, used by Ms809 interrupts

Bit 7 entire state saved flag, wused by M809

interrupts

The above descriptions of the flags in the GC register
are very sketchy indeed but it is not appropriate to go
into nore detail here of what each flag neans. Rather,
we describe the role of individual condition code flags
along with those mnachine instructions which set and
test these fl ags.

2.2 ADDRESSI NG MCDES ON THE MB809

Ohe of the features of the M809 architecture which
di sti ngui shes t hat m cr opr ocessor from earlier
m croprocessors is the variety of ways in which the
address of a data itemmay be conputed. In all, there
are 19 di sti nct ways of retpr esenti ng an
address (addressing nodes and the lexibility and
ower of these nodes means that sone applications may
e coded very efficiently indeed on the Ms809.

The wuse of the wvarious addressing nodes s
illustrated in Chapters 4 and 5 In this section we
confine ourselves to a description of those nodes and
present exanples of instructions which use these
various nodes.

Before going on to look at addressing nodes in

detail, however, we nust |ook at the structure of a
machine instruction and examne how operand addresses
are represented within instructions. Instructions in

the M6809 may be 1, 2, 3, 4, or 5 bytes long dependi ng
on the particular instruction and on the addressing
?pd?dv\hi ch is being used. Each instruction has two
i el ds:

(L) The op-code (1 or 2 bytes)

(2) The operand address specifier (0, 1, 2 or 3
byt es)
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Notice that, in sone cases, the operand address
specifier nay be enpty, that is, it doesn't explicitly
exist. For exanple, the instruction CLRA clears the A
register - the inherent operand address in this case is
the A register and nay never be anything el se.

Mbst instructions, however, do have an address field
which has the follow ng general structure:

(L) Postbyte (0 or 1 byte)
(2) Value field (0, 1 or 2 bytes)

The address field, called the 'postbyte', is not needed
by all the M809 addressing nodes and it wll be
described along with those addressing nodes which nake
use of it. Sinpler addressing nodes only need the
"value' field to construct an operand address and sone
nodes only require the postbyte field.

2.2.1 Immedi ate addressing

The sinplest addressing nmode on the M809 is the
i medi at e addressi ng node where the instruction operand
is a constant whose value is 'built in" to the nachine
instruction. Wen programm ng, inmmediate addressing is
SEecified by preceding the constant to be included in
the instruction with the synbol # Sone exanples of
i medi at e addressing are:

0580 LDB #128 . B = 128 (decinal)
000400 LDD #1024 ; D = 1024 (decimal)
108EFFO0  LDY #$FFOO ; Y = FFOO (hex)

Notice that a hexadecinmal wvalue is specified by
preceding the imrediate value with a $ sign. The #
synmbol nust also be included to specif i medi ate
addressing as a $ on its own has a conpletely different
nmeani ng.

Al though the instruction operand in imrediate
addressing node nust be an absolute hexadeci nal
constant, this can be generated by the assenbler. Mst
assenblers allow the association of synbolic nanes wth
constants and also allow synbolic |abels representing
addresses. These nay be used as imredi ate operands.

2.2.2 Extended addressing
In the extended addressing node, the contents of the 2
bytes following the instruction op-code are taken as
the absolute address in menory of the instruction
operand. Extended addressing is specified by precedin
a nuneric address (usually 1n hex) wth the synbol
or, alternatively, by witing the synbolic address of
the operand being accessed.

A synbolic address is sinply a nane given to a
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particul ar address location. This idea was introduced
In section 1.1.2 and it is by far the nost convenient
way to refer to actual addresses in the Dragon's
menory. Wen a synbolic address is encountered in an
instruction, the assenbler replaces it with its actual
nuneric menory address. The assenbler also handles the
conversi on of mmenonics to nachi ne code, the conversion
of decimal and hexadeci mal nunbers to binary, etc.

Exanpl es of the M809 extended addressing code are
given below along with their correspondi ng nachi ne code
representations. Assunme that the synbolic nanes CHARL
and PNTR have addresses AO0O0 and AOO8 respectively.

B7A000 STA CHARL ; MEMCHARL) = A
BEAOO8 LDX PNTR ;. X = MEM PNTR)
BB0O3A2  ADDA $03A2 ;. A= A+ MEMO03A2)

2.2.3 Direct addressing

Recall fromour description of the M6809 registers that
the processor has an 8-bit register called the Drect
Page or DP register which always contains the address
of the start of a 256 byte chunk (page) of nenory. This
register is used in the direct addressing node.

In this node, the address of an operand is conputed
by taking the value contained in the instruction
itself (00-FF) and using this as the lo-byte of the
operand address. The hi-byte is taken as the val ue of
the DP register. Direct addressing is used whenever the
address lies in the range 00 to FF since the DP
register nornally contains 00. Direct addressing can
be forced by preceding the address with a '<' synbol in
which case it it is essential that the DP register is
set up with the address of the starting byte of the
nmenory 'page’ being accessed.

Registers are normally assigned values using |oad
instructions but there 1s no load instruction which
assigns a value to the DP register. Rather, some other
8-bit register nust be assigned a value and its
contents then to the DP register wusing a TFR
instruction. For exanple:

8610 LDA #$10 ; A = 10 (hex)

1IF8B TFR ADP ; DP=A

Exanpl es of the use of direct addressing are:
D20  STD $20  ; MEM(1020) = D

9000 SUBA $00 ; A = A - MEM 1000)

The use of direct addressing means that instructions
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are short (nmostly 2 bytes) and this means that prograns

are efficient in both execution speed and in the
storage required for the program There are also
advantages in wusing this npde of addressing when
i mpl enmenting programr ng |anguages |ike Pascal where

gl obal variables may be stored in a page by thensel ves
and accessed via the DP register.

2.2.4 Register addressing

Regi ster addressing is an addressing node where the
instruction operands are always in registers with a
postbyte used to identify the registers involved. There
are only tw instructions which nmake wuse of this
addressing node. These are the transfer register
instruction (TFR) and the exchange register instruction
(EX@ . The address field is sinply a postbyte which is

split into tw parts. Bits 0-3 of the postbyte
identify the destination register and bits 4-7 identify
the source register. The identification value, in

hexadeci mal, for each register is:

0 D register 5 PC register
1 X register 8 A register
2 Y register 9 B register
3 U register A CC register
4 S register B DP register

Using the TFR and EXG instructions, it is only possible
to transfer and exchange registers of like size (8 or
16 bits). Exampl es of instructions using the register
addressi ng node are:

1F12 TFR X Y

1E89 EXG A B ; Tnp =B B=A A=Tm
* where Tnp is some tenporary register
* hi dden from the Ms809 user

2.2.5 Indirect addressing
Sonme kinds of programmng are nade easier if you can
refer indirectly to information which you want to
mani pul ate. That is, you don't include the address of
the instruction operands in the instruction but the
address reference in the instruction is to a |ocation
whi ch hol ds the actual operand address.

Normal ly, the address part of a machine instruction
directly refers to its operand. For exanple:

LDD MAXVAL

| oads the data stored at synbolic address MAXVAL into
register D. Wth indirect addressing, however, the
address part of the machine instruction holds the
address of the address of the instruction operand.
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Address conputation is therefore a two-stage process.
First, conpute the address as specified in the nachine
instruction. Secondly, use this to locate the operand
addrcla?s then use this address to fetch the operand
itself.

This is illustrated in Figure 2. 2.

Instruction

Oper d

Address

Fig. 2.2 Indirect addressing

It is inportant to remenber that the use of indirect
addressing nmeans that the two-stage process described
above always takes place. The effect of an instruction
using indirect addressi ng is exactly the sanme as the
sane instruction using direct addressing inasmich as
the operand value, not its address, is manipulated by
that instruction.

I ndirect addressing can be used with a nunber of the
MB809 addressing nodes but, of the nodes which we have
described so far, it is onl possible with extended
addressing. In this case, and in all other cases where
indirect addressing is allowed, indirect addressing is
specified by surrounding the address part of the
instruction with square brackets. For exanple, say a
value OOE4 is stored at address 32FO0. Fur t her nor e,
assune the synbolic address MAXADD has a val ue of 10A4
and is set up to refer to the value OOEA4. The
i nstruction

CCOF10A4  LDD [ MAXADD]

specifies that the value in MMXADD is actually the
address of the value to be loaded into the D register.
Therefore, the effect of LDD [ woul d be to copy
OOE4 into register D. The actual address reference iIn
the instruction is to address 10A4 which holds the
value 32F0 - the |ocation where OOE4 is stored.

This has illustrated how indirect addressing is used
in conjunction with the extended addressing node but it
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nmay also be used with indexed addressing which is
descri bed bel ow In indexed addressing, where a
postbyte is an inherent part of the address, bit 4 of
the postbyte is used to indicate whether the address
reference is direct or indirect. |If bit 4 is set, the
address is taken as in indirect reference to the
i nstruction operand.

2.2.6 Indexed addressing
V& have al ready described how sone of the registers in
the M8B09 may be used as index registers where the
address is conputed by adding or subtracting some val ue
from the value in the index register. here are a
vari et of different types of indexed addressin
available to the M809 programmer and these are al
described in this section.

The format of an address in an instruction using
i ndexed addressing is:

(L) Postbyte (1 byte)
(2) Cfset (0, 1 or 2 bytes)

The postbyte is set up to indicate which register is
the index register, whether that register 1s to be
automatical ly incremented or decrenented and to specify
the formof the offset to be added to the value in the
i ndex register.

The forns of indexed addressing which we shall
descri be here are:

(1) Zero offset indexed addressing

(2) Constant offset indexed addressing

(3) Accumul ator offset indexed addressing

(4) Auto increnent/decrenment indexed addressing

Before describing these addressing nodes in detail,
however, let us look at the structure of the postbyte
which determnes the actual addressing node used and,
in sone cases, holds the offset which nodifies the
i ndex register val ue.

Bit 7 (the leftnmost bit) of the postbyte specifies
whether an offset is stored as part of the postbyte.
If this bit is unset, bits 0-4 are taken as a 5-hbit
signed offset in two's conplement form  This means
that values between -16 and 15 nay be held as part of
the postbyte and automatically added to the index
register.

If bit 7 of the postbyte is set, this neans that a
5-bit offset is not part of the postbyte and that bits
0-4 have a conpletely different nmeaning. In this case,
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bits 0-3 are used to specify which type of indexed
addressing is to be used and bit 4 is used to select
direct or i ndi rect i ndexed addr essi ng. The
correspondance between addressing nodes and associ ated
values of bits 0-3 is set out in the table bel ow

Bit 4 is the indirect select bit. If it is unset,
this indicates that the computed address is the address
of the instruction operand. If it is set, this means

that the conputed address is to be taken as the address
of the address of the instruction operand.

In all types of indexed addressing, bits 5 and 6 of
the postbyte are used to specify which index register
is being used. Each value of this bit pair specifies a
different index register as foll ows:

X Bit 6=0, Bit 5=0

Y Bit 6=0, Bit 5=1

U Bit 6-1, Bit 5=0

S Bit 6=1, Bit 5=1
VWen bit 7 is 1, bits 0-3 of the postbyte select the
addressing node to be used. The values of these
bits (in hexadeci mal ) and their correspondi ng

addressi ng nodes are shown in the table bel ow

0 Auto increment (+1) The index register is
incremented by 1 after
the address is conput ed.

1 Auto increment (+2) As above, increment is 2.
2 Aut o decrenent (-1) The index register is

decrenented by 1 before
the address is conputed.

3 Auto decrenent (-2 As above, decrement is 2.

4 Zero of f set The address in the index
register is the operand
addr ess.

5 ACCB of f set The address is conputed

by addi ng the contents of
register B to the index
regi ster contents.

6 ACCA of f set As above, but the
contents of register A
are added to the index
register.

7 Not used
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8 8-bit signed offset The value of the byte
following the postbyte is
added to t he i ndex
register to compute the
addr ess.

9 16-bit signed offset As above, but t he
followng 2 bytes are
added to t he i ndex
register.

A Not used

B  ACCD offset The value of accunul ator
D (A:B) is added to the
i ndex register.

C PCrelative, The PC acts as an index
regi ster, with t he
addr ess conput ed by
adding an 8-bit offset to
its val ue.

D PC rel ative, As above with 16-bi t
of fset.

E Not used

F Ext ended i ndirect The following 2 bytes are
the address of the ad-
dress of the instruction

oper and.
We have already covered extended indirect addressing
and addressing using the program counter PC wll be
di scussed in section 2.2.7. Now let us look in nore

detail at the possible indexed addressi ng nodes.

Aut o increnent/decrement indexed addressing
This addressing node allows 1 or 2 to be automatically
added or subtracted from the index register val ue. No
additional add or subtract instruction is necessary to
acconplish this. Wen using auto increment addressing,
the value is added to the index register after the
ef fective address has been conputed. In auto decrenent
node, the value is subtracted from the index register
and the effective address then conputed.

Exanpl es of instructions using this addressing node
are:

A7C0  STA , Ut . MEMU = A U=U=+1
ECAL  LDD ,Y++ . D=MEMY): Y =Y + 2
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ABB2 ADDA |, -X ; X=X-1: A=A+ MEMX)
ABE3 SWBD ,--S ; S=S-2: D=D- MEMYS
Aut o i ncrement / decr enent i ndexed addr essi ng is

ﬂartlcul arly efficient when a nunber of data elenents
ave to be processed in sequence. The index register
is set up to point at the beginning or the end of the
sequence in nenory and, after each elenent is fetched,
the register is increnented or decremented so that it
points at the next element in the sequence.

Zero offset indexed addressing

Wsing this addressing node, the value in the index
register is taken to be the address of the instruction
operand. Nothing is added to or subtracted from it.
For exanpl e:

ABBA  LDA X A—I\/E|\I>é
EDF4  STD [,§ D)

neanl ng | ndi rect addressing

Constant of fset indexed addressing

In this case, a positive or negative constant is added
to the value in the specified index r glster to conpute
the address of the instruction operan The range of
possi ble offsets is from -32768 to 32767 (decimal) and
the assenbler works out whether the offset is to be
stored as part of the postbyte (-16->15), as an 8-hbit
quantity (-128->127) or as a 16-hbit quantlty (-32768-
>32767). If the offset is not stored in the postbyte,
it imediately follows the instruction postbyte in
nmenory.

Although a constant value is added to the index
register value to conpute the operand address, this
nodified value is not stored in the index register.
The addition is purely tenporary and the index register
value is not changed by the use of constant offset

addr essi ng. Exanples of instructions wusing this
addr essi ng node ar e:

ECTA LDD -6, S ; D= MEMS-6).

* Note offset stored in postbyte
* in tw's conpl enent form
ABB816 ADDA 22, X ;. A= A+ MEMX + 22)

* Cfset stored as a 1 byte val ue
AB89012C ADDA 300, X ; A=A+ MEMX + 300)

*

Cffset stored as a 2 byte val ue

Accurmul at or of fset indexed addressing
This addressing node is simlar to constant offset
i ndexed addressing but, rather than the offset being a
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constant, the value of an accumulator register is added
to the index register to conpute the address. The
advantage of this is that the offset can be cal cul ated
and loaded into the accumulator just before it is
required. The programrer need not know the offset in
advance as in constant offset indexed addressing.

Exanpl es of this addressing node are:

E7A6 STBAY MMA+ Y =B
ECB8 LDD DX D= MEMD + X)

2.2.7 Relative addressing

Anot her nmode of address conputation in the M809 is
rel ative addressing where the address of an operand or
of another instruction is conputed by adding an offset
to the program counter register. This offset may be a
positive or negative, 8-bit or 16-bit value. W shall
look first at how instruction operands are accessed
using this addressing mode and then at the relative
addressing of instructions thenselves.

Rel ative addressing of instruction operands makes
use of the postbyte in the same way as does indexed
addr essi ng. If bits 0-3 of the postbyte are C or D

while bit 7 is set this specifies that the addressing
is PCrelative. For exanple:

AEBCO08 LDX 8, PCR ; X = MEMPCR + 8)

DD8D0400 STD 1024, PCR ; MEMPCR + 1024) - D

A very inportant advantage of using PC relative
addressing is that it sinplifies the witing of
position independent code. Posi tion independent code
is code which works in exactly the same way

irrespective of where that code is placed in nenory.
Such code nust nmake extensive use of relative and
i ndexed addressing because extended addressing neans
that the instruction operands nust always be at the
address 'built in" to the code.

Wth position dependent code, you nmust always |oad
the program into exactly the same menory |ocations as

were used previously. Thi s is not necessarily
convenient or even possible so it is good progranm ng
practice to wite all prograns in a position-

i ndependent way.
Rel ati ve addressing of the instructions in a program

is acconpl i shed by nmeans of so-call ed ' branch
instructions'. The effect of these branch instructions
is to nodify the program counter register. Thus the
next instruction executed is not necessarily the

instruction followng the branch instruction but sonme
other instruction whose address is conputed by adding
the specified offset to the value of PC. The relative
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addressing of instructions is different from the
relati ve addressing of operands inasnmuch as the value
stored in PC is nodified whereas in operand addressing
the value of PCis used but is unchanged by the address
conput at i on.

The conputation of relative instruction offsets is a
tedious and error-prone task. Usual ly, it is left to
the assenbler to work out the appropriate value to be
added to PC. You may mark instructions with a name (a
label) and use this nane as part of the branch
instruction. The assenbler knows the nunber of bytes
occupied by each instruction so it can work out the
aﬁpropriate offset to allow a transfer of control to
the labelled instruction.

This can be illustrated by a short assenbly code
sequence which is equivalent to the following BASIC
stat enent:

IF VL > MAX THEN MAX = WL

Assune that VL and MAX are 16-bit quantities held at
addresses AD00 and A002 respectively. The assenbly
code equivalent to the above BASIC conditional is:

FCA000 LDD VL . D= MEM L)
10B3A002 CMPD MAX ; Conpare D with MEM MAX)
2F03 BLE NEXT : If VL<=MAX goto NEXT

FDAOO2 STD MAX MEM MAX) = D
NEXT .

The branch instruction in the above sequence, BLE,
nodifies the value of PCif and only if VL is less than
or equal to MAX Notice that the value in the PC
nodi fication field is 3, the nunber of bytes in the SID
instruction. It is not the nunber of bytes in the BLE
instruction plus the nunber of bytes in the SID
i nstruction. The reason for this is the PC always
points to the next instruction in the instruction
sequence rather than the instruction which is being
execut ed.

There are many branch instructions available to the
MB809 pr ogr anmmer . They are discussed in detail in
section 3.5 of the follow ng chapter.

2.3 MEMCRY- MAPPED | NPUT/ QUTPUT

VW have seen, in Chapter 1, t hat a conputer
organi sation includes a nunber of units which are set
up as peripheral control devices to allow infornation
to be transferred to and from the processor and nenory
units. Qoviously, the processor nust have access to
these controllers in order to initiate data transfers
to and from the outside world. In this section we
describe, in very general terns how this is done.
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However, as it is such an inportant topic we devote a
conplete chapter to details of input and output |ater
in the book.

Recall, fromFigure 1.2, that the M809 processor,
nmenory and peripheral controllers all have access to a
common data highway or bus. O MB809- based systens
such as the Dragon, this bus is 24 bits wide. This
means 24 bits of information can be sinultaneously
transferred from device to device. C these 24 bits,
16 bits are reserved for the data address and 8 bhits
are used to transfer the data itself.

In the sane way as all mnenory locations have a
uni que address, so too nust input/output (I/O devices
connected to this shared bus. Cn sone systens, the bus
has an extra line indicating that the address on the
bus is a peripheral rather than a nenory address but
this is not the case on M809 systens. Rat her, the
addresses of [/O devices have exactly the same form as
menory addresses with specific addresses reserved for
these |/O devices. These nenory addresses may not be
used for straightforward data storage as they are
al located to particular 1/0O devices.

This is not a severe handicap as there are usually
only a few I/O devices on any system On the Dragon,
there are 256 nmenory bytes reserved for use by the 1/0
system These are at the top end of nermory between
FFOO and FFFF. If we access one of these addresses
which is allocated to an 1/O device, the effect of the
access is to initiate a data transfer to or from that
peripheral unit. The synchronous address multiplexor
exam nes addresses on the bus and detects those which
refer to 1/O controllers. The data is then routed to
these devices for input or output.

This type of 1/0O organisation where peripherals are
associated with specific nenory addresses is called,
for obvious reasons, nenory-napped 1/Q It is a
conceptual ly elegant way of carrying out input and
output as there is no need for specific instructions to
initiate peripherals and all instructions which
reference nenory nay be used to access the systemis 1/0
devices. Full details of the Dragon's 1/O system are
provided in Chapter 8 and in the appendi ces.



Chapter 3
The M6809 Iinstruction set

In Chapter 2 we described the general features of the
MB809 architecture and introduced, wthout a great deal
of explanation, sonme of its machine instructions. A
t horough know edge of the nachine instruction set is
vital for the nmachine code programmer so this chapter
is conpletely dedicated to a description of the M09
instruction set.

At this point, we nust enphasise the distinction
between machine instructions and assenbly |anguage
menoni cs. Machine instructions are the actual binary
op-codes executed by the processor as it runs a
program Assenbl y Ian%uage instructions are the
menoni cs and nanes used by the programmer to synbolise
these nachine instructions because It is nuch easier
for us to think in synbols and names rather than
nunbers.

There is not necessarily a one-to-one correspondence
between machine instructions and assenbly anguage
i nstructions. For exanple, on the MB809 there are
over 1400 distinct nachine instructions when we take
into account all the different conbinations of op-code
and postbyte that are permtted. Fortunately, however,
there are only 59 distinct instruction menonics which
nust be remenbered by the assenbly |anguage programer
along with the register names and the synbolism
associated with the different M809 addressing nodes.
Conbi nations of these allow all possible machine
instructions to be represented.

The reason for the enornous discrepancy between the
nunbers  of assenbly language and nachine code
i nstructions is t hat nmany assenbl y | anguage
instructions have variants for each of the nachine
registers and for each addressing node allowed wth
t hat i nstructi on. For exanpl e, the instruction
specifying that a register is to be loaded with an
i medi ate value has the form

LD<regi ster> <val ue>

This is all that need be renmenbered by the assenbly
| anguage programmer. However, there are seven distinct
machine | anguage op-codes associated wth this
instruction, one for each register that may be directly

38
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| oaded. The assenbly code mmenonics for these are LDA,
LDB, LDD, LDX, LDY, LDU, and LDS. These have
associ ated op-codes of 86, C6, CC, 8E, 108E, CE, and
10CE

Al of these load instruction mmenonics have a
di fferent op-code associated wth each pernmitted
addr essi ng node. For exanple, if imrediate addressing
is used with an LDA instruction the op-code is 86. | f

direct addressing is used, the op-code is 96, for
i ndexed addressing the op-code is A6 and for extended

addressing B6. Instructions which load the other
registers also have distinct op-codes  for each
addressing mode so, in all, the LD instruction nmenonic
has 28 distinct machine instructions which nay be
derived fromit. If we consider postbytes to be part of

the instruction, this gives many nore machi ne |anguage
derivations from an assenbly |anguage |oad instruction.
It is practically inmpossible to program directly in
machi ne | anguage because of the enornous nunber of op-
codes that rmust be renenbered by the programrer

Nor mal | vy, an assenbler is wused to carry out the
tedious task of translating mmenonics to op-codes,
wor ki ng out relative of fsets and constructing
postbytes. At worst, if an assenbler is not avail able,

the programmer should wite his program in assenbly
code as if an assenmbler is at hand and then translate
manual ly to nmachine code. Attenpting to program
directly in machi ne code i nevitably | eads to
frustration, boredom and many errors.

A conplete table of assenbly |anguage mmenonics and
their associated machine op-codes is provided in
Appendi x 1. It must be enphasised, however, that hand
translation from assenmbly code to machine code is not
recomrended for anything apart from very short
prograns.

The instructions available to the M809 progranmer

can be considered under seven distinct headings. These
are:
(1) Data novement instructions

Instructions which transfer information to and
from regi sters and nmenory.

(2) Arithmetic instructions

Instructions used to inplenent arithnetic opera-
tions such as add and subtract.

(3) Logic instructions
Instructions wused to execute logic operations
such as or and shift.

(4) Test instructions
Instructions which set flags in the condition
code register depending on operand val ues.
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(5) Branch instructions
Instructions which affect the normal sequential
flow of control in a program by nodifying the

val ue of PC.

(6) Interrupt handling instructions
Instructions used to handle so-called interrupts
which usually arise from peripheral devices in
the system Interrupts are described in Chapter
8.

(7) M scel | aneous instructions
Any other instructions which don't fit under the
above headi ngs.

Many data novenent, arithmeti c, logic and test
instructions have the effect of setting or unsetting
particular bits in the condition code (CC) register. In
particular, if the result of executing an instruction
is zero, the zero (Z) flag in CC is always set. If the
result is negative, the negative (N) flag in CC is
al ways set.

Arithmetic, logic and test instructions may also
change the value of the carry (C flag, the half-
carry (H flag and the overflow (V) flag in the
condition code register. Sone of these are described
later in this chapter under the appropriate headings.
This description is not conmplete - full details of how
instructions affect CC flags are provided in Appendix
1.

In the follow ng description of the M809 assenbly
code instructions, it is sonetinmes necessary to refer
to particular CC flags. W wuse a dot notation,
CC.<flag letter> to nmake these references. Thus CC N
is the negative flag, CCV is the overflow flag, etc.
VWen we say a flag is set this means that its value is
1, when unset the flag value is zero.

In the remminder of this section and in subsequent
chapters, we sonetinmes use BASIC statenents to explain
the meani ng of assenbly |anguage instructions. W have
done this informally until now but, from now on, we
will use the follow ng conventions.

(1) Regi sters are indicated by BASIC variables with
the same name as the register. Therefore, the
nanes of the registers are A, B, D X Y, U S
DP, CC, and PC.

(2) The use of some other BASIC nane refers to the
location in menory which has that synbolic name.
Therefore an assenbly code instruction, LDD XVAL,
m ght be commented with the BASIC statenent, D =
XVAL.
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(3) Wien an absolute address in nenmory is referenced,
we consider nenmory as a one-dinensional array
called MEM and use the absolute address as an ar-
ray index. Therefore, MEM AO34) refers to the
nmenory | ocation whose address, in hexadecinmal, is
A034. W also use the same notation when refer-
ring to an indexed address. The register nane
plus or mnus any offset is stated as an index
into MM Thus, MEMX +10) means the nmenory | o-
cation whose address is conputed b?/ adding 10 to
the contents of register X In al cases, con-
stant values used as indices to MEM are hexade-
cinmal constants.

perations using a 16-bit register result in 2 bytes
being loaded or stored from nmenory whereas 8-hit
register operations result in a single byte being
| oaded or stored. V¢ do not explicitly distinguish
between 1 and 2 byte nenory operations in the comments
acconpanyi ng the assenbly code exanpl es.

The exanples provided are intended to illustrate the
assenbly code instructions so no nachine code
equi valents are given in this chapter.

3.1 DATA MOVEMENT | NSTRUCTI ONS

The function of data novenent instructions in the M809
is to transfer information, wthout change, from
register to register, fromregister to nmenory, and from
menory to register. In all cases, apart fromthe EXG
regi ster exchange instruction, and sone instances of
the LEA, load effective address instruction, the data
nmovenent is inplenented as a copy operation. That is,
imedi ately after the data novenment instruction has
been executed, the source operand and the destination
operand as specified in the instruction have the sane
val ue. The value of the source operand is not destroyed
by the execution of the instruction.

Data novenent instructions have the followng form
<op- code mmenoni c><regi ster specifier> <pararmreter>

The instruction paraneter nay take different forns
depending on the particular data novenment instruction.
These wll be described along wth the individual
i nstructi ons.

There are a total of 7 types of data novenent
i nstructions:

(1) Load instructions
Instructions which nove data from menory to a
register.
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(2) Store instructions
Instructions which nmove data from a register to
Menory.

(3) Transfer instructions
Instructions which nove data from one register to
anot her.

(4) Exchange instructions
Instructions which exchange the contents of one
register with another.

(5) Load effective address instructions
Instructions which conpute an operand address and
load it into an index register.

(6) Push instructions
Instructions which push register values onto a
st ack.

(7) Pul | instructions

Instructions which pull values stored on a stack
into registers.

3.1.1 Load instructions
Load instructions in the M809 are used to load data
values into a register from nenory or as immediate
operands from the instruction itself. The general form
of these instructions is:

LD<r egi ster> <address or imedi ate operand>

Registers A, B, Db S, U X and Y nmay be used in |oad
i nstructions. If the instruction specifies a 16-bit
register (Db U S, X T), the effect of the |Ioad
instruction is to nove the addressed nenory byte into
the hi-byte of the register and to load the follow ng
menory byte (address + 1) into the lo-byte. That is, 2
menory bytes or a 16-bit inmrediate operand is nmoved
into the register. If an 8-bit register is specified,
the addressed byte or 8-bit inmediate operand is noved
into the register.

Four classes of addressing node are allowed wth

load instructions. These are imediate addressing,
direct addressing, i ndexed addressing and extended
addr essi ng. Dependi ng on the addressing node used and
on t he particul ar i nstruction op- code, | oad
instructions are 2, 3, 4, or 5 bytes in length.

Some examples of load instructions, in assenbly
code, are:

LDA #10 ; A =10
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LDD MAXVAL  ; D = MAXVAL
LDS 10, X . S = MEMX + 10)
LDB $50 . B = MEMDPR + 50)

3.1.2 Store instructions

Store i nstructi ons are the converse of | oad
i nstructions. They are used to transfer infornation
fromthe machine registers to nenory. The general form
of store instructions is:

ST<regi ster> <address>

As with load instructions, the allowed registers are A
B D X Y, Uand S. The use of a 16-bit regi ster nane
results in 2 bytes being noved from the register to
menmory, an 8-bit name results in a single byte being
noved.

Allowed addressing nodes are direct addressing,
i ndexed addressing, and extended addressing. For
obvi ous reasons, immediate addressing is not meani ngf ul
in store instructions.

Sone assenbly code exanples of store instructions
are:

STA | . MEMI) = A
STX ,Y ; MEMY) =X
STD $30 ; MEMDP + 30) = D

Like load instructions, store instructions can have
I engths between 2 and 5 bytes depending on the op-code
and addressi ng node used.

3.1.3 Transfer instructions

Transfer instructions nove the contents of one register
to another. Any registers nay be specified as long as
they are of like size, that is, both operands nmust be
either 16-bit registers or 8-bit registers. The
menonic for a transfer instruction is TFR and the only
ermtted addressing node is register addressing.
ransfer instructions are always 2 bytes in |ength.

Exanpl es of transfer instructions are:

TFR ADPR ; DPR=A
TFR X Y Y =X
3.1.4 Exchange instructions
The exchange instruction, whose mmenonic is EXG is

simlar to the transfer instruction described above.
However, rather than the value of the source register
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being copied to the destination register, the values of
the source and destination register are swapped.
Again, register addressing is the only addressing

node which may be used with exchange instructions. For
exanpl e:

EXG A, DPR ; Temp = A* A = DPR DPR = Tenp

EXG S, U ; Temp = U U=S S = Tenp

3.1.5 Load effective address instructions

The purpose of the load effective address instructions
is to set up one of the index registers (S, U X, Y) to
hold the absolute address of an operand in nenory.
Because address conputations in the Ms809 can be fairly
conpl ex, and hence tinme consuming, it 1is sonetimes
useful to carry out this conputation once only and then
use this conmputed value in subsequent instructions.

Load effective address instructions have the form

LEA<i ndex register> <address>

The specified address nust be an indexed address. LEA
instructions are either 2, 3, or 4 bytes |ong depending
on the particular type of indexed addressing which is
used. Exanples of these instructions are

LEAS 10, X ;7 S =X+ 10
LEAX D X ; X =D+ X

It is clear from the BASIC representations of the
instruction functions that, in nmany cases, the LEA
operation involves an addition to an index register.
This means that a subsidiary use of this operation is
to allow addition and subtraction operations on the
index registers without requiring that their contents

be transferred to the accumulator register. For
exanpl e:

LEAS 10, S ; §S=S + 10

LEAX -20, X ; X=X - 20

The above operations can, of course, be acconplished
using the accunul ator registers:

TFR SD ; D=S
ADDD 10 ; D=D+ 10
TFR D, S ;7 S =D
However, the single LEA instruction executes nore

quickly and takes up fewer nmenory bytes than these
i nstructi on sequences.
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3.1.6 Push instructions

The function of push instructions is to copy the
contents of one or nore registers onto a stack in
nmenory whose top is addressed by the U or the S
register. Push instructions have the form

PSH<U or S <register list>

The PSH can nove the contents of up to 8 registers (CC
A B DPR X Y, Sor U PC onto the nenmory stack.

Push instructions have a postbyte indicating which
registers have actually to be pushed onto the stack.
Individual registers are indicated by bits in the
post byte as foll ows:

Bit O aC
Bit 1 A
Bit 2 B
Bit 3 DPR
Bit 4 X
Bit 5 Y
Bit 6 Sor U
Bit 7 PC

Push instructions are always 2 bytes in length. Some
exanpl es are:

PSHS A B ;. Push A and B onto the S stack

PSHU A B Y, X PC OCCDPR ; Push all registers apart
fromU onto the user stack

The order in which the user specifies the registers in
the push instruction is not necessarily the order in
which they are pushed onto the stack. Registers are
al ways pushed onto the stack in the follow ng order:

PC, US, Y, X DPR B, A CC

If all registers are pushed, GC is on top of the stack,
A is the second top location, B is the third top
location and so on. If only a subset of the registers
are pushed onto the stack, the order above is
mai ntai ned al though, obviously, only the specified
registers are actually stacked.

For exanple, after executing the instruction PSHU
A X, B, the top of the stack is a copy of register A
the second top is a copy of register B and the third
top is a copy of register X although this was not the

order specified in the instruction. In general, this
automatic ordering of stacked registers saves the user
having to care about stacking order. If, however, a

particular stacking order is required this nust be
achieved by using separate push instructions for each
register.
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3.1.7 Pull instructions

Pul | i nstructions are t he converse of push
i nstructions. They move information from stacks in
menory to specified registers. The form of pull

instructions is:
PUL<S or U> <register list>

Pul | i nstructions, like push instructions, use a
postbyte to specify which registers are to be pulled
from the stack. Sone exanples of pull instructions,
which are always 2 bytes long, are:

PULS A B ; Copy the top 2 locations of the
* hardware(S) stack to A and B.
* Adjust the stack pointer accordingly
PULU A B, DPR, PC, X, Y, S, CC ; Copy values of all
registers from the
user stack

The order in which register values are pulled from the
stack is again independent of the order in which they
are specified in the instruction. Therefore, CCis the
first register pulled, A the next register, B the third
regi ster and so on.

3.2 ARI THVETI C | NSTRUCTI ONS

The arithnetic instructions available on the M809
operate on the accunulator registers and, in sone
cases, directly on nenmory locations. In all cases when
an instruction operates on a register one of its
operands is the value of that register and the result
of the operation is placed in that register. Therefore,
after an arithnmetic operation on a register the
previous contents of that register are destroyed.

There are twelve arithmetic operations available to
the Ms809 programrer which we shall consider in seven
groups:

(1) Add instructions

(2) Subtract instructions

(3) Clear instructions

(4) The nmultiply instruction
(5) Negat e instructions

(6) The sign extend instruction

(7) The deci mal adjust instruction
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As a side effect of executing nmost of these arithnetic
instructions, flags in the condition code register are
set. Particular settings are described under the
appropriate headi ng bel ow

3.2.1 Add instructions
There are four kinds of add instruction provided on the
M6809. These have the forns:

ABX X=X+B

ADC<A or B> Add nenory to Aor Bwth CCC
ADD<A, B, or D> Add nenory location to accumul ator
INC<A or B> Add 1 to register or nmenory |ocation
The ABX instruction is the sinplest add instruction.
This instruction takes the contents of B to be an
unsigned 8-bit value (0-255) and adds it to X leaving
the result in X The condition code flags are not

affected. This instruction is simlar in effect to the
i nstruction LEAX B, X but there are i npor t ant

di stinctions. Firstly, the value of B in an LEA
instruction is taken as an 8-bit twod's conpl enent
nunber so may take a value between -128 and 127. The

value of B In an ABX instruction can range between 0O
and  255. Secondl vy, ABX is a 1-byte inherent
address (this neans that the instruction operands are
always the sane) so it is shorter than the
corresponding LEA instruction. The provision of this
instruction allows certain kinds of |ndexed addressing
to be inplemented in a very efficient way.

~ The add with carry or ADC instruction operates on
ei ther accunulator A (ADCA) or accunmulator B (ADCB).
This instruction adds the contents of the register plus

the carry bit OCC to the specified nenory [location
leaving the result in the register. ‘he nenory
location may be addressed using direct, indexed or

extended addressing or may be an 1 nmredi ate val ue.

ADC instructions are used when rmultiple-byte
arithmetic is inplemented where it is necessary to take
a carry from a previous arithmetic operation into
account. The ADC instruction affects the C N V, Z
and H bits of CC

Exanpl es of ADC instructions are:

ADCA #35 : A=A+ CCC+ 35
ADCB , X . B=B+ CCC+ MEMX)
Add instructions operate on registers A, B, and D and

their function is to add an immediate operand or a
menory location to one of these registers. Like ADC
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instructions, the C N V, Z and H bits in the
condition <code register are affected by an AD
i nstruction.

Exanpl es of add instructions are:

ADDA SVAL ; A=A+ MEMSVAL)

ADDB #5 ; B=B+5

ADDD ,--Y ;Y

Y-2: D=D+ MMY)

The INC instructions are special purpose  add
instructions which are used to add one to the single
byte accunulators A and B or to a specified nenory
location. Athough this operation can be inplenented
in other ways, the 'add 1 to something' operation is so
coomon that it is worth providing it as a separate
nmachi ne instruction.

The instructions INCA and INB are 1-byte
instructions with no address field whereas the nenory
increment instruction INC may use direct, indexed or
ext ended addressing. For exanpl e:

| NCA A=A+ 1
| NCB - B=B+ 1
INC FRED ; MEMFRED) = MEM FRED) + 1

The INC operation affects the N Z and V bits of the
condition code register.

3.2.2 Subtract instructions

There are three types of subtract instruction available
to the M6809 programrer which are the converse of ADG
ADD and INC. These are the instructions SBC (subtract
with carry), SUB (subtract), and DEC (decrenent by 1).

The function of these instructions is to subtract an
i medi ate operand or the value of a nenory |ocation
froma register, leaving the result in that register.
The operands for this operation must be in tw's
conpl enent form

Al the subtract operations set the overflow flag
QCV if the result is too small to be held in the
sPecified register or nmenmory |ocation. They al so
affect the Nand Z flags in GC and the instructions SB
and SUBC set the carry flag in the event of a borrow
occurring in the last place of a subtraction.

The SBC instructions operate on registers A and B
and subtract OCC.C as well as an imed ate value or a
menory location value from the specified register. For
exanpl e:

SBCA J . A= A- MMJ) - CC.C
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SBB 4Y ; B=B- MM4 +Y) - CC.C

The subtract instruction SUB operates on registers A
B, or DO For exanpl e:

SUBA #4 C A=A- 4
SUBB $30 . B=B- MM 30)
SUBD PONTER ; D= D - MEM PO NTER)

The decrenent instruction, DEC, subtracts 1 froman 8-
bit value held in either A/ B or a nenory |ocation.
For exanpl e:

DECA C A=A- 1
DECB . B=B- 1
DEC CVAL ; MEMCVAL) = MEMCVAL) - 1

3.2.3 Qear instructions
The function of clear instructions (CLR) is to set
register A or B or a 1-byte nenory location to zero,
that is, to clear it of i1ts previous value. The CRA
and the CLRB instructions are 1-byte instructions wth
no address field whereas the QR instruction may use
direct, indexed or extended addressing.

Exanpl es of clear instructions are:

CLRA . A=0
CLRB . B=0
ARAX : MMA+ X =0

3.2.4 The multiply instruction

O nost 8-bit microprocessors multiply instructions do
not exist. MJIti]pI ication is inplenented by a software
routi ne which pertrorns a sequence of repeated additions
to multiply two nunbers. he reason for this is that
multiplication is a relatively conplex operation whose
result is always twice as long as its operands. To
include this in an 8-bit architecture increases the
conplexity of that architecture as provision nust be
nmade for a 16-bit result.

The inplementation of mltiplication by repeated
addition obviously nakes it a relatively slow process
conpared to addition and subtraction. Furthernore, it
is a fairly comon operation when accessing el ements of
two-di mensional arrays or matrices. As the MB809 is a
hybrid m croprocessor whose architecture includes 8-bit
and 16-bit features, the designers of that chip have
included a limted form of multiply instruction. The
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mul tiply instruction, which has the OE-code MJL, is a
1-byte instruction which takes the contents of
accurmulators A and B as its operands and |eaves the
result of the multiplication in accumulator DD As Dis
a catenation of A and B, the original operands are
dest r oyed.

The ML instruction takes the values in A and B to
be unsigned 8-bit values rather than two's conpl enent
nunbers. The reason for this is that the use of
unsigned mltiplication makes it easier for the
rogranmmer to wite rmulti-byte multiplication routines
oo multiplication and that the array elenent
conputation referred to above generally wuses only
positive array indexes.

An exanple of a multiply instruction is:
ML ; D=A*B

3.2.5 Negate instructions

Negate instructions operate on 8-bit two's conplenent
values held in register A register B or in nenory.
They are witten as NEGA, NEGB, or NEG <address>. NEGA
and NEGB negate the contents of registers A and B
respectively whereas NEG may use direct, extended or
i ndexed addr essi ng.

Exanpl es of negate instructions are:

NEGA . A= -A
NEGB . B=-B
NEG SVAL ; MEM SVAL) = - MEM SVAL)

3.2.6 The sign extend instruction

The sign extend instruction, SEX, is a 1-byte
i nstruction whose function is to convert an 8-bit two's
conpl enment nunber held in accumulator B into a 16-bit
two's conpl ement nunber in accumulator D In essence,
it takes the sign bit of B and extends it so that it
becones the sign bit of D The value of the hi-byte
of Dis set up to be the same as the sign bit of B
This neans that if the nunber is positive, sign bit =
0, accumulator A is cleared. If the nunber Iin B is
negati ve, accurmulator Ais filled with 1s.

3.2.7 The decinmal adjust instruction
The decimal adjust instruction is used when decinal
arithnetic, described in section 1.1.4, is used on the
M6809. The use of decimal arithmetic entails holding
two 4-bit digits in an 8-bit register rather than an
8-bit binary nunber.

Wien an add operation is performed on such a val ue,
a binary addition takes place so that the nunbers held
in eac of the 4-bit register fields need not
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necessarily be correct. For exanple, say the nunbers
27 and 53 are added. Wen represented in 4-bit decimal
notati on these have binary values 00100111 and 01010011
respectively. Wen a binary addition is performed, the
result is 01111010 which cannot be represented as
decimal as the first digit is 7 and the second is
hexadecimal A Clearly, the result of the addition
should be 80 which in binary formis 10000000.

The decimal adjust instruction exanines register P.

and also the carry bits CC.H and CC.C. It checksto
see if an incorrect decimal value is stored in that
register. If so, it adjusts the decimal digits so that
the correct value is restored. In the above exanple,

it would check bits 0-3 of the nunber, see that they
were an inpossible deciml nunber and would convert
this to the correct nunmber by adding 6 to it. Thi s
results in a carry into bits 4-7 thus increasing the
deci mal value stored there to 8.  The correct nunber is
then represented in the register.

The need for the half-carry bit CC.H now becomes

cl ear. If bits 0-3 of the decimal nunbers are such
that an addition generates a value which cannot be
stored in 4-bits, the half-carry bit is set. The

deci mal adjust instruction recognises this and adjusts
the decimal digits accordingly.

3.3 LOGI C | NSTRUCTI ONS

Like the M809's arithnmetic instructions, the logic
instructions are alnmost exclusively concerned wth
operations on the A and B registers and with individual
menory  bytes. The two exceptions to this art
instructions which operate on the condition code
regi ster and which provide a generalised mechanism for
setting and wunsetting individual flag bits in that
register.

Logic operations nmanipulate the individual bits in
their operands and |ook upon these operands as sinple
groups of bits (bitstrings) rather than as nuneric
val ues. For the reader who is unfamliar with logic
operati ons we describe the actual operation as well a:
the instruction format along with each class of logic
i nstruction.

Logic instructions may be |ooked upon as falling
into one of five classes:

(1) And instructions
(2) O instructions
(3) Compl ement (not) instructions

(4) Shift instructions
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(5) Rotate instructions

| ndi vi dual i nstructions are descri bed under t he
appropri ate headi ng bel ow.

3.3.1 And instructions

The | ogical and operation takes 2 bits as its operands
and returns a value of 1 if, and only if, both of its
operands are 1. Al possible operands and results for
this operation are therefore:

0O ANDO -> 0
1 ANDO -> 0
0O AND1 ->0
1 AND1 ->1

The M6809's and instructions operate on 8-bit data so
therefore repeat the above operation for all 8-bits in
the operand register. The registers A, B, and CC nmay
take part in and operations.

The instructions ANDA and ANDB perform a |ogical and
on the contents of the named register and a byte in
menory or an imrediate operand. Direct, indexed or
ext ended addressing may be used to reference a menory
byt e.

The ANDCC operation, on the other hand, may only use
i medi ate addressing. Its function is to and the CC
register with the imediate byte provided l|eaving the
result in CC

Exanpl es of and instructions are:

ANDA #$FO ; Ands A wth (hex) FO.
* Note that the effect of this is
* to clear bits 0-3 in A
and to leave bits 4-7 unchanged

ANDB MASK ; Ands B with MEM MASK)

ANDCC #$00 ; Ands CC with (hex) 00
* This clears CC
The reader will have gathered from these exanples that
one of the nost important functions of the and

operations is to clear specific bits in a register
whilst leaving the other bits unchanged. Anding a O
with a 1 bit always clears it whereas anding a 1 wth
either a 1 or a 0 always |eaves that val ue unchanged.

3.3.2 O instructions
There are two types of or instructions provided on the
M6809. These are so-called inclusive or and exclusive
or which have mmenonics OR and EOR respectively.

These operations can be defined by their effect on
bit val ues:
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0O0CRO->0 0 ECRO -> 0
1RO ->1 1 ECRO -> 1
OCR1 ->1 O ECR 1 -> 1
1R1->1 1 ECR1 ->0

Li ke the and instructions, or instructions are provided
which operate on registers A B, and CC However,
there is no EORCC instruction - only EORA and EORB are
available to the programrer.

Exanpl es of OR and ECR instructions are:

ORA #$0F ; O (hex) OF with register A
Note the effect of this is to
set bits 0-3 of A whilst |eaving
bits 4-7 unchanged

EORB , X ; Exclusive or B with MEM X)
ORCC #$03 ; O (hex) 03 with CC thus setting
* bits 0 and 1 in that register

Just as and instructions can be used to clear specific
bits in a register, or instructions nay be used to set
specific bits. Oing with a 1 bit always sets the
corresponding register bit whereas oring with a 0
al ways | eaves that bit unchanged.

3.3.3 Conpl enent instructions
Compl ement instructions sinply switch the bits in a
register or nenmory byte. That is, all 1 bits are set to
0 and all O bits are set to 1. For exanple, if B holds
the bitstring 10010011, executing a COVB instruction
results in the bitstring 01101100 being stored in B.
Single byte instructions are available to conpl ement
registers A and B as is a nenory conplenent instruction
which may use direct, indexed or extended addressing.
An alternative name which is sonetines used for the
conpl enent operation is the 'not' operation.
Exanpl es of complenent instructions are:

COVA ; Conpl enent register A
COM B, X ; Compl enent MEM B + X)

The conplement operation is not the same as the NEG
arithmetic operation. The NEG operation forns the two's
compl enent of a nunber whereas the COM operation forms
the so-called one's conplenent val ue.

3.3.4 shift instructions

The purpose of shift instructions is to nove all the
bits in a register along one place to the left or to
the right with the leftmost or rightnost bit 'falling
off the end" and being discarded. For exanple, if a
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register holds the binary value 10110001 and is shifted
|eft, the resultant value is 01100010. If a right
shift is executed, the resultant value is 01011000.
Notice that Os are filled in on the left when a right
shift is executed and on the right when a left shift
takes place. The M809' s shift i1nstructions fall into
two cl asses:

(2) Arithmetic shift instructions

Arithmetic shift instructions consider bit 7 of
the register being shifted to be the sign bit.
This bit does not take part in arithnetic shift
right instructions and its value is preserved.
The bit is shifted during arithmetic shift
left (ASL) instructions. For exanple, if a re-
gister value is 10010011 and an ASL instruction
using that register is executed, the resultant
value is 00100110. However, with ASR bits 0-6 are
shifted with the sign bit propagated into the
lower bits. The resulting value I1s 11001001.

(2) Logi cal shift instructions

Logical shift instructions do not recognise the
sign bit and their operands are shifted to the
left or to the right as described in the intro-
duction to this section. Logi cal shifts have
nmenoni cs LSL (I ogi cal shift left) and
LSR (logical shift right). Notice that the LSL
and the ASL instructions are equivalent.

The arithmetic and logical shift instructions operate
on the A and B registers and on nenory bytes accessed
using direct, indexed or extended addressing. Shi ft
instructions always affect the carry bit OC C whose
val ue becones that of the bit which 1s shifted out of
the register.

Exanpl es of shift instructions are:

ASLA ; Shift Aleft by 1 bit with
* QC.Cset to the value of bit 7
* of A before the shift

ASRB ; Shift Bright by 1 bit with
* CC.Cset to the value of bit 0O
* of B before the shift

LSL SVAL ; MEMSVAL) is shifted left by
* 1 bit with OC.C set accordingly

LSR -16,U ; MEMU-16) is shifted right by 1 bit
with CC C set accordingly

*

3.3.5 Rotate instructions
Rotate instructions are simlar to logical shift
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instructions. The only difference is that the val ue of
the carry bit OCC rather than a 0 is nmoved to the
leftmost or rightrmost place of the register, depending
on whether a rotate right or rotate left instruction is
execut ed.

The menonics for rotate right and rotate left
instructions are RR and RO respectively and they
operate on the A or B registers or on a menory byte. As
usual, direct, indexed or extended addressing ray be
used to refer to this byte in nmenory.

Exanpl es of rotate instructions are:

RCRA ; Ais shifted right by 1 bit with
* bit 7 becoming CC.C and CC C taking
* the value of bit 0 before the shift
RCL SVAL I\/EI\/%SVAL) is shifted left by 1 bit
* with bit 0 becomng CC.C and CC C set
* to the original value of bit 7.

3.4  TEST | NSTRUCTI ONS

The M6809's test instructions allow the programrer to
determne if certain conditions are true or false. The
execution of a test instruction always causes one or
nore bits in the OC register to be set or unset
depending on the result of the test. Thus CC bit
settings are the neans by which test results are
‘renenpbered’ for use by follow ng instructions.

There are three kinds of test instructions:

(L) Bit test instructions
(2) Byte test instructions
(3) Conpare instructions

Bit test instructions only operate on registers A and B
and byte test instructions on A B and nenory bytes.
Conmpare instructions, however, are available for all
i ndex and accumul ator registers.

3.4.1 Bit test instructions

The bit test instructions BITA and BITB are used to
test if particular bits (0-7) in register Aor Bare 1
or 0. The operand of the bit test instruction is a
single byte called a nmask whose val ue determ nes which
bits in the specified register are to be tested.

In order to test bit n in the register, the nask is
set up so that only its nth bit is 1 with all other
mask bits set to 0. Therefore, to test bit 4, the nask
value should be 10 (hex) and to test bit 6, it should
be 40 (hex).

If the bits being tested are set, the effect of the
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bit test instruction is to unset the zero flag (Z-fl ag)
in the CC register. Recall that this flag is always
set when the result of an operation is zero and unset
when the result is non-zero. Bit test is inplenented
as an and operation but w thout the anded value being
stored in the specified register. Therefore, if a
tested bit is 1, CC.Z is 0 and if a tested bit is O,
CC.zZz is 1.

Exanpl es of bit test instructions are:

Bl TA #$80 ; Tests bit 7 of A
* CC.Z = not A7

Bl TB MASK ; Tests the bits of register B
* accordi ng to MEM MASK)

3.4.2 Byte test instructions
Byte test instructions are used to test if a byte in
menmory, register A or register B is positive, negative

or zero. The mmenonic for these instructions is TST
with, as usual, A or B appended to it if registers are
t est ed. If a nenory byte is being tested it may be
addressed using direct, indexed or extended addressing.

Byt e t est i nstructions are i mpl enent ed by
subtracting O from the contents of the byte being
t est ed. The result of this subtraction causes the

negative flag and the zero flag in the CC register to
be set or unset. W have already discussed how the Z-
flag is set if the result of the previous operation is
zero so, if the tested byte is zero, CC.Z is set and
CC.N is unset.

If the byte tested is positive, both CC.Z and CC N
are unset, whereas if it is negative CC.Z is 0 and CC.N
is 1. In all cases the byte test instruction causes
the overflow bit CC.V to be unset.

Exanpl es of byte test instructions are:

TSTA ; Test register A
TST 16, X ; Test MEM 16 + X)

3.4.3 Compare instructions

Compare instructions allow registers A, B, D, X Y, S
and U to be conpared with one or two bytes in menmory or
with an imediate operand. Al l owed addressing nodes
are direct, i ndexed and extended addressing. The
mmenoni ¢ for conpare instructions is CMP followed by
the name of the particular register wused in the
conpari son.

Like byte test instructions, conmpare instructions
are inplemented as a subtraction with no permanent
effect on the instruction operands. The addressed 8-
bit or 16-bit quantity is subtracted from the register
contents and the carry, overflow, zero and negative
bits in the condition code are set accordingly.
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If the value in nenory is less than the register
value, the result of the conparison is positive so CC.N
is unset. If it is greater than the negative val ue,
the result is negative so CCN is set, and if the
values are equal, the result of the subtraction is zero
so CC.Z is set.

Exanpl es of conpare instructions are:

CWPX [ MAXADD] ; Conpare X with MEM MEM MAXADD) )

CVMPB #10 ; Conpare B with (decimal) 10

CwPD 16, U ; Conmpare D with MEM 16 + U)
Compare instructions are nostly used inmediately before
branch instructions to inplenment |oops, conditions,
etc. The progranmer need not explicitly be aware of

which bits in CC are set or wunset by the conpare
instruction when they are used in this way.

3.5 BRANCH | NSTRUCTI ONS

The M6809's branch instructions are provided to give
the programrer control over the flow of execution of
his program They allow single bits or conbinations of
bits in the condition code register to be tested and,
on the basis of these tests, add or subtract some val ue

from the PC register. This PC nodification results in
a break in the normal sequential execution of nachine
instructions and transfers control to sone other

i nstruction.

Branch instructions may be considered under four
headi ngs:

(1) Uncondi ti onal branch instructions
These always cause a transfer of control ir-
respective of the bit settings in the CC regis-
ter.

(2) Simpl e conditional branch instructions
These test a single bit in the CC register with a
control transfer dependent on its val ue.

(3) Signed conditional branch instructions
These are used if, in the previous test, signed
regi ster contents were conpared with signed con-
tents of nmenory. They test one or nore bits in
CC with control transfers dependent on their
val ues.

(4) Unsi gned conditional branch instructions

These are simlar to signed conditional branch
instructions but are used when unsigned values
were conpared in a previous operation.
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Al'l branch instructions use PC relative addressing with
the value to be added to PC held as an 8-bit or 16-bit

i nstruction operand. Because the operand may be 1 or
two bytes, there are 2 forns of every branch
instruction, a short form and a long form Short

branch instructions have the form

B<condition> <1 byte 2's conpl erent di spl acenent >
Long branch instructions have the form

LB<condition> <two byte 2's conpl enent di spl acement >

In the description and exanples below, it is convenient
for us to show only the short form of the branch
instructions. However, the reader should bear in mnd
that long branch fornms are also allowed. The act ual
machi ne code value for the long branch form of a branch
instruction is usually mde up by prefixing the
correspondi ng short branch op- code with
10 (hexadecimal). Long branch instructions are used
when the displacenment in the branch instruction is |ess
than -128 or greater than 127.

3.5.1 Unconditional branch instructions

There are t hree di stinct uncondi ti onal branch
instructions available to the M;809 progranmer. These
are:

BRA Branch al ways
BRN Branch never
BSR Branch to subroutine

The BRA instruction is equivalent to a BASIC GOIO
statenent and the BSR instruction to a BASIC GOSUB
st at ement . These instructions al ways add their

di spl acement to PC irrespective of the settings of CC
flags. In addition, the BSR instruction, before
nodi fying PC, stacks that register on the hardware
stack referenced by the S register. This means that,

on return from the subroutine, execution can be resuned
at the instruction which follows the BSR instruction.

The BRN i nstruction is a so-cal l ed no- op
i nstruction. In short it does nothing at all except
take up 2 or 4 bytes of space. Wen this instruction
is executed, control i mediately nmoves on to the
following instruction. This may, therefore, appear to
be a useless instruction. However, it has its uses

when the progranmer wishes to cheat a little and hide a
1 or 2 byte instruction in the operand field of the BRN

i nstruction. After the first execution of BRN when
this instruction is ignored, it is possible to branch
back to the hidden instruction and execute it. Thi s,
however, is poor programing practice and is not a

reconmended techni que.
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3.5.2 Sinple conditional branch instructions
Sinple conditional branch instructions examne a single
bi t in the M809's condition code register.
Instructions exist which branch on the setting of the
carry flag, the overflow flag, the negative flag, and
the zero flag. There are two instructions which test
each fl ag. e of these instructions branches if the
flag is set, the other branches if the flag is unset.
The table below lists the sinple conditional branch
instructions and shows their association wth condition
code fl ags.

Fl ag Mhenoni ¢ Functi on
C ECS Branch if carry bit is set
BCC Branch if carry bit is unset (clear)
Vv BVS Branch if overflow bit is set
BVC Branch if overflow bit is clear
Z BNE Branch if zero bit is unset

that is, when conparison operands
are not equal

BEQ Branch is zero bit is set
that is, when conparison operands
are equal
N BM Branch is negative bit is set
BPL Branch if negative bit is unset

As with all other branch instructions, these may take
an 8-bit or 16-bit signed two's conpl ement offset thus
allowing forward or backward branching. |If a 16-bit
offset is used, the mmenonics above nust be prefixed
with an L to indicate |long branching.

3.5.3 Signed conditional branch instructions

Signed conditional branch instructions are used when a
precedi ng operation has conpared the val ues of signed,
nuneri c operands. These branch instructions exam ne
conbi nations of condition code flags to determne if
the specified condition is true or false and if
branchi ng shoul d occur.

The table below shows the four distinct si'\gned
conditional branch instructions available to the 809
pr ogr anmer . In addition to these, the sinple
conditional branch instructions BEQ and BNE may al so be
used as signed conditional branches, where the branch
takes place if the operands in the precedi ng conparison
were equal or not equal.

Fl ag combi nati on Mhenoni ¢ Functi on
NOT(Z OR (N XOR V)) BGT Branch if greater than
NOT(N XOR V) BGE Branch if greater than

or equal
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Z R (NXRV) BLE Branch if less than
(N XCR V) BLT Branch if less than
or equal

Notice that the pairs of conditions above are
compl ementary with the greater than conditions the
inverse of the less than conditions. BLE is the
compl ement of BGT and BGE is the conplement of BLT. W
therefore only explain the flag conbinations for a
single pair of instructions BLE and BLT.

The BLE instruction branches if, in the preceding
conmparison, the register operand was |ess than or equal
to the nmenory operand. If register A was tested
agai nst MEM VAL) say, we might wite this as A <= VAL.
If the operands are equal, the Z-flag in CC is set.
This flag is examined by BLE and branching occurs if it
is set.

If A and MEM VAL) have the same sign, t he
subtraction operation entailed in the comnparison can

never result in overflow so CCV is always cleared. |If
A is indeed less than MEM VAL), the subtraction wll
result in a negative value so CC.N wll be set.
Therefore, if CCN is set and CCV unset, this
indicates that A is less than MEM VAL) and branching
will occur. If CCV is unset and CC.N is unset, A is

not |ess than MEM VAL).
In the case where A and MEM VAL) have different

si gns, the conparison my result in an overflow
occurring. Thus the sign bit wll have an incorrect
value. If CCV is set, indicating overflow, and CC.N is
unset, indicating a non-negative value, this actually

means that the result is negative. On the other hand,
if both CC N and CCV are set, the result is positive.
Because of the neanings of these bit conbinations,
the exclusive or operation perforned on CC. N and CC V
al ways gives the correct sign bit for the nunber.

Therefore, if this operation returns 1, the result of
the conparison is negative and branching should take
pl ace.

The BLT instruction can be considered as a less
general form of the BLE instruction which only branches
when the register operand is less than the nenory
operand. The above argunent holds for this instruction
al so. The BGI and the BGE instructions are sinply the
compl enents of these so a not operation perfornmed on
the corresponding 'less than' <condition bits allows
these instructions to determine if branching should
t ake pl ace.

3.5.4 Unsigned conditional branch instructions

Unsigned conditional branch instructions are used when
the preceding operation conpares the val ues of unsigned
oper ands. Again, these instructions test condition
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code register flag conmbinations to determne if
branchi ng shoul d take pl ace.

The table bel ow shows the four unsigned conditional
branch instructions and the flags tested in the CC
register. Again, the BEQ and BNE instructions may be
used under this category.

Flag conbi nation Mhenoni ¢ Functi on

C BLO Branch if | ower
CRZ BLS Branch if |ower or

the sane
NOT( ©) BHS Branch if higher or

the sane
NOT(C CR 2) BH Branch if higher
Again the instruction pairs BLOBHS and BLS/BH are
compl ementary so we shall only discuss the operations
BLO and BLS. As these operations assume that the
previous conparison tested unsigned operands, t he
negative flag CC.N is not tested by these instructions.
As always, if the result of the conparison is zero,

CC.Z is set so the BLS instruction branches if this
flag is 1.

As the conparison operands are unsigned, t he
subtraction entailed in the conparison is essentially a
subtraction of positive values. |If the second operand
is greater than the first, the subtraction will result
in a borrow. Thus, the carry bit in CC will be set.
If the second operand (the nenory operand) is smaller
than the first, no borrow will result so the carry bit
will be unset. Therefore, the BLO and BLS instructions
exam ne the carry bit and branch if it is set.

So far, we have not provided any explicit exanples
of branch instructions as, unlike other instructions
consi dered so far, exanples of these instructions are
meani ngl ess in isolation. To illustrate sone of the
branch instructions in use we show below the assenbly
code equival ent to a nunber of BASIC statenments
i nvol ving | oops and conditional operations.

100 IF V1 > V2 THEN GOTO 500

200 IF V1 = V2 THEN GOTO 700

300 V1 = V1 + 2

400 GOTO 200

500 M= V1

600 GOTO 800

650 REM ASSUME A SUBROUTI NE EXI STS AT 2000
700 GOSUB 2000

800

Assuming V1, V2 and M are represented as 16-bit signed
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guantities and that the subroutine at 2000 has the
synmbolic nane V1EQ an assenbly code sequence which
woul d carry out the sanme function is:

LDD Vi ; D=V1
CVMPLAB CVWPD V2 ; Conpare this with V2
BGTI GTLAB ; If greater than branch
BEQ EQLAB ; |If equal branch.
Notice there is no need for
another load or conparison
ADDD #2 ; Add 2 to D
STD V1 ; and put result back into V1
BRA CMPLAB ; Branch back to conmparison
GTLAB STD M ;7 VI > V2 so M= V1
BRA NXTLAB ; continue
EQLAB BSR V1EQ ; Val ues equal, call routine

NXTLAB

Notice how the assenbly code version of the sequence is
only slightly longer than the BASIC Wi | st in
general, BASIC statements expand into multiple assenbly
code instructions it is often possible to elimnate
much of the redundancy inherent in high |evel |anguage
progranm ng and hence produce conpact code.

3.6 | NTERRUPT HANDLI NG | NSTRUCTI ONS

An interrupt is a neans by which a program executing
on a processor, can be tenporarily suspended whil st
some other program executes. They are of vita
i mportance in 1/0O progranm ng where interrupts are used
by peripheral devices to informthe processor that data
are available. The processor nust stop what it is
doi ng, collect the data from the peripheral then
restart its original activity.

The interrupt handling instructions available to the
M6809 programmer are described in full in Chapter 8
whi ch covers 1/0O programm ng. Here, we sinply list the
interrupt handling instructions which are avail able and
sunmari se their functions.

(1) The wait instruction

This instruction, menponic CWAI, takes a single
byte operand which is anded with the contents of
CC when the instruction is executed. The E flag
in the condition code register is then set, indi-
cating that all registers should be stacked on
the hardware stack. The instruction then waits
(does nothing) until a hardware interrupt occurs.
Interrupt processing, as detailed in Chapter 8,
then commences.

(2) The return from interrupt instruction
The return from interrupt instruction, RTI, is



63

executed after interrupt processing is conplete.
It unstacks the register values pertaining when
the interrupt occurred thus returning control to
the interrupted process.

(3) The software interrupt instruction

This instruction, which has menonic SW, causes
a so-called software interrupt. A software in-
terrupt causes the processor to junp to an asso-
ciated interrupt service routine which may, for
exanpl e, transfer control to some other process
Thus the execution of progranms in different parts
of the M6809' s nmenory may be coordinated and syn-
chroni sed.

(4) The synchronise instruction
This instruction, SYNC, is used to synchronise an
executing program with some external hardware
event .

Interrupt handling instructions are special purpose
instructions and are unnecessary for nost applications
programmed in assenbly code.

3.7 M SCELLANEQUS | NSTRUCTI ONS

In this section, we describe the remaining M809
machi ne instructions which don't fit neatly into any of
the above classifications. There are only four
instructions in this category. These are:

(L) The junp instruction

(2) The junp to subroutine instruction

(3) The return from subroutine instruction
(4 The no operation instruction

V¢ shall start with the 'no operation' instruction
which has menonic NOP. Its function is very easy to
describe - it does nothing. A NOP instruction is 1
byte long and all it does is take up nmenory space. This
can be wuseful if it is necessary to force other
instructions to occupy particular nenory |ocations.

3.7.1 Junp instructions

The junp instructions available to the Ms809 progranmrer
are simlar to the branch instructions discussed
earlier in this chapter. The function of these
instructions is to evaluate their operand and load its
value into the programcounter register. Therefore, if
addresses of other instructions are saved as data, you
can transfer control to these instructions using a junp
i nstruction.
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The addressing nodes allowed with junp instructions
are direct, indexed and extended addressing. There are
two junp instructions JMP, which is an unconditional
j unp, and JSR  which is a junp to subroutine
Instruction. The only difference is that JSR stacks the
program counter PC on the hardware stack before
assigning its operand to the PC register.

Exanpl es of junp instructions are:

JWWBU ; PC= MMB + U
JSR,U ; S=S- 2 MEMS =PC PC= MMV

3.7.2 The return instruction

The return from subroutine instruction, whose menonic
is RIS, is executed as the last instruction in a
subrouti ne. It unstacks the top two bytes from the
hardware stack and assigns them to PC Thi s
effectively transfers control to the instruction
following the BSR or JSR instruction which initiated
the subroutine.



Chapter 4

Introducing assembly
language

Assenbly |anguage progranming is a form of conmputer
programri ng where the programer wites his program as
a sequence of absolute directives to the processor.
That is, he states exactly which machine instructions
are to be used in the exenption of his program

This type of programming is sonetimes called |ow
| evel programm ng because it is a notation which is

very close indeed to machine |anguage. By contrast,
programming in a language such as BASIC is called
hi gh-1evel |anguage programr ng. The progranmer wites

his program at a rmuch higher level where the details of
the machine architecture are irrelevant.
Hi gh-1evel programrng is much easier than |owl evel

progranm ng because machi ne architectures are
i nherently conpl ex. The | owl evel programer  nust
master all the details of this conplexity if he is to
avoid meking progranming errors. The  high-1evel

programrer, on the other hand, has many fewer details
to renenmber and can concentrate on getting the |ogic of

his program correct - a difficult enough task in
itself.

The mjority of conputer applications can be
pr ogr amed perfectly adequatel y in a high-level
| anguage and there is no point in progranmng in
assenbly |anguage when BASIC wll do. However, in
personal conputers, |like the Dragon, there are some

tasks which are easier to program in assenbly |anguage
rather than BASIC because they require access to
hardware features of the machine. Although this is
possible from BASIC, it is clunsy and inconvenient as
it requires the use of many POKE and PEEK instructions.

There are also some types of program which, if
programmed in BASIC, are too slow This sl owness
results from the way in which BASIC is inplenmented.
Every BASIC statenent nust be translated to nachine

code just before it is executed and this takes a
significant anmount of tine. As this translation is
absolutely essential, the only way to speed these

programs up is to program them or, at least those
time-critical parts of them in assenbly code.

As we have already suggested, the real difference
bet ween programi ng in assenbl y | anguage and
programming in BASIC is one of detail. In BASIC,

65
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deci si ons about where the program and its data are to
be located in memory, how real nunbers are to be
provi ded, how character strings are nanipul ated, etc.
are all nmade for the progranmer by the BASIC system
As well as this, BASIC prograns are expressed in such a
way that they are readily understood by people whereas
the notation wused for assenmbly code bears little
relation to the logical processes involved in solving
the problem at hand.

However, in spite of these difficulties, there are
three fundanental advantages in progranmng in assenbly
| anguage rather than BASIC:

(1) The programrer has conplete control over the
machi ne. If he wishes to use his own particul ar
way of manipulating characters or to access
hardware features in sone non-standard way, this
is possible in assembly I|anguage but inpossible

in BASIC.
(2) Assenbly |anguage programs are very nuch faster
than equivalent BASIC prograns. Because the

transl ati on phase from BASIC to nachine code is
avoi ded, assenbly |anguage prograns typically ex-
ecute at least 100 tines faster and sonetines as
much as 1000 times faster than corresponding
BASI C progr ans. This means that they are suit-

able for programs, |ike some arcade-type ganes,
which rmust react very quickly to input from the
user.

(3) Assenbly | anguage prograns are nore conpact, that
is, occupy less nenory, than their BASI C
equi valents. This is particularly inportant when
large programs are witten which may require al-
nost all of the nenory avail able on the machine.

O course, there are also disadvantages associated wth
progranming in assenbly |anguage apart from the obvious
one that the programrer nust remenber many |owlevel
details of the machine. These disadvantages are:

(1) Because the progranmer has conplete control over
the machine, it is nore difficult to detect mis-
takes in assenbly code prograns. As long as a
valid instruction is witten, something wll hap-
pen even although the instruction does not do
what the programmer really wants. Whereas the
BASIC system has many built-in checks which
detect errors like dividing by zero, no built-in
error detection is available to the assenbly
| anguage programmer.

(2) Because of the lowlevel nature of assenbly
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| anguage programs and because the progranmer nust
explicitly include his own error checking facili -
ties, assenmbly I|anguage progranms are usually a
good deal longer than their BASIC equivalents.
This means that they take longer to wite, are
nmore difficult to understand, and are likely to

contain nmore mstakes than high-Ievel |anguage
programns.
Because  of the conplexity of assenbl y | anguage

programm ng, it is best to adopt a nulti-stage approach
when developing a program which is ultimately witten
in assenbly code.

The first stage is to work out the solution to your
problem in very general ternms and to wite down this
solution in sone stylised way. This is a very high-
| evel expression of what your program ought to do. For
exanpl e, say you are devel oping a gane where the player
must shoot down alien spacecraft. Part of the genera
hi gh-1 evel expression of this night be:

if firing button pressed then
[ aunch mnissile
if alien detects nmissile launch then
drop anti-mssile bonmb
if dodge key pressed then
nove missile to avoid bonb
el se
m ssile destroyed

In fact, this approach is always how we work out the
logic of programs although, sonmetines, we do it in our
heads rather than explicitly on paper. Witing down
the solution is nuch better because when we hold
detailed information nentally it is very easy to forget
bits of the problem solution or to nake nmnistakes when
mentally translating to a programm ng | anguage

The second stage, which is particularly inportant
for inexperienced assenbly |anguage programrers is to
transl ate the general, abstract problem solution into a
hi gh-1evel programm ng |anguage |like BASIC. Here, you
must decide how |logical operations such as ‘'firing
button pressed’ are actually to be inplenented. For
example, in the above program mssile dodge keys m ght
be "4' to nove left and '6' to nove right. W mght
code that part of the solution as:

KEY$ = | NKEY$
IF KEY$ = "4" THEN MSX = MSX - 1
IF KEY$ = "6" THEN MSX = MSX + 1

where M SX represents the x-coordinate of the mssile.
An advantage of this intermediate stage between
probl em solution and assenbly code program is that the
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BASI C program can sonetinmes act as a prototype for the
final program This lets you tr%/ out ideas and debu
the logic of the solution before becomng invol ved wt
the details of assenbly | anguage.

The third stage in the devel opment of an assenbly
| anguage program is to take the high-level |anguage
ﬁ)_rogram and to translate it, by hand, to assenbly code.
his is a straightforward process and the assenbly
| anguage equivalents for BASIC statenents are described
later 1n this chapter.

Sonmetimes it isn't necessary to translate the
conplete program into assenbly code. Typically, nost
prograns have relatively snall sections, such as a
di spl ay subroutine, where they spend nost of their
tine. It is possible to code these tinme-consum ng
subroutines in assenbly language and to link theminto
a BASIC Brogram This often gives the speed-up effect
desired by the programrer and the chore of translating
the whole program into assenbly code can be avoided.
W explain how assenbly code subroutines can be |inked
wth | C prograns in Chapter 6.

In any direct translation of a BASIC program to
assenbly | anguage, there is bound to be redundancy.
For exanple, say we have two BASIC statenents:

M=M+ 1
V=V+M
A direct translation of these into assenbly code,

assumng that both M and V can be held as 8-hbit
integers, is:

LDAM ; A=MMM
ADDA 1 ; A=A+1
STAM  MEMM =A
LDAV  : A= MMV
ADDAM : A=A+ MMM
STAV MMV = A

However, this can be optimsed by wusing the INC
instruction to add 1 to A An optinmsed version of
this instruction sequence is therefore:

Y AL
ADDA M ; A=A+ MM
STA V i MEMV) = A

The final stage in devel oping an assenbly code program
therefore, is to take the BASIC equival ent program and
to elimnate redundant steps in order to optimse the
program  Some obvious elimnation of redundancy can be
done during stage three but program rearrangenent, the
use of different addressing nodes, etc. should be left
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until this final st age. In the exanples in the
following chapters we show how optimsation can make a
consi derable difference to the size of a program

This chapter and the following tw chapters are

devoted to assembly |anguage programi ng. In the
remai nder of this chapter, we describe a class of
program called assenmblers. An assenbler translates
i nstructi on menoni cs, synbolic names, etc. used by the
programer to machi ne code. It is a vital tool for the

serious assenbly |anguage progranmer.

The follow ng chapter, Chapter 5, shows how commonly
used progranm ng constructs such as assignnents, |oops
and conditional statements may be programred in
assenmbly | anguage. The approach which we use here is to
take BASIC statements inplenenting these constructs and
show how assenbly | anguage equivalents to these can be
built up. W also show how these 'BASIC equivalent’
programs can usually be optimsed to produce a program
whi ch has inproved space and tinme efficiency.

Chapter 6 |ooks at nore advanced aspects of assenbly
| anguage progranmng. |In that chapter, we describe a
gener al - purpose technique for inplementing subroutines
and we show how character strings may be represented
and mani pul ated. We also describe how to link assenbly
| anguage subroutines wth BASIC programs and how to
wite assenbly code which is position independent.

It is beyond the scope of this book to discuss

assenbly |anguage progranming in great detail. Thi s
requires a book in itself and, to supplenment the
materi al here, the reader may find it useful to refer

to sone of the textbooks on M809 assenbly |anguage
progranm ng which are listed in the reading list.

4.1 THE ASSEMBLER PROGRAM

We have already introduced, in earlier chapters, the
idea of an assenbler as a program which translates
assenbly |anguage statements to nmachine code. This
translation is not a difficult process as it sinply
requires the program to look up tables of nanmes and
associ ated hexadeci mal val ues. However, for humans this
is a slow, tiresome, error-prone task. In fact, it is
the kind of job that conmputers excel at and we
recoomend that you should try to avoid the hand
transl ati on of assenbly code.

For each  machi ne, there are usually several
di fferent assenbl ers avail abl e from di f ferent
suppliers. Sone of these might have nore sophisticated
features than others but all wll provide at l|east the

following facilities.

(1) The translation of mmenpnic instructions to their
equi val ent hexadeci mal op-codes.
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(2) The ability to associate labels wth assenbly
| anguage statenents. Reference to these |abels

within the programwll result in the address of
fh% II abel led statenent being substituted for the
abel .

(3) The associ ation of names with specific nenory | o-
cations. Wen these variable nanes are used by
the programnmer, the assenbler substitutes the ac-
tual nmenory address of the variable.

(4) The translation of decinmal nunbers to their hexa-
deci nal equi val ent.

(5) The translation of synbolised address references
such as [ ,X ] for indirect indexed addressing to
the appropri ate postbyte, offset, etc.

(6) Limted error checking indicating if an invalid
menoni ¢ has been used, if a label referenced in
an instruction is not declared, if a short branch
is used where a long branch is required, etc.

The particular assenbler whose facilities we shall
describe in this chapter is the DREAM assenbler,
avail abl e fromthe manufacturers of the Dragon. This is
a typical assenbler which uses fairly standard Mtorol a
MB809 notation, as set out in Appendix 1, for assenbly
| anguage instructions. There may be slight differences
in detail if you use a different assenbler but, in
general, the description of facilities below applies to
all assenblers which are available for the Dragon.

The single exception to the standard notation is
when indirect addressing is used. As the synbols !
and ' ]I are not Dragon keyboard characters, the
assenbl er uses round brackets ' (' and ' ) ' to indicate
indirect addressing. W shall follow this convention
from now on but the reader who is using sone other
assenbl er should read (<address>) as [<address>].

As well as being an assenbler, DREAM is also an
editor. It provides facilities for inputting,
nodi fying, duplicating and saving text on a cassette.
This text need not be assenbly code but nmay be anything
at all. However, as the wediting and assenbling
facilities are conbined, the inplenmentors of DREAM
clearly see the creation and editing of assenbly
| anguage instructions as its major task. As assenbly
language instructions do not have explicit line
nunbers, it is not possible to use the |C editor to
create and edit assenbly |anguage prograns.

The standard format for an assenbler source line as

input to DREAM or any other assenbler based on the
standard Mdtorola notation is:
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<l abel > <mmenoni c> <operand> <conments>

The different fields in the source 1line nmust be
separated by one or npre spaces. The <l abel> and
<comments> fields are optional, the <mmenonic> field

must be present as nust the <operand> field except for
those instructions which use inherent addressing and do
not require explicit operands.

4.1.1 The label field

The label field, if present, nust start in the first
colum of the source Iine. Anything that starts in
colum 1 is therefore taken, by the assenbler, to be a
| abel . If you make a nmistake and put a menonic in
colum 1 or a label starting in sone other colum the
assenbler will get very confused indeed.

Label s nmust start with a letter and may only contain
al phanuneric characters, that is, letters and numbers.

Most assemblers inpose a limt on the length of a Iabel
- the DREAM assenbler, for exanple, insists that |abels
be no nore than 6 characters | ong.

The table bel ow shows exanples of valid and invalid
statenent | abels.

Valid Labels Invalid Labels

A372 372A (label must start with a letter)
NEXTCH NEXTCHAR (1 abel too |ong)

ot INQUT (label may not contain '-')

There is a single exception to the rule in the DREAM
assenbler that Ilabels may contain only al phanuneric
characters. One label, and one label only, in the

program may have a '@ as its first character. For
exanple, @START or CBEG N are valid |I|abels although
both may not be used in the same program The | abel
whose first character is '@ is one way of indicating
to the assembler where to start program execution when
the assenbled machine code program is run on the
Dr agon.

Al t hough the labels A, B, X Y, U S CC, PC, and DP
are not invalid, you should avoid using them because of
potential confusion wth the M809 register names.
Simlarly, you should not use labels which are
identical to assembly |anguage menoni cs.

4.1.2 The menonic field

The mmenonic field of an assenbler input Iline nust
contain one of the instruction menonics that we
covered in the previous chapter. It must be separated
from the label field by at Ieast one space. If no
label is present, the menonic field nmust still be
preceded by one or nobre spaces otherwise it wll be

taken as a | abel.
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4.1.3 The operand field

The operand field in an assenbly |anguage instruction
nmust be present except for those instructions Iike
I NCA, ABX, MJL, etc. which have no operands. It nust be
separated from the menonic field by at Ileast one
space. The operand field specifies the operand address
and the following conventions are used when using the
DREAM assenbler to indicate which addressing node is
bei ng used.

Regi st er addressing
The nanes of the source and destination registers are
separated by a comma. For exanpl e:

TFR X Y
EXG A DP

| mredi at e addr essi ng

The immediate value is preceded by a '# synbol.
default, imediate values are decinal but hexadeci nma
values may be input by preceding the value with a '$
synbol and character values by preceding them with a
quote "'" synbol. It is also possible to associate
synbolic names with constants and these nay also be
input as imredi ate val ues. For exanple:

LDA #10

LDB #$10
LDA # +

LDA #NMAXI NT
LDA #LAB1

If the imrediate operand in an instruction is a program
| abel, the value substituted for the synbolic label is
the address of the |abelled statenent.

D rect and extended addressing

In general, the assenbler wll decide for the
programrer whether it is best to use direct or extended
operand addressing. DREAM works out if the addressed
operand is within a page of the current DP register
setting and, if so, it generates a direct address.
Q herw se, an extended address is generat ed.

A synbolic name on its own indicates either direct
or extended addressing as decided by the assenbler.
The c;Jrograrmer may force extende addressing by
preceding the nane with a '> character or may force
direct addressing by preceding it with a '<' character.
For exanpl e:

LDX VNAME D rect or extended
LDX >TNM Force extended addressing
LDX <COUNT Force direct addressing
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| ndexed addressing
The general form of an indexed address is:

<of f set >, <i ndex register>

The offset may be a register name, a synbolic nanme, a
constant value or may be left out altogether. The
regi ster nane nust be X, Y, Uor S and, if no offset is
present, auto increnment or decrenment may be specifi ed.

The follow ng exanples all show generalised indexed
addr essi ng.

LDA BASE,PCR PC relative
STX OFFST, Y Synmbol i c constant offset

STD -16, X Const ant of f set
LDA X Zero offset
LDB AU Regi ster offset

Auto increnent and decrenent may only be used with zero
of fset addressing. They are indicated by prefixing the
index register name with '-' or '--' or by suffixing it

with '+ or '++ . For exanple:

STX | Y++ Auto increnment by 2
STA | St Auto increment by 1
LDB ,-Y Auto decrement by 1

LDD ,--S Auto decrenent by 2
In all cases, the assenbler works out whether the
specified offset should be represented as a 5-bit, an
8-bit or a 16-bit offset. The programer may force an

8-bit offset by preceding the offset with a '<
character and may force a 16-bit offset by using a '>
synbol . It is not possible to force the assenbler to
generate a 5-bit offset. For exanpl e:

LDD <4, X Forces 8-bit rather than 5-bit offset.
STX >32,Y Forces 16-bit rather than 8-bit offset

I ndi rect addressing
Indirect addressing is indicated by surrounding the

operand field with round brackets. For exanpl e:
LDA ( VALADD) I ndi rect extended
STX (AY) I ndi rect indexed

VWhen using constant values within the operand field,
the DREAM assenbler allows a limted formof arithnmetic
to be used. If constant expressions using '+ and '-'
are specified, DREAM wll carry out the necessary
arithmetic as it assenbles the program For exanple:

LEAS BASE+8, U
LDD #START - 10
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BRA * + 12

An asterisk (*) means the value of the program counter
at the start of the current statenent. Noti ce that
this is not the sane as the actual PC value which
refers to the next instruction to be executed.

4.1.4 The comments field

The comments field is wused to provide descriptive
comment about the associated assenbly code instruction.
It nust be separated by at |east one space from the
operand field but the convention when using the DREAM
assenbler is to separate the coments field from the
remai nder of the instruction by two or nore spaces and
to make the first synbol a sem -colon. For exanple:

LDA T ; put top value in A
Comments taking up an entire line wmy also be
i ntroduced by placing a '* in colum 1. Most MBB09
assenmblers will recognise this as a comrent and ignore

the remai nder of the line. For exanple:
* An asterisk indicates a coment

In order to make assenbly |anguage statenments as

readable as possible, it is best to adopt a fairly
rigid, fixed format layout for instructions. The
follow ng layout is suggested:
Colums 1-6 Label or blank if statenent

is unlabelled
Col ums 8-11 Mhenoni c
Colums 13-19 Oper and
Col ums 22- Coment
If the operand is nore than eight characters long, it
wil | obviously overflow into the coments field.

Depending on the length of the comment, you may either
continue it on the sane line or start a new line wth

"** and include the comrent field on that Iine. I'n
general, when all of a conment cannot fit on the
instruction line, the continuation on succeeding |ines

shoul d be aligned.
Exanpl es of this layout are:

BEG N LDD MAX ; Start with max

SUBD #1 ; Take 1 off it

CVPD M NVAL ; Conpare with mn.

BEQ VALSEQ
As with all Iayout conventions, there are many special
cases which do not fit well wth the convention.

Slight changes may avoid taking a new line for a short
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comment continuation or nay mnake the program nore
readabl e. The programmer nust use his common sense in
this respect and nodify the above rul es accordingly.

The output from the DREAM assenbler consists of a
listing of the source lines with each line preceded by
the address of the corresponding machine instruction
and the hexadecimal representation of the instruction
itself. For exanple, assumng the instruction address
was 4E40, this mght appear:

4E40 4C | NCA ; increnment pointer
4EA1 1F8B TFR A DP : and |oad DP

Notice that the address is increnented according to the
nunber of bytes in the instruction. Ve shall describe
how the initial assenbler address is set up in a later
section (4.2.5) of this chapter.

4.1.5 Assenbling w thout an assenbl er

If you don't have an assenbl er program but want to run
machi ne code prograns, you have to translate the
assenbl y Iangua%e statenents to hexadecinal nachine
code by hand. his is only realistic if you have onl

a few statenments to translate and you only do suc
translations fairly occasionally.

There is enough information in Chapters 2 and 3 and
in the appendices to allow you to translate from
assenbly language to nmachine code. You nust kee
careful track of the nunber of bytes taken up by eac
instruction so that your relative addresses are
correct. It is best to nake a table for yourself of
the synbolic names which you use and the nenory
addr esses whi ch you have assigned to them

Ohce you have conpleted the translation from
assenbly code to mnmachine code, you then load the
hexadeci nal repr esent ati ons of your machi ne
instructions into nmenory and start executing them
This can be acconplished using another program called a
| oader. In the final section of this chapter, we
rovide a listing of a loader, witten in BASIC, which
E’(KES hexadeci nal codes into menory. You may either
then execute the nachine code program with an EXEC
command or you may include such a coomand in the | oader
so that the machine code is immediately executed.

4.2  ASSEMBLER D RECTI VES

Assenbler directives are instructions wused by the
programrer to give commands to the assenbler. They do
not cause machine instructions to be generated but they
may alter internal assenbler variables. Assenbl er
directives are the means by which synbolic names are
associated with addresses and they also allow the
programrer to specify the initial values which nenory
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bytes should take before his programis executed.

The operation of assenbler directives can only be
understood in the context of the general rmenory
organi sation which is assuned by the assenbler. Figure
4.1 shows this organisation for that part of menory
used by the assenbler.

e ————————————————— - e ———— II?F_'FF
DREAM
: ASSEMBLER
| - | 6C80
6CTF
DEBUG BREAKPOINT TABLE
6C00
) D————— 6BFF
NTR FIE 4
_Cf__} OL_ L_DS_ 6B00
T'EXT_TABLE_
DREAM ! SYMBOL
WORK |, EARLE ol
SPACE
GENERATED
CODE A4E21
| aE20
BASIC STRING STORAGE
| - | 4D58
4D57

SYSTEM STACK

BASIC PROGRAM STORAGE

Fig. 4.1 Assembler memory map

There is a large area of RAM which is reserved by
the assenbler as its work space. This workspace
imedi ately follows the machine code of the assenbler
programin the Dragon's nenory.

At the top of this work space, the assenbl er creates
its own internal tables which it uses in the
translation of the programrer's assenbly code to
nmachi ne code. As the nunber of entries in these tables
deBends on the size of the program being assenbl ed, the
tables are variable in size. As new el enents are added
to the table, they are allocated |ower rmenory
addresses. Dynamcally allocated areas of this sort are

shown on nenory maps as wavy lines wth an arrow
indicating the direction of growh.
As an illustration of how this table is set up, say

the top address in the assenbler's work space is 6AFF.
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The first table entry, which mght be 8 bytes long, is
al | ocated address GAFF. The following table entry has
address 6AF8, the one after that 6AF0, and so on. The
table grows downwards in nenory as each succeeding
element is all ocated.

As the assenbly |anguage program is translated, the
generated machine code nust be stored sonewhere in
menory. The area chosen by the assenbler for the
generated machine code is at the bottom of its work
space and the generated machine code grows upwards in
nmenory.

The assenbler uses an internal variable called the
assenbl er program counter (APC) to keep track of where
the next generated machine instruction is to be placed
in its work space. As instructions are generated, APC
is increnented by the length of the instruction in
bytes. Sone assenbler directives also affect the value
of APC and their effects are discussed along with the
description of the directives in question.

4.2.1 The EQU directive

The equate directive is the directive which is used to
associate a synbolic name with a constant decinmal or
hexadeci mal val ue. It has the general form

<l abel > EQU <val ue>

It is good progranming practice to nmke extensive use
of equate directives to nane constants used in your

program If you chose a nane related to the constant's
function, this makes the program easier to understand.
Furthermore, if you need to change the value of a
const ant, you nmerely need to change the equate

directive rather than search through your program
changi ng the absolute value every tine it is used in an
i nstruction.

Examples of equates defining absolute constant
val ues are:

MAXI NT EQU 32767 ; maxi mum al | owed i nteger
TABSI Z EQU 100 ; sone table size

CFF EQU $00 ; define a value nmeaning off
ON EQU $FF ; a val ue neani ng on

The constant value in the equate directive may include
other synbolic constants defined by an equate and may
also include the synbols ' +' and '-'. The assenbler
carries out the necessary arithmetic to conpute the
equated value. For exanple:

TRUE EQU ON ; TRUE has val ue $FF
FALSE EQU OFF ; FALSE = $00
UTABSZ EQU TABSIZ - 15 ; UTABSIZ = 85
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As well as being used to associate names wth program
constants, the BEQJ directive may also be used to nane
locations in a menory page when direct addressing is to
be used.

Recall that the direct addressing node uses the DP
register to hold the hi-byte of the menory address with
the lo-byte of the address obtained from the
instruction itself. Not only is this form of
addressi ng space efficient as addresses only take up a
single byte, it also neans that nenory |ocations can be
reserved for variables in a position Independent way.

The programrer need not decide the absol ute address
in menmory which is to be allocated to particular
variables. Rather, he may set up their addresses as a
di spl acement fromthe start of a page. Were that page
actually resides in menmory when the programis executed
is governed by the setting of the DP register which may
be assigned i medi ately before execution. W shall say
nore about position independence in Chapter 6.

The equate directive is used to associate page
addresses with synbolic nanes. For exanpl e:

DELAY BEQU $00 ; first byte in page
QURPCS EQ $01 ; COURPCE takes up bytes 1 and 2
| NCH EQU $03 ; byte 3

The names used in an equate directive nust obey the
nornmal rules for assenbler labels. That is, they nust
start wth a letter, contain only al phanuneric
characters and may be no nore than six characters |ong.

The equate directive does not affect the assenbler’'s
program counter. Nanmes and associated values are
stored in an internal assenbler table and, when the
nane is used in a program its value is substituted for
it.

4.2.2 The FCB/FCC directive

The FCB/FCC directive is used to format data bytes.
That is, the programmer uses this directive to allocate
store and to associate a particular value wth each
byte of that allocated nenory. The general form of
this directive is:

[ <l abel >] FCB <value list>

The label is optional and rmust obey the usual rules for
assenbler labels. If a label is used, its value is
deened to be the address of the allocated data byte.
The value list is a list of one or nore initial values
expressed as decimal nunbers, hexadecimal nunbers or
character constants.

In sonme assenblers, the directives FOB and FQOC have
different meani n?s with FCB used to format single bytes
and FOC used to format ASCI| character strings. In the
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DREAM assenbl er, however, they are equivalent and are
handled in exactly the same way. Therefore, the
g:iirectijve FCB may be replaced by FOC anywhere that it
i s used.

Exanpl es of FCB directives are:

Set up the nane of a data area for an error nmessage
The first byte holds the Iength of the nessage

The following characters hold the ASQ | characters
* of the message itself

*

ERRL  FOB 13,/NO INPUT CHAR/

*

* Notice how strings are delimted by the / character
* Set up a byte with value 1F (hex)

*

* o *

FCB $1F

* Set up a 5 byte nenory area with bytes initialised
to the hex values 8E, 8F, 90,91, and 92

TAB1 FCB $8E, $8F, $90, $91, $92

The FCB/FCC directive affects the assenbler program
counter. If APC has the value 5000 say when the FBC
labelled ERRL above is processed, its value after
processing is 5000 + 14 (decinal), that is 500D. Note
that if a value greater than FF (hex) is used with an
FCB directive only the lo-byte of that value is used in
the initialisation.

*

4.2.3 The FDB directive

The FDB directive is simlar to the FOB directive.
However, rather than formatting single data bytes, it
formats 16-bit values taking up 2 bytes (1 word). It
general formis:

[ <l abel >] FDB <value list>
Exanpl es of FDB directives are:
DQATS FDB 1,2,3,4,5,6,7,8,9,0
MAXVAL  FDB 1024

| NSUB FDB GETNUM

The first two FDB exanpl es above format data words to

the specified values. In the third exanple, the
constant filled in and nanmed INSUB may be the value
associated with the nane GETNUM i f NUM is defined

via an BEQU directive. Aternatively, if CETNUM is an
instruction |abel, the location naned INSUB is filled
in with the address of the l|abelled instruction.

This facility allows you to create tables of
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addresses and then use indirect addressing to access
the instructions or data whose addresses are kept in
the table. For exanpl e:

SUBTAB  FDB | NCHAR, QUTCH, | NRD,
QUTWRD, RESET, CLOSE

This directive mght be used to create a table of
subroutine addresses with the subroutine nanes given on
the right hand side of the directive.

Li ke FCB, FDB affects the assenbl er program counter,
increnenting it by tw for every word fornatted.

4.2.4 The RVB directive

The RMB directive is used to reserve one or nore menory
bytes. It does not set them up to any specific val ue,
it merely increments APC by the value specified in the
directive. The general formof an RMB directive is:

[ <l abel >] RMB <val ue>

The value nay be either a synbolic, hexadecimal or
deci mal constant. For exanpl e:

INCHAR RMB 1 ; reserves a single byte

QUTBUF RWB 256 ; reserves a 256 byte buffer
BI cally, is used to reserve space which wll
sequent |y be all ocated values in I/O operations.

4.2.5 The CRG directive

The CRG directive is used to assign a value to APC and,
hence, sets up the logical origin of the generated
machi ne code ich follows that directive. It is not
obligatory to include an ORG directive in a program
If there is no CRG directive, the DREAM assenbl er sets
up its program counter to have an initial val ue equal
to the bottomof its work space.

The general formof an GRG directive is:

[ <l abel >] CRG <addr ess>

Exanpl es of this directive are:

CRG $5000 ;  APC = 5000 (hex)
NEWBEG CORG * + 128 : * means current val ue of APC
* This directive is equival ent
* to RVB 128

Al the exanples in this book have been tested with a
code origin at nenory address 4E21 (20001 decimal)
This is set up with an CRG $4E21 statement as shown iIn
the exanple in section 4.3 bel ow
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4.2.6 The PUT directive
The PUT directive is used to tell the assenbler where,
in RAM the generated object code should be placed. It
is a means of overriding the assenbler's normal placing
of generated code at successive addresses starting at
address 4E21 which is the bottomof its work space.

The general formof a PUT directive is:

PUT <addr ess>

Normally, a PUT directive is preceded by an RG
directive to set the APC to the address where the
generated code is to be placed. This is not
obligatory, however, if you are going to nove the code
before executing it or if the code is conpletely
position independent.

4.2.7 The SETDP directive

The SETDP directive is used to tell the assenbler the
current value of the direct page regi ster DP. Renenber
that the assenbler decides ether to use direct or
ext ended addressing when a synbolic name is used in the
address field of an instruction. To make this
decision, it must know the value of DP at that point
and SETDP is used to provide that information. The
general formof the directive is:

SETDP <hex val ue)

The operand nust be a hexadecimal value in the range 00
to FF. The SETDP directive only provides infornmation to

the assenbler; it does not cause instructions to be
generated to assign a value to the direct page
register. It is the programrer's responsibililtjg to
ensure that the actual run tine value of is

consistent with the value used in a SETDP directive.

4.3 EXAVPLE PROGRANS

In this section we present tw conplete, workin
progranms which the user na%/ type into his machine an
execut e. The first of these prograns is a |oader
rogram witten in BASIC, which allows the user to
machine code into particular locations in the
Dragon's nmenory. This code rmay then be execut ed.

The ot her exar_‘rl_ple programis presented in both BASIC
and assenbl er. his is a sinple program designed to
illustrate just how nuch faster machine code prograns
can be. The programfills the display screen with every
character, one after the other. Wen the BASIC version
of the program executes, you wll see that this
operation takes about 2 seconds per screenful. The
assenbly |anguage version fills the screen with each
character in a fraction of a second. The nachine code



82

for the assenbly |anguage version of the screen filler
is included, in hexadecimal, as the DATA statenents in
the BASI C | oader.

Both of these exanples are comrented and should need
no further explanation.

10 ' Machi ne code | oader

11 ' Machine codes in hex are poked into nenory

12 ' locations starting at 20001 then execed

20 READ LA " LA = load address (start of program
30 READ EA " EA = address of first instruction

40 PA = EA 'to be executed

50 READ HB$ ' Hex constants

60 |F HB$="END' THEN 100

70 PCKE PA, VAL("&H"+HB$) ' Poke value into menory
80 PA = PA+ 1 ' Increnment address

90 GOTO 50

100 PRI NT "MACH NE CODE LOADED"

110 PRINT "LOAD ADDRESS IS "; LA; " (DEC)";
111 PRI NT HEX$(LA); " (HEX)"

120 PRINT "END ADDRESS IS "; PA-1;"(DEC)";
121 PRI NT HEX$(PA-1);" (HEX)"

130 PRI NT "EXEC ADDRESS |S"; EA; " (DEC)";

131 PRI NT HEX$(EA); " (HEX) "

140 PRI NT "YOU ARE ADVI SED TO SAVE LOADER "
141 PRI NT "BEFORE RUNNING M C CODE"

142 'If you want to execute the |oaded code
143 'imrediately, you should put an

144 'EXEC EA statenent here. If you do this
145 'for this program you lose BASIC print
146 'information

150 DATA 20001 'Load address here

160 DATA 20001 'Execute address here

165 ' You put your own machine code in hex
166 ' here to load your hand translated
167 ' prograns

170 DATA 34,12 ' Machine code for the

180 DATA 86,00 ' Screen filler program

190 DATA 8E, 04,00 ' given bel ow

200 DATA A7, 80

210 DATA 8cC, 06, 00

220 DATA 25,F9

230 DATA 4C

240 DATA 81,80

250 DATA 25, Fl

260 DATA 35,92

270 DATA END

Program 4.1 BASI C machi ne code | oader

10 ' Fills screen with characters with codes
20 ' 0 to 127 in turn

30 FOR CH = 0 TO 127

35 ' Screen RAM addresses are from &H400- &H5FF



40 FCR SC = &H400 TO &HbBFF

50 PCKE SC CH
60 NEXT SC
70 NEXT CH
Program4.2 BASIC screen filler
* SCRFL - fill screen with characters

* Register inputs NONE

*
CRG $4E21
SCRFL PSHS A X
LDA #0
NXTSC  LDX #3$400
PRCH STA | X+
QWX #$600
BLO PRCH
I NCA
CVPA #128
BLO NXTSC
PULS A X PC

Save registers
First character
Screen base address
Store character

At end of screen?
No, next character

G on to next character

: Do anot her screenful

Restore and return

Program 4.3  Assenbly |anguage screen filler
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Chapter 5
From BASC to assembly code

In this chapter we describe the assenbly |anguage
equi val ents of the nost commonly used BASI C statenents.
As well as the Iliteral translations of BASIC to
assenbl)é | anguage, we show how these constructs can
often be inplenented in a nore efficient way by
renovi ng some of the redundancy inherent in BASIC

The assenbl y | anguage 8rogran‘rrer nmust obvi ously know
the menoni cs for the M6809, the register nanes and the
synbol i sm for the MB809 addr essi n% nodes. It may seema
dauntin task to nenorise al this information,
although it is less so than nmenorising about 1400
machi ne instructions! However, the consistent and
orthogonal nature of the MB809' s instruction set makes
the task less difficult than mght at first be supposed
and, after a little practice, the programrer wll
easily renenber all the mmenoni cs whi ch he needs.

The basic buil ding bl ocks of progranms are assignment

st at enent s, condi ti onal st at enent s, [ o%los and
statements for input and output of data. Ve descri be,
in sonme detail, how each of these nay be inplemented in
assenbly language. W also cover the declaration and
calling of BASI G- Ii ke subrouti nes and t he
representation and mani pul ation of  arrays. The

notation which we use is simlar to that used in
?revi ous chapters. However, if a synbolic nane is used
or a nmenory |location, we use it in comrents here as if
it was a BASIC nane - we do not precede it with MEM

51 ASS| GNVENT  STATEMENTS

Assignnent statenents in BASIC are used to assign a
constant, the result of an arithnetic expression or the
value of a nenory location to sone other nenory
| ocation. For ease of reference, we may give synbolic
names to the menory |ocations involved although, if the
nmenor access routines PEEK and POKE are used, we
actually signify the absolute nermory |ocations to be
accessed. VW describe PEEK and POKE later and
](c:oncentrate here on assignments which have the general
orm

<pane> = <expressi on>

84



85

The <name> on the left side of the = sign may be either
a variable name or nay be a reference to an el ement of
an array. The <expression> on the right side of the
equals sign nmay be a constant, a variable name, an
array element reference or an arithnetic expression
consisting of tw or nore operands separated by
arithmetic operators such as + and *.

Reference to array elenents will be dealt with later
so, in this section, we only describe assignments where
nuneric constants and variables are wused. Ve shall
make the further sinplification that these constants
and variables may only take 8-bit or 16-bit integral
values represented as unsigned nunbers or in two's
conpl enent not ati on.

This is not too great a limtation as many practical
applications of conputers don't need real nunbers. The
provision  of real nunber arithnetic in  nost
mcroconputers is nade using software routines which
mani pulate pairs of 16-bit quantities representing the
real nunber. This is a fairly conplex process, and if
the reader is interested in how it's done he should
refer to one of the conputer science textbooks
suggested in the reading list.

In general, assignnment statements on the M809 are
inplenented using the accumulator registers A B and
their catenation D when 16-bit nunbers are involved.
Although it is possible to nake wuse of the index
registers X Y, , and U these are usually reserved
for the storage of addresses.

The basic outline of an assignnent statenent in
assenbl y | anguage is:

Eval uate RH expression into an accunul ator register.
Store accunulator in nmenory.

For exanple, the assenbly |anguage equivalent of the

sinpl e |C statemrent M= 7 is
LDA #7 ; A=7
STA M ; M= A

Notice how i mmedi ate addressing is used to specify that
a constant value is to be loaded into a register. A
very common m stake nade by novice assenbly |anguage

programmers is to forget the # synbol indicating
I medi at e addr essi ng.
LDA 7 ; A = PEEK(7)

STAM ; M=A

The BASIC code docurmenting the assenbly |anguage
instructions shows how this gives a conpletely
different result. Rather than a constant value 7
being loaded into A the contents of nmenory byte
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7 (which may be any value between -128 and 127) are
loaded into the A register.

If a constant value between -128 and 127 is being
assigned, we may use either the A or the B register as
the accunulator. |If the value lies outside this range,
we nust use the D register for the assignnent. For
exanple, the BASIC statenent T = -3842 has the assenbly
| anguage equi val ent:

LDD #-3842 ; D
SID T ;T

- 3842
D

As Dis a 16-bit register, the SID operation results in
information being stored in two consecutive menory
byt es. If the address of T is 4E22, say, the
assignnment results in the hi-byte of D bei n% assi gned
to 4E22 and the | o-byte being assigned to 4E23.

Assignments of the form M = N are inplemented in
assenbly |l anguage in a conparable way:

LDAN ; A=N
STAM ; M=A

If the operands in the assignment T = R are 16-bit
quantities, the D register nust be used:

LDDR ; D=R

SIDT ,; T=D

Wien the right side of the assignnment is an arithnetic
expression consisting, in general terns, of constants,
variables and arithnetic operators, the assenbly
| anguage programrer nust arrange the evaluation of this
expression in an accunmulator. The evaluated value is
then stored. For exanple, the assignment statenent M=
N + P has the assenbly |anguage equi val ent:

LDA N A=
ADDAP ;, A=A+ P
STA M ; M= A

Notice that we are ignoring the possibility of overflow
and carry here. In sone arithmetic evaluations, this
nust be taken into account but, as we are sinply
illustrating concepts, we wll not introduce this
unnecessary conplicati on.

If the assignnent uses a mxture of 8-bit and 16-bit
val ues, the D register nust be used and, in sone cases,
8-bit values will automatically be extended to 16 bits.
For exanple, assuming T and R are 16-bit variables, the
assignment R=T - 10 nay be inplermented as fol |l ows:

LDD T ; D=T
SUBD 10 ; D=D- 10
STD R 7 R=D
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A 16-bit subtraction is autormticallé/ carried out in
this case. However , if mxed bit and 16-bit
variables rather than constants are used in arithnetic
expre53| ons, the programmer nust be careful not to use
a D register operation on an 8-bit variable. If such
an operation is specified, the addressed variable and
the follow ng nenory byte (which is not wanted) wll be
used in the operation.

For exanple, say T and R are 16-bit signed
quantities and M is an 8-bit signed (11uantity. A
carel ess assenbly |anguage ProgramTer translate
the assignnent T = M+ R as

hi = I\/EI\/(M Dlo = MMM + 1)

A conpletely incorrect value for the addition wll
result because of the LDD operation which does not |oad
the 8-bit value of Minto D

A correct assenbly code sequence for this m xed-
length arithmetic takes into account the fact that the
lo-byte of D is the B register. The sign extend
instruction is also used to make sure that the signs of
the 16-bit and the 8-bit values are the sane.

LDB M . B=M

SEX ; Extend sign bit of Bto A
ADDD R :D=D+R

SIDT ;. T=D

This mxed-length arithnetic becones nore conplex when
a subtraction is involved and the order in which
operands are loaded into Dis significant. Assunming T,
R and Mhave the sane values as before, the assignment
T =R - Mcannot be inplenmented using the same sequence
as above because the SUBD instruction has no facilities
for sign extension.

There are various different ways of inplenenting
this type of assignnment in assenbly |anguage. The
sinplest is to convert the 8-bit value to a 16-bit
value, store it in sone tenporary location and then
perform the subtraction using 16-bit operations only.
For exanpl e:

LDB M i B-M

SEX ; D= B (propagate sign)

SID ,--S ; Store Mon hardware stack
* Auto decrenent S so that it points to
* free location on stack

LDD R : D=R

SUBD , S++ . D=R- M
* Note how auto increnent used to reset
* stack pointer

SIDT T =
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There are no problens in inplementing addition and
subtraction operations in assenbly |anguage but
generalised mltiplication and division have no
correspondi ng machine instructions. These operations
must be inplemented by calling nachine |anguage
routines and it is beyond the scope of this section to
expl ain how these routines may be programmed.

However , multiplication and division of 8-bit
unsi gned c1uantities by nunbers which are powers of 2
may be inplenented very sinply by using the arithnetic
shift instructions ASR and ASL. Shifting a nunber |eft
n times is equivalent to miltiplying it by 2" and
shifting it right n tinmes is equivalent to dividing
that nunber by 2". Naturally, the division is an
i nt eger di vi sion operation wth the r enai nder
di scar ded.

For exanple, if | and J are unsigned 8-bit integers,

the assignment | = J * 4 mght be inplemented in
assenbl y l[anguage as fol | ows:
LDA J y A=
ASLA y A= A* 2
ASLA s A=A* 2
STA | ol =A
Smlarly, J =1/8 mght be inplenented:
LDA | ; A=
ASRA i A= A2
ASRA 7 A= A2
ASRA i A= A2
STA J I =A

Wsing shifts to multiply and divide signed quantities
is nore conplex because of the need to ensure that the
sign of the result is correct. W leave it as an
exercise to the reader to work out how to inplenent
signed nultiplication and division by powers of 2.

The PEEK and PCKE functions

The BASIC functions PEEK and POKE allow direct
reference to individual nenory bytes. Wereas PEEK is
always used as the right hand side of a nornal BASIC
assignnent, PCOKE is a specialised kind of assignment.
Therefore, T = PEEK(&H0406) assigns the byte value at
nmenory address 0406 (hex) to T and PCKE ASC("*"), &H0500
assigns the code for '* to the byte in nenory at
addr ess 0500.

PEEK and POKE are very easily inplemented in
assenbly |anguage using load and store instructions.
The assenbly |anguage equivalent of the above PEEK
instruction is:

LDA $0406 ; A = MEM 0406)
STA T S T=A
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The POKE operation has the equival ent assenbly code:

okt

A

LDA #' * ;A
STA $0500 T

The only difference between straightforward assignments
and PEEK and POKE is that. rather than synbolic
addresses, absolute nmenory addresses are used.

5.2 CONDI TI ONAL CONSTRUCTS

Condi tional constructs are fundanental program buil ding
bl ocks which allow other statements to be selected for
execution depending on the truth of sone condition. In
BASI C, conditional execution of statements or groups of
statenents is inplemented using |F-THEN statenents in
conbination with GOTO statenents.

More generally, condi ti onal constructs can be
partitioned into three classes:

(1) Single arned conditionals
These may be expressed:

if <condition> then <action>

If the specified condition is true, the <action>
is executed otherwise it is skipped.

(2) Two armed conditionals
These have the form

if <condition> then <actionl> el se <action2>

If the given condition is true, <actionl> is exe-

cuted and <action2> is skipped. |If the condition
is false, <actionl> is skipped and <action2> is
execut ed.

(3) Mul ti-armed conditionals

These are really conjunctions of single arned
condi ti onal s:

i f
<condi tionl> then <actionl>
<condi ti on2> then <action2>
<condi tion3> then <action3>

<condi ti onN> then <actionN>

The conditions are evaluated in turn. If the
evaluated condition is false, the associated ac-
tion is skipped and the following condition is
evaluated. If the condition is true, the associ-
ated action is executed and the renmi nder of the
condition/action pairs are skipped. In BASIC,
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mul ti-arnmed conditionals are wusually inplenented
as a sequence of |F-THEN statenents.

W shall consider each of these in turn and show how
they may be inplemented in assenbly |anguage. The
approach which we wuse is to show first how the
conditional is inplenented in BASIC W then describe
how this my be literally translated into assenbly
| anguage and finally optimsed to renove redundancy.

5.2.1 Single armed conditionals

In BASIC, single armed conditionals are expressed as an
| F-THEN statenent if only a single statenent is to be
condi tional ly execut ed. If a nunber of statenments are
to be executed if the condition is true, a goto is used
to skip over these statements if the given condition is
fal se rather than true

For exanple, if we want to swap the values of | and
J if J is greater than I, we might wite the follow ng
code:

100 ' Swap if J > 1. So skip if J <=1
110 IF J <= | THEN 200

120 T = J
130 J =
140 I =T
200. . .

In assenbly |anguage programming, we use exactly the
same technique of reversing the sense of the conparison
and skipping if this (reversed) condition is true. The
outline for this is:

Make comnparison setting CC bits
Branch if NOT desired condition to L

Code to be executed if original condition true

Assuming that | and J are unsigned 8-bit values, the
above BASIC sequence may be translated to assenbly
| anguage as foll ows:

LDB J

CWPB |

BLS L200
LDB
STB
LDB
STB
LDB
STB

[
=

e Bwthl
<= | goto L200

—WCeWHW O W
-+ 0
I I
“ 3
WHm— W&

L200
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This literal translation may be optimsed by notin%
that the first instruction loads the value of J into
and the same instruction is repeated after the
conpari son. As conparison does not affect register
val ues, the second load is unnecessary. Fur t her nore,
we are obliged in BASIC to use an intermedi ate variabl e
T in the swap sequence but in assenbly code this i
unnecessary. W nay sinply use another register. An
optimsed version of the swap sequence is:

LDA J A=

OWPA | ; conpare Awith |

BLS L200 ; if A<=J then goto L200

LDB | : B=1

STB J ; J =B, ieJ takes original value of I
;o=

STA | A ieoriginal value of J

Sinple BASIC IF-THEN statenents of the form IF P = Q
Tl P=P+ 1 may be directly translated to assenbly
| anguage as foll ows:

LDA P

CVPA Q ; Conpare A and Q

BNE L1 ; if A <> Qthen goto L1
LDA P ;s A= P

ADDA #1 A=A+ 1

STA P ; P=A

Again, this may be optimsed by using the fact that P
is loaded into a register to evaluate the condition and
then immediately reloaded after this conparison. This
second load can be elimnated. V¢ nay also use the INC
instruction to add 1 to a value rather than the add
i nstruction. The advantage of this is that INC
occupi es | ess space and executes nore qui ckly than ADD.
An optimsed formof the above sequence is:

LDA P ; A=P
OWA Q ; Conpare A and Q
BNE L1 ; if A<> Qthen goto L1
I NCA A=A+ 1
; P=A

STA P
L1 ....
In fact, we can reduce the nunber of instructions still

further by using the ability of INC to operate on a
nmenory | ocation:

LDA P
QWA Q
BNE L1
INC P

LT ...
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Assuming direct addressing of both P and Q the 4
instruction sequence takes up 8 nenory bytes, the 5
instruction sequence occupies 9 nenory bytes and the
literal translation of the BASIC code takes up 12
nmenory byt es.

5.2.2 Two arnmed conditionals

Two arned conditionals are inplenmented in BASIC b
using a conbination of IF-T statenments and (@]
statements. For exanple, the condition if <condition>
then <actionl> else <action2> is witten:

100 | F <condition> THEN 200
110 <action2>

120 QOrO 300

200 <actionl>

300. ..

Notice how we reverse the order of the actions and skip
over the second action if the condition is true.
Exactly the same outline structure is wused when
inplementing tw armed conditionals in assenbly
| anguage.

Eval uate condition

Branch if true to L1
Action2

Branch unconditionally to L2
L1 Actionl

L2

For exanple, if we wish to assign the higher of two
nunbers to sonme other variable, we nmght wite in
BASI C.

100 IF P > Q THEN 200
110 ' P <= Qhere

120 MAX = Q
130 GOTO 300
200 MAX = P
300 ...

Gven that P, Q and MAX are unsigned values, direct
translation of this BASIC sequence to assenbly |anguage
gi ves:

LDA P . A=P
CVPA Q ; Conpare A and Q
BH L200 ; if A> Qthen goto L200
LDA Q ; A=Q
STA NMAX ; MAX = A
BRA L300 ; goto L300
L200 LDA P ; A=P
STA MAX ; MX = A

L300
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Again, optimsation of this sequence is possible. The
statenent labelled L200 is a redundant load as A
already contains the value of P at that point.
Furthernmore, both actions end with an identical store
operation so it may be factored out and executed after
one or the other action is conplete. An optim sed
version is:

LDA P
CWPA Q
BH L200 ;if P > Q goto L200
LDA Q ;v A =0Q

L200  STA MAX . MAX = A

A sequence of 8 assembly |anguage instructions has been
optimsed to 5 instructions which do exactly the sane
t hi ng. W nust enphasise however that it is not good
progranmng practice to try to wite optinised code

directly. This is an error-prone process because the
pr ogr anmer is liable to becone caught up in
optimsation details and to lose track of the correct
sol ution. Wth high-level |anguage code to serve as a

master solution, the introduction of errors through
optimsation is nuch less Ilikely.

5.2.3 Miulti-armed conditionals
Multi-armed conditionals are conditional statenment s
where several conditions are evaluated and the action

following the true condition 1is executed. Reader s
famliar with Pascal wll recognise the case statenent
as a form of nulti-armed conditional but in BASIC it
nmust be i mpl enent ed as a sequence of | F- THEN
statenents. For exanple:

10 IF T =7 THEN AGE = BAND1

20 IF T =9 THEN AGE = BAND2

30 IF T = 14 THEN AGE = BAND3

40 |IF T = 15 THEN AGE = BAND4

50

O course, this may be translated into assenbly code as
a sequence of |IF-THEN statements as described above.
However, nmulti-arned conditionals often use the sane
value in all tests and often have similar actions wth
di fferent values being assigned to the same variable in
each action.

The following structure shows how nmulti-arned
conditionals can often be inplenented.

Load test variable

if NOT(testl) goto T2

Load value to be assigned

goto STORE

T2 if NOT(test2) then goto T3
Load T2 val ue
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goto STCRE
STCRE Store value to be assigned

The above sequence of |IF-THEN statements nay be coded
in assenbly | anguage:

LDA T : Load variable to be tested
OWPA #7 ; First test, conpare Awth 7
BNE L1 ; if A <> 7 then goto L1
LDB BANDL ; variable to be assigned into B
BRA L4 ; Junp to store

L1 QOWA #9 ; Second test, conpare A and 9
BNE L2 ; if not equal, go on to next test
LDB BAND?
BRA L4

L2 OWPA #14
BNE L3 ; if A <> 14 then goto L3
LDB BAND3
BRA L4

L3 OWPA #15 ;. last test
BNE L5 ; do nothing if not equal
LDB BAND4

L4 STB ACGE ; assign to AGE

L5

Conpound conditional expressions

So far, we have |ooked at conditional statenents where
the condition involved is a sinple condition of the
form <operand>  <conditional oper at or > <oper and>.
However, conpound conditional statenents using ANDs and
ORs to connect conditions are also frequently used.
These have the general form

<sinpl e condition> <logical operator> <condition>
where permtted |ogical operators in BASIC are AND and
R

In BASIC, therefore, the following are all wvalid
condi tional expressions:

P=QANDT > R
J>T ANDJ < K
J>1 RK=1L
K=JAND (P>QCRT > R)

When such conditions are inplemented in assenbly
language we may wite them so that it is often only
necessary to test a single condition rather than the
conditions on each side of the AND or (R operator. This
i s possible because we know that both conditions nust
be true for an AND operation to be true and that both
?olnditions nust be false for an (R operation to be
al se.
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Therefore, if we test the first condition in an AND
operation and find it false there is no need to test
the second condition. Simlarly, if w test the first
condition in an (R operation and find it true, the
entire expression nust be true. The second condition
need not be tested. For AND operations, the outline
structure of an assenbly |anguage programi s:

Test left hand condition

If false goto L1

Test right hand condition

If false goto L1

ﬁ(itions if condition is true

For CR conditional operators, the outline is simlar:

Test left hand condition

If true goto L1

Test right hand condition

If false goto L2

L1 actions if condition is true
L2 P

VW illustrate this by showing how BASIC |F-statenents
with conpound conditions rmay be expressed in assenbly
code. Again, assume that all variables are unsigned 8-
bit quantities.

IFP=QANDT > RTHEN M= N
The assenbly |anguage equivalent of this is:

LDA P . A=P

WA Q

BNE QUJT ; if P <> Qskip second condition
LDA T  A=T

OWA R

BLOQJI ; if T < Rskip action

LDA M

STA M

Notice how only a single test is necessary if P is not
equal to Q

IF(P>QORT>R ADK=J THENM= N

To inplement this in assenbly |anguage we re-order it

to test first if K=J. |If this is false, there is no
need to carry out any nore tests.
LDA K . A=K

QWA J
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BNEQUT ; If A <> Kdo no nore
LDA P
CWPA Q
BH K ; ORcondition is true, skip to action
LDA T
OWA R
BLO QUT ; Skip over action
(014 LDA N
STA M
aur

53 LOCOP CONSTRUCTS

Loop constructs are those programmng constructs which
allow the programmer to specify that a group of
statenents is to be executed a nunber of tines. They
take three fundarmental forns:

(L) For | oops
These execute the loop a specified nunber of
tines. A loop counter variable is used and the
loop termnates when this variable reaches a
speci fied val ue.

(2) Whi | e | oops
These execute the statements in the loop while
sonme condition remains true. Loop execution stops
as soon as this condition becones false.

(3) Repeat | oops

Repeat | oops cause the loop to be executed until
some condition beconmes true. The inportant dis-
tinction between repeat |oops and while loops is
that the test for loop termnation comes at the
end of a repeat Ioolp whereas it comes at the be-
ginning of a while |oop. Repeat |oops, therefore,
al ways execute at |east once.

BASIC provides facilities which allow each of these
looping constructs to be expressed. For loops are
constructed using FOR and statements and both
while and repeat |oops are built from conbi nati ons of
| F- THEN and O statenents.

VW shall now |look at each of these loop constructs
in turn and see how they nay be expressed in assenbly
| anguage.

5.3.1 For |oops

For loops are loops which execute a given nunber of
times. They have a controlling for-loop variabl e which
is incremented or decrenented by one or by sone
programrer specified value until it reaches a
termnating value. For exanple, consider the follow ng
BASI C program which sunms the integers between 1 and N
where N is sone positive nunber.
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100 TOT = O

110 FOR'I =1 TON
120 TOr = TOT + |
130 NEXT |

On conpletion of this program fragment, the value of
TOT will be the desired sum To see how this mght be
expressed in assenbly code it is best to consider it in
primtive terms using only |IF-THEN and GOTO statemnents
to inplenent | ooping.

100 TOT = O

110 I =1

120 IF I > N THEN GOTO 160
130 TOr = TOT + |

140 | = [I+1

150 GOTO 120

160

Now we have reduced the loop to conditionals and gotos
whi ch we know how to express in assenbly |anguage:

CLR TOT ; TOT =0

LDA #1 ;A=

STA |
LOooP LDA | ; =1

CVWPA N

BH OUTLP ; IF 1 > N stop |ooping

LDA TOT

ADDA |

STA TOT

I NC | ; Notice use of INC rather than ADD

BRA LOCP
QUTLP
In this exanple we have inplemented the statement |=I
+ 1 as INC | which appears to be a sensible
optim sation. However, if we look at the body of the
loop we see that | is not actually nodified in the |oop

body so we can keep the loop counter in a register for
the duration of the | oop.

CLR TOT ; TOT =

LDB #1 ; B=1, loop counter
LooP CvPB N

BH QUTLP ; if B > N then skip

TFR B, A ;
ADDA TOT ;

STA TOT
| NCB
BRA LOCP

w-H>>

||9|| I
@I >w

QUTLP

The above <code shows how the for loop may be
i mpl emented when TOT is an 8-bit val ue. If TOT is a
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16-bit value, an alternative strategy nay be adopted.
Because of the existence of the register add
instruction ABX, the B register nay be used to hold the
loop counter and the X register the sub-total as the
loop is executed.

LDX #0 ; X =0, initial total
LDB #1 ; Loop counter
LOCP CVWPB N
BH OUTLP ; If B> Nthen goto QUTLP
ABX ; X=X+ B
| NCB ; B=B+ 1
BRA LOCP ; goto LOOP
OUTLP STX TOTr ;o TOT = X

You can see from these exanples that there is no single
' best"' way of inplementing for loops in assenbly
| anguage. Rather, if optimal code is required, the
progranmer must look at the statements within the |oop
and code his loop with how they interact with the |oop
counter.

As a final exanple in this section, we show how a
FOR- NEXT loop using a negative step mght be
i npl enented in assenbly code. This exanple is also our
first introduction to arrays. The program fragment
assigns those nunbers between 100 and 50 which are
divisible by 8 to adjacent array elements. Therefore,
the first element holds 96, the second 88, the third 80

and so on. In BASIC, this may be witten as foll ows:
100 I =0
110 FOR J = 100 TO 50 STEP -2

F
115 RM= J - (INT(J/8) * 8)

120 IF <> 0 THEN 150
130 ARR(1) =3

140 | =1 +1

150 NEXT J

A conpletely literal translation of this programis not
possi ble because there is no direct equivalent in
assenbly | anguage to the divide operator. However, the
calculation of the remainder may be simulated by using
the fact that a binary nunber which is divisible by 8
always has its 3 least significant bits (bits 0-2)
equal to 000. If the bit pattern 00000111 is anded with
a nunmber and the result is zero then bits 0-2 of that
nunber nust be 000 and the nunber is divisible by 8.

In the assenbly |anguage exanple below, the array
ARR is accessed by placing the address of its first
element in register X | ndexed addressing is then used
to access this and succeeding el ements.

CLR | ;1 =0, not 1 as assenbly | anguage
* array indexes always start at 0
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LDA #100
STA J ; J = 100
LOOP LDA J
CVWPA #50
BLO OQUTLP ; if J < 50 then goto QUTLP
ANDA #$F8 ;7 AND with bit pattern 11111000
CWPA J ; Conpare anded value with original
BNE L150 ; if not divisible by 8 goto L150
LDB |
STA B, X ; Register B holds array index
| NCB
STB | =1+ 1
L150 LDA J ;o next J
SUBA 2
STA J ;o J =J - 2
BRA LOOP ; Back to LOOP

QUTLP

This code may be optimsed by making use of registers
to hold the value of the loop counter J and the array
index I. W leave this optimsation as an exercise for
the reader.

5.3.2 While |oops

VWile loops are loops which execute while sone
condition is true. Wuen this condition becones false,
execution of the loop term nates. In BASIC, while

| oops are i mpl enent ed usi ng | F- THEN and GOoro
statenments.
For exanpl e, consider the follow ng while |oop:

count = 0
while m> n do
m=m- n
count = count + 1
end while

In BASIC, this loop nmight be witten:

100 COUNT = 0

110 IF M <= N THEN 150

120 M- M- N

130 COUNT = COUNT + 1

140 GOTO 110

150
It is a straightforward task to translate this to
assenbly |anguage using the techniques which we have
already described for converting IFTHEN and GOTO
statenents to assenbly code:

CLR COUNT ; COUNT = 0
W.OOP LDA M
CVPA N
BLS QUTLP ; If M <= N goto OUTLP
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LDA M

SUBA N

STA M ; M= - N

I NC COUNT ; COUNT = COUNT + 1
BRA W.OCP

OUTLP

As usual, the direct translation of BASIC to assenbly
code may be optimsed by renoving redundancies and
maki ng nmore effective use of the processor registers.

CLRB ; Use B to hold COUNT
LDA M A= M
WLOCOP CMPA N
BLS QUTLP : If M <= N goto QUTLP
SUBA N : M= M- N
Don't store back into M
* as value is needed
| NCB : COUNT = COUNT + 1
BRA WL.OOP
QUTLP STB COUNT ; COUNT = B
STA M M= A
.*..

Although there are exactly the same nunber of
instructions in this optimsed sequence, the nunber of
i nstructions executed within the I|oop has been reduced
from 8 to 5. As these are the instructions which are

each executed several times (once for each 1oop
execution), this reduction neans that the optimsed
program will run nore quickly than its unoptinsed

equi val ent .

5.3.3 Repeat |oops

Repeat loops and while loops are simlar. The nost
i mport ant difference is that the test for |oop
termnation in a repeat loop comes at the end of the
loop whereas in a while loop the termnation test is
pl aced at the start of the loop. The result of this is
that repeat |oops al ways execute at |east once whereas,
if the while test is initially false, the while 1oop
will not execute at all. Again, the BASIC progranmer
uses |F-THEN and GOTO statenents to inplement repeat
| oops.

For exanple, consider the follow ng repeat | oop:

r epeat
m=m+t
p=p+m

until p >=n

In BASIC, this mght be witten:
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100 M= M+ T
110 P=P+ M
120 IF P < N THEN 100

Translating this BASIC program to assenbly |anguage
results in the followi ng program fragnent:

ROP LDA M
ADDA T
STA M ; M= M+ T
LDA P
ADDA M
STA P ; P=P+ M
LDA P
CVPA N
BLOROP ; If P < Ngoto RLOCP

V¢ leave the optimsation of this assenbly code
sequence as an exercise for the reader.

5.4  GOTO STATEMENTS

A though you may never have considered them as such,
the only function of BASIC QOIO statenents is to
provide a neans for the programrer to inplenent
conditional statenents and |oop statenents. You wll
have surmsed by now that the equivalent, in assenbl
code, to BASICS IO statenent is the unconditiona
branch instruction BRA <l abel >.

There is also an alternative form of the BASIC QOTrO
in assenbly |anguage and that is the unconditional junp
instruction JMP. Executing a JMP instruction causes the
program counter to be set to the value of JWM's
operand. Unlike the BRA instruction where the operand
is added to or subtracted fromPC, JMP s operand Is not
arelative but is an absolute val ue.

In general, you will probably find that you use BRA
nore often than JMP as It is part of the fundarental
mechani sm involved in the inplementation of |oops and
condi tional statenents.

55 I NPUT AND QUTPUT

e of the nost significant advantages of programmi ng
in a language like BASIC, rather than in assenbly
| anguage, is the fact that BASIC provides easy-to-use
statements for the input and output of program dat a.
CGeneralised input/output programmng is very conplex;
i ndeed, we devote the whole of Chapter 8 to this topic,
and the BASIC system hides nuch of this conplexity from
the progranmer.

In BASIC, we may say INPUT N in order to read a
nunber from the keyboard into variable N Simlarly,
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PRINT N prints the contents of the variable N on the
di spl ay screen. Wen you think of it however, you
don't really type the binary form of a nunber on the
keyboard nor do you get the binary pattern representing
the nunber printed on the screen. Rather, vyou type
characters, which happen to be the digits making up the
nunber required, and you read characters on the screen.

The BASIC system contains routines which convert
character sequences, say '5" and '8, to the binary

representation of 58. Smlarly, when printing a
nunber say -326, the PRINT routine converts the binary
p%:[te(g representing -326 to the characters '-', '3',

The assenbly |anguage programmer does not have ready
access to these | C conversion routines so nust
always deal wth input and output in terns of
characters rather than nunbers. If conversion to and

from nunbers is required, you nmust wite your own
conversion routines for this task. Sonme of these
routines are provided as part of the machine code
monitor program given in the final section of this
chapter.

As |I/O programmng is described in general in
Chapter 8, we only describe very basic facilities here
which allow you to input characters from the keyboard
and output characters to the screen. These operations
are carried out by calling subroutines which are an
inherent part of the Dragon’s input/output system

W call the routine which is wused to input
characters from the keyboard INCH  The details of how
this routine works are not inportant, all the user nust
know is how to call this routine and the results of the
routine call. Wen INCH is called, it interacts wth
the keyboard controller and returns an 8-bit value in
the A accunul at or. This value is either zero, which
nmeans that no key has been pressed, or is a code
representing the input character.

The key code returned by INCHis, in nost cases, the
ASA 1l value of the character typed by the user. The
exceptions to this, when another value is returned in
A are shown in the tabl e bel ow

Char act er Hex Code
Up arrow 5E
Shift up arrow 5F
Down arr ow 0A
Shift down arrow 5B
Shift @ 13
BREAK 03
Shi ft BREAK 03
Left arrow 08
Shift left arrow 15

Ri ght arrow 09
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Shift ENTER 2TV 0D
CLEAR 0C
Shift OLEAR 5C

A junp to the starting address of the INCH routine is
always stored in nenory at address 8006. The |NH
subroutine can therefore be called directly either by
using this address as the instruction operand or by
equating the name INCH with the address and using |NCH
in the operand field of the instruction.

VW call the routine using the junp subroutine
instruction JSR which pushes the value of PC onto the
Sstack and Lurrps to the called routine. @)
termnation, the called subroutine restores the value

of PC. Therefore, a character may be input as foll ows:
JSR I NCH

However, when you actually look for a character using
INCH there is no guarantee that a key has been pressed.
INCH returns O in Aif no key is pressed and also sets
up the condition code register flags. Renmenber, the Z
bit in GC indicates whether the result of the previous
operation was zero or not so, if CCZ is set, this
neans that A = 0. The follow ng short loop continually
calls INH until a character is actually input.

CGETCH  JSR I NCH : Look for a character
BEQ GETCH ; if none input, keep |ooking

The routine | NCH does not destroy any register contents
apart, obviously, fromA and CC. If the value of CCis
preci ous and nust be preserved, it nust be saved before
calling INCH and restored after the return from the
subroutine. For exanple:

PSHS CC ;. Save CC on S stack
CETCH JSR | NCH ; get a character
BEQ GETCH
PULS CC ;. Restore CC
Normally, it is not necessary to save and restore CC as

it should not be used to hold permanent information.

INCH s conplenent, a character output routine, is
accessed via address 800C and the name CQUTCH may be
equated with this address. As well as actually printing
the character on the screen, QUICH also noves the
cursor one space when a character is printed and
handl es the control characters 'Backspace', 'Return',
etc.

To output a character, that character should be
placed in the A register and QUICH called. The val ue
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of the condition code register is lost when QUTCH is
called but the values of all other registers, including
the A register, are not affected.

The use of QUTCH is illustrated by the follow ng

exanple which outputs a '* at the current cursor
posi ti on.

LDA #' * ; A= ASC("*")
JSR QUTCH ; Qutput character

Using these sinple character input and output routines,
we rmay now wite an assenbly |angu ge program whi ch
reads characters from the keyboard and prints them on
the display. Assune that the read/ print sequence hal ts
when the BREAK key is pressed.

LDA #$03
STA BREAK . Set location BREAK to
* BREAK key input code
CETCH JSR INH
BEQ CGETCH . Get a character
OWPA BREAK Is it BREAK
BEQ DONE ; If so, finish with no print
JSR QUTCH . Print the character
: Gt next character

BRA CGETCH

The final exanple in this introduction to assenbly
| anguage input and output reads 10 characters into a
menory area then prints themin reverse order. Notice
how auto increnent and decrenent of the X register is
used in this sequence.

CLRB ; B is counter register

LDX #CHARS ; Set up address of nenory area
CETCH JSR I NCH

BEQ CGETCH : Get a character

STA | X+ : Store it and increnent X

| NCB : Add 1 to counter

aowB #10 : |If counter <= 10 then

BLS GETCH ; get next character
* Now all characters are input and the address in X is
* one greater than the address of the last character
* in the sequence
* Count downwards to output themin reverse order

DECB . Reset B to correct nunber
oaJT LDA ,-X ;. Decrement X
* and fetch character to A

JSR QUTCH  Print it

DECB . One off counter

BNE COUJT ; If counter <> 0 goto QUTCH
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5.6 SUBROUTI NES

A subroutine is a self-contained section of code which,
usually, is set up to inplenent a particular function.
Subroutines may be called from within a program They
carry out their specified function and control then
return to the statenment following their call.

Subr out i nes are a very i mport ant progr ami ng
construct and the assenbly |anguage progranmer has
gr eat flexibility in how he defines and uses
subroutines. In fact, nmuch of the next chapter is

dedicated to this topic and we confine our description
here to an explanation of how BASIC S GOSUB command may
be i nmpl ement ed.

In BASIC, when we set up or declare a subroutine, we
assign it a line nunmber which is out of sequence with
the nunbers in the rest of our program To call the
subroutine, we set wup the values which it needs in
program variables and then execute a GOSUB <line
nunber> instruction. This transfers control to the
subroutine until a RETURN statenent is executed when
control returns to the calling program

For exanple, the following BASIC sequence calls a
subroutine to check if a nunber is an odd nunber |ess

than 20. If so, the subroutine converts it to another
nunber by adding 20 to it. Orherwise, it returns the
nunmber unchanged. The subroutine expects its input to

be stored in the variable INN and returns its output in
the variable OUTN.

100 INPUT | NN

110 GOSUB 1000

120 PRI NT OUTN

130 ....

1000 RM = INN - (I NT(INN 2)*2)

1010 IF INN < 20 AND RM = 0 THEN 1040
1020 OUTN = NN

1030 GOTO 1050

1040 OUTN = INN + 20

1050 RETURN

VWhen using subroutines in assenbly code, we may either

use the BSR instruction or the JSR instruction. The
BSR instruction is like the unconditional br anch
instruction BRA, but as well as branching it saves the
value of PC on the S-stack. The JSR instruction is

used when we have subroutines set up at known addresses
or when it is necessary to use indirect addressing to
call the subroutine.

Consi der how the above BASIC code might be
translated to assenbly |anguage. As we haven't vyet
covered the input and output of nunbers, let us assune
that there exists a subroutine GETNUM which inputs a
nunber to the A register and a corresponding routine
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PUTNUM whi ch outputs the A register, as a nunber, to
the screen.

JSR GETNUM : INPUT A

STA NN c INN= A

BSR CONVON : To convert nunber
LDA QUTN

JSR PUTNUM . PRNT A
* CONVON - Add 20 to odd nunbers < 20
CONVON  LDA NN

COVPA #20
BH EXT ; If INN > 20 then goto EXT
Bl TA #3$01 : Test bottombit of A

* If it is 0, nunber is even
BEQ EXIT
ADDA #20 : Add 20 to nunber

EXIT STA QUTN : and store in QUJIN
RTS ; return to calling code

The RTS instruction is used to return control to the
instruction which imrediately follows the subroutine
call. As OONVON is called above, the first |[oad
instruction LDA INN is redundant as INN is already held
in register A However, we don't optimse this by
renmoving the load instruction as the subroutine
speci fication does not require the programmer to store
I in register A before the subroutine call.

Notice also that the subroutine alters the val ue of

register A In general, subroutines should |eave the
states of registers exactly as they were when the
subroutine was called. Therefore, all subroutines

ought to have the follow ng structure.

Save registers used by subroutine on stack
Subr outi ne code

Restore register values from stack

Return

The subroutine CONVON may be adapted to reflect this
structure:

QONVON  PSHS A CC ;. Save A and CC on st ack.
LDA NN
COVPA #20
BH EXIT
Bl TA #$01
BEQ EXIT
ADDA #20
EXT STA QUIN
PUS A/CC PC ; Restore and return

Al the RTS instruction does is to pull PC fromthe S
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stack so it can be left out if PCis Pulled explicitly
when the saved registers are restored fromthe stack.
Thi s mechani sm of passi n(]; paraneters to and from a
subroutine in fixed nenory locations is not ideal. W
shall describe its deficiencies and introduce better
par anet er passing conventions in the follow ng chapter.

57 ARRAYS

Arrays are one of the nost comonly used data
structures where a sequence of storage elements is
given a nanme and particular elements in that sequence
are accessed by nunber. In this section, we show how
arrays of nunbers may be stored and accessed using
assenbl y | anguage.

In BASIC, the programrer nmay use one-dimensional
arrays which are made up of a linear sequence of
nunbers or two-di nensional arrays which, conceptuall?/,
may be considered as a table or matrix of nunbers. n
fact, two-dinensional arrays are also stored in the
conputer's nmenory as a linear sequence and the BASIC
s¥stem provides routines to map a row colum pair
(I,m, say, to the appropriate address n in the |inear
sequence. Two possible mappings which nmay be used by
the assenbly |anguage programrer are described later in
this section.

When using one-dinensional arrays in assenbly
| anguage, you nust know the address of the first
elenment in the array. You get this by associating a
label with a 'reserve store' directive as described in
section 4.3. This label identifies the so-called 'base
address' of the array. VW assune, in the renai nder of
this section, that is the base address of a one-
di mensional array of 8-bit nunbers and that MATR X is
the base address of a two-dinmensional nuneric array.

. I;I'hese may be set up using assenbler directives as
ol | ows:

NARR RVB 15
MATR X  RMB 100

The index registers X and Y are the mechani sm through
whi ch consecutive array elenents may be accessed. The
base address of the array is loaded into one of these
index registers and the auto increnent/decrenent
facilities used to sequence through the array. For
exanple, say NARR is nade up of 15 8-bit val ues and you
want to set all elenents to 0. In BASIC, you would
wite:

100 FCR | =
110 NARR()
120 NEXT |

1 TO 15 DO
=0
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Exactly the same assignments may be specified in
assenbly |anguage but there is no need for an explicit
counter variable.

LDX #NARR ; Put array base address in X
SETO CLR |, X+ ;7 NARR(X) =0: X=X +1

CWPX #NARR+15 ; Conpare X to base address+15.
* see if all elenents cleared

BLS SETO ; If not, goto SETO
* to clear next elenent

The availability of index registers makes array el enent
access a very efficient operation. Even when auto
increment or decrenment cannot be used to update the
i ndex regi ster, because the step is not one or two, the
LEA instruction may be used to perform arithmetic on
the index register.

For example, say the following BASIC code is to be
i mpl enented in assenbly | anguage:

100 FOR 1=3 STEP 3 to 15
110 NARR(1) = NARR(l - 1) + 1
120 NEXT |

Usi ng assenbly | anguage, there is again no need for an
explicit array index variable:

LDX #NARR + 2 ; X = base of NARR + 2

* As NARR+O is first elenent
* this refers to 3rd el ement
SETVAL LDA ,-X ;A = Previous el enent

| NCA A=A+ 1

LEAX 1, X ; X=X+ 1 to get back to
* address to be assigned

STA | X ; NARR(X) = NARR(X-1) + 1

LEAX 3, X : X=X+ 3

CWPX #NARR + 15 ; Are we finished?

BLS SETVAL If not, back to SETVAL

The use of index registers to hold the address of the
array element to be accessed is easy to inplenment for
one- di nensi onal arrays. However, when two-di mensional
arrays are used, the programrer nust devise a way of
storing the array as a linear sequence and nust invent
a mapping to convert a row colum address to an address
in that sequence. There are two techniques which are
commonly used for this conversion.

The first of these techniques stores the entire
array, row by row, in contiguous nmenory |ocations. So,
if an array is declared in BASIC as MATRI X(10,10) this
takes up 100 menmory elenments. The first 10 elements
are row 1, witten as MATRI X(1,*), the next 10 are row
10, MATRI X(2,*), etc. The position of an elenent in
row m say is found by finding where row m starts then
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addi ng the col um displ acenment to it.

The starting position of a particular row, the row
base, is conputed by multiplying the row nunber by the
length of the row As the row base of the very first
rowis the sanme as the array base address, we count row
nunbers from0. Therefore, to find the row base of the
sixth row, we actually rrultiplal the row length by five.
For exanple, MATRI X(6,*) would have a row base address
of MATRX + 50 (5 * row length) and the elenent
MATRI X(6,8) has the address MATR X +50+ 8.

An alternative storage technique for two-dimensional
arrays does not require array rows to be stored
consecutively nor does it require a multiplication to
conpute the row base address. Rat her, the row base
addresses are all stored separately in another array
called an Iliffe vector, naned after J. Iliffe, the
inventor of the mapping technique. This is best
illustrated diagrammatically as shown in Figure 5.1.

MATRIX itte Vector

Fig. 5.1 Using lliffe Vectors to implement 2-D arrays

To find out the row base address, the row nunber is
used as an index into this Iliffe vector and the
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starting address of the row is returned. The colum
nunber is then added to this to conﬁute the actual
el enent address. The base address of the array is not,
in this case, the address of the very first array row

but is the address of the first elenent in the Iliffe
vect or.

The main disadvantage of wusing Iliffe vectors is,
obviously, the fact that the Iliffe vector itself takes

\bj\ﬁ precious nmenory | ocations. However, the flexibility
ich it affords inasmuch as all array rows need not be
in contiguous storage elements and the fact that a
multiplication is avoided in the address conputation
often outwei ghs this di sadvant age.

Both of these techniques of array storage are
illustrated below with assenbly [|anguage versions of
the follow ng BASIC code.

10 DI M MATRI X( 10, 10)
100 INPUT M
110 FORJ = 1 TO 10
120 MATR X(M N) = 0
130 NEXT J

When MATRI X is stored row by row in a linear sequence,
the above BASIC may be inplenmented in assenbly code as
follows. Assune that the subroutine GETNUM inputs a
nunber to the A register.

JSR GETNUM  INPUT M

* That is, get row nunber into A
DECA : Subtract 1 as count fromO
LDB #10 ; This is the row |l ength
ML ; D=A* Bie 10*(M1)
ADDD #VATRI X ; Add the matri x base address
TFR D, X ; Set up index register X

LDA #10 ; Use A to count assignments
NEXT AR , X+ : Zero elenent: X=X+ 1

DECA ; A'is counter register

BNE NEXT ; If A <> 0 goto NEXT

Wien the two-dinmensional array is represented using an
Iliffe vector, the array base NMATR X hol ds the address
of the first element of that vector.

JSR GETNWM ;A = row nunber

DECA Get displacenment fromarray base
LDX #NMATR X Put base address in X

LDX A X Index to load X with the row base

* taken fromthe Iliffe vector

LDA #10 Ais counter
NEXT AR , X+ Set elenment to zero
DECA
BNE NEXT . If all elenents not cleared

* go back to clear next elemnent
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Notice, from this exanple, how the powerful indexed
addressing features of the M809 makes the conputation
of the row base very efficient indeed. In fact, both

techni ques of two-dinmensional array inplementation are
efficient on the M6809.

5.8 A MACHI NE CODE MONI TOR

Rat her than present a nunber of small exanples of
wor ki ng assenbly code programs, we have chosen to
illustrate the principles described in this chapter
with a single, substantial assenbly code program
However, we have witten this program in a structured
way so that it is made up of a nunmber of easily
under st ood routines.

The reason for adopting this approach is that we
want to present a program which is of use to the novice
assenbly code progranmer and which can help him debug
his own prograns. The program below is a so-called
"monitor' which provides facilities for the wuser to
exam ne the contents of specified nenmory addresses and
to change them by typing the revised val ue.

The nonitor issues a pronpt to the user and responds
to two commands:

(1) J - this neans junmp to the start of the user pro-
gram

(2) M <address> - this displays the contents of the
speci fied address.

Once an M command has been issued, the user may exani ne
subsequent addresses by typing any letter and nmay
exam ne the previous address by typing an 'up arrow
character. If the user types a value nade up of three
decimal digits or two hexadecimal digits preceded by a
'$' sign, this value is filled in to the current
addr ess.

To return to the program which called the nmonitor,
you nust type a 'BREAK character. A nunmber is
normally termnated with an 'ENTER character but can
be terminated early with any other character in which
case, the change is ignored

The sequence below is an exanple of a possible
di al ogue with the nonitor. User input is underlined

*M $1000

$1000 000 $00 255

$1001 001 $01 $FF

$1002 128 $80 2[ ENTER]
$1003 016 $10 [up arrow
$1002 002 $02 3$A+

$1003 016 $10 Jup arrow

$1002 002 $02 [ BREAK]
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The nmonitor programitself now follows. Do not worry if
you cannot wunderstand it conpletely on your first
reading. You nmay find it helpful to read Chapter 6 and
then cone back to this programfor further study.

» MONTCR - nenory examine and change system
* This programis intended to help with the
* devel opment and debuggi ng of assenbly |anguage
* prograns. It provides facilities for the
* user to input a nmenory address and display its
* contents. These contents may then be nodified
* by the user.
* Unl ess otherw se specified, all routines preserve
* all register values except CC and any registers used
* for returning results.
CRG 20001
LBRA DRAMON ; Entry point of the nonitor
I NTRO FOC "DRAGON MN TCR 1.0"
FCB 0 ; Termnator for string
xR EQU $0D
QVARK EQJ $3F
UPARON EQU $5E
BREAK EQJ $03
DOLLCH EQJ $24
STAR EQU $2A
CBLINK  EQU $8009 . Qursor blink routine
| NCH EQJ $8006 ; Keyboard input routine
QUTCH EQU $800C ; Qutput character routine

* |NECHO - read a character and echo it to screen

* Register inputs NONE

* Register outputs A - contains character input
I

I

NECHO P X B ; Save registers affected
NLOCP  JSR CBLI NK . Blink the cursor
JSR | NCH ; Scan the keyboard
BEQ | NLQCP :and wait for a character
JSR QUTCH : Echo the character
PULS X B, PC ; Restore registers and return
 QUTSTR - print string of characters
* Register inputs X - pointer to beginning of string
¥ Registers destroyed X A
¥ String nust be termnated with a null byte
QUTSTR LDA 0O, X+ ; Get character from string
BEQ ENDSTR ; Termnated by a zero byte
JSR QUTCH ; Qutput the character
BRA QUTSTR ;. and deal with the next one

ENDSTR  RTS
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* QUTCR - output a carriage return

* Register inputs NONE

QUTCR PSHS A ;. Preserve A
LDA #CR ; Load Carriage Return code
JSR QUTCH ; and send it
PULS A, PC : Restore and return

* OUTSP - output a space
x Regi ster inputs NONE
OUTSP PSHS A

LDA #%$20 ; Code for space
JSR OUTCH ; and output it
PULS A PC

READY - Pronpt user for new command

* %k X %

Regi ster inputs NONE
READY PSHS A

BSR OUTCR ; Take a new line
LDA #STAR ; before outputting
JSR QUTCH ;  pronpt character
PULS A, PC
*
* DOLLAR - pronpt for hexadeci mal val ue
*
: Regi ster inputs NONE
DOLLAR  PSHS A
BSR QUTSP
LDA #DOLLCH ;  Hexadeci mal pronpt
JSR OUTCH
. PULS A PC
* INHEXD - input a hexadeci mal val ue
*
* Register inputs NONE
* Register outputs A - if valid hex char then hex
* val ue el se character
* CC.V =0 if valid hex character
* = 1 if non-hex character
| NHEXD BSR | NECHO ; Read a character
CWPA #'0 ; and check the range
BLO | NHERR ; for "0" to "9"
CWPA # 9
BLS CHOSUB ; and convert if so
CVPA #A ; Could be "A" to "F"

BLO | NHERR
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cHCsUB

I NHERR
INEXIT

CWA # F
BH | N-ERR
SUBA #7
SUBA # 0
ANDCC #$FD
BRA INHXIT
CRCC #2
RTS

Make "A' to "F' follow "9"
Convert to nuneric val ue
Valid return

Error return, V bit set

* QUTHXD - Qutput hex digit as character

* Register inputs A - hexadeci mal val ue

; Mask off M5 4 bits
; Check for decimal digit

; Ato F offset
; Convert to character
; and output it

digit and convert to value

outputs A - decimal value if in range 0-9

- character if non-deci nal

VvV -

Oif valid input

=1 otherw se

Converts to nuneric val ue

digit as character

HONVAB - conbine hex digits into single byte

QUTHXD  ANDA #$F
OWPA #9
BLS ADDCHO
ADDA #1

ADDCHO  ADDA #' 0
JSR QUTCH
RTS

* | NDECD - input decinal

*

* Register inputs NONE

* Regi ster

*

*

*

*

INDECD BSR | NECHO
OWA # 0
BLO | NDERR
OWPA #' 9
BH | NDERR
SUBA # 0
ANDCC #3$FD
BRA INDXI T

INDERR  CORCC #2

INDKT RIS

* QUTDCD - out put deci nal

*

* Register inputs A - decinal value

QUTDCD  ANDA #$F
ADDA # 0
JSR QUTCH
RTS

*

*

* Register inputs A - new hex digit

*

*

B - existing hex digit

Regi ster outputs B -

new hex value = B*16+A
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HCNVAB STA O,-S : Save for |ater
ASLB ;. Mve LS 4 bits
ASLB ;. of B
ASLB ;. tothe
ASLB . M54 bits
ADDB 0, S+ ; Add in new hex digit
. RTS
* INHEXB - input a hexadeci nal byte
*
* Register inputs NONE
* Register outputs A - hex byte val ue
* CC.C =0 neans value is &K
* CCV = 0 neans that B contains |ast
* hex val ue i nput
* CC.V = 1 means hex byte termnated
* prenaturely and B hol ds
: character Tead in.
| NHEXB CLRB s lnitialise to O
BSR | NHEXD ; Read a hex digit?
BVS NONHEX
BSR HCONVAB ; yes, so add to byte
BSR | NHEXD ; Second hex digit?
BVS NONHEX
BSR HCNVAB ; yes, so add that al so
NONHEX  ANDCC #$FE ; Indicate K
EXG A B ; Return with A and B set up

RTS

* QUTHXB - output a hex byte as characters

* Register inputs A - contains byte val ue
*

QUTHXB

* ok Ok ok ok Kk F

MJULB10

PSHS A

LSRA ; Shift M54 bits

LSRA : toLS 4 bits

LSRA

LSRA

BSR QUTHXD ; and output the hex digit

LDA O, S ; Get original again

BSR QUTHXD ; M5 4 bits masked off by QUTHXD
PULS A PC . Return intact

MULB1O - multiply by 10

Register inputs B - value to be multiplied
Regi ster outputs B = B*10

QC.C = 0 neans result between 0-255
=1 result out of range

AR O,-S ; Oreate tenp on stack
ASLB ;. Bvaluate 2*B



116

BCS MLXIT ; Too big?

STB 0,S ; Save as tenp result
ASLB ;. Bvaluate 4*B
BCS MLXIT ; Too big?
ASLB ;. Bvaluate 8*B
BCS MLXIT ; Too big?
ADDB 0, S ; Evaluate (2*B)+(8*B)
* |f this is too biga result Cwll be set
MULXI T LEAS 1,S ;  Rel ease tenp.
. RTS
+ DONVAB - conbine deci mal val ues
* Register inputs A- new decinmal digit
* B - old decinal value
* Register outputs B - result = B*10 + A
* CC.C=0 - result in range 0-255
X =1 - result out of range
DCNVAB PSHS A ; Save register
BSR MULB10 ; B:=B*10
BCS DONXIT  ; Too bi g?
ADDB 0, S ; B =(B*10) +A
I*DCNXI T PULS A PC ;. Restore and RTS
* INDECGB - Input decinal byte val ue
* Regi ster inputs NONE
* Register outputs A - input value if valid
* CC.C =0 value in range 0-255
* =1 value out of range
* |f CCV =1 then nunber termnated early so nust
* be in range 0-255. B holds last converted digit
© of all 3 typed otherw se set to termnator.
| NDECB CLRB ; Initialise byte
BSR | NDECD
BVS NONDEC ; Valid digit?
BSR DCNVAB ; yes, add to byte
BCS IDBXIT ; Too big?
BSR | NDECD
BVS NONDEC ; Valid digit?
BSR DCNVAB ; yes, add to byte
BCS IDBXIT ; Too big?
BSR | NDECD
BVS NONDEC ; Valid digit?
BSR DCN\VAB yes, add to byte

NONDEC  ANDCC #$FE
IDBXIT EXG AB

*

BCS IDBXIT Too big, so |eave C set
Result is in range 0 - 255

Return registers

RTS
QUTDCB - output byte as 3 digit decimal val ue



* Regi ster
*

OuUTDCB

i nputs A -

PSHS D

TFR A B
CLRA

NXTHUN

CVvPB #100

BLO TRYTEN
I NCA

SUBB #100
BRA NXTHUN

TRYTEN

BSR QUTDCD

CLRA

NXTTEN

CVPB #10

BLO TRYONE
I NCA

SUBB #10
BRA NXTTEN

TRYONE

LBSR OUTDCD

CLRA

NXTONE

CVPB #1

BLO OUTONE
I NCA
DECB
BRA NXTONE

OUTONE

LBSR OUTDCD

PULS D, PC

HOONVX -

Regi st er

E o I

Regi st er

HCONVX

contains byte to be output

Add hexadeci nal

i nputs A -

STA O,-S

EXG X, D
ASLB

ADDB 0, St+
EXG D, X

I NHEXW -

Regi st er
Regi st er

* ok ok ok ok Ok

i nput

new

digit

Both A and B used
Ais to be used in sub.
the 100s digit

Cl ear
Any 100s?

yes,

and try again
Cut put

Any 10s

yes,
Subtract 10
and try again
Cut put
Now count
Any 1's

yes,
Subtract 1

and try once nore

Final digit

Restore and return

to X

hex digit
X - old hex val ue
outputs X = X*16 + A

To add

Save away for
So we can do arithnetic
This perforns an ASL

on the D register

SO update digit
Subtract a 100

the 100s digit
Set up for 10s

so update 10 digit

10s digit
the 1's

update 1's digit
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Have now space in LS 4 bits

hex word (address)

May be up to 4 hex digits

i nputs NONE
out puts X -
CC. Vv

hex address val ue

= 1 address term nated

in new hex digit
Restore D and return X
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— ok x * %

NONHW

¥

CCV =20 full 4-digit address
read in
CC.C= 0 value in range O FFFF

PSHS D ;. Save fromharm
LDX #0 : Initialise address
LBSR | NHEXD ; Read hex digit?
BVS NONHW

BSR HOONVX ; yes, add to X
LBSR | NFHEXD ; Read hex digit?
BVS NO\HW

BSR HOONVX ; yes, add to X
LBSR | NHEXD ; Read hex digit?
BVS NONHW

BSR HOONVX ; yes, add to X
LBSR | NHEXD ; Read hex digit?
BVS NO\HW

BSR HOONVX ; yes, add to X
ANDCC #$FE : Result valid

PULS D PC . Restore and return

* QUTHXW - output hex word as 4 hex digits

* Register inputs X - value to be out put

*

QUTHXW  PSHS D

* Ok ok ok F X

MOOMND
EXAM N

* A non-digit has been typed, chec

TFR X D . D := hex word

LBSR QUTHXB ; Qutput M5 byte first (A
TFR B A

LBSR QUTHXB ; followed by LS byte (B)
PULS D, PC

MOOMND - menory exam ne and change

Regi ster inputs NONE
Regi sters destroyed X, A CC

Interprets user commands as defined in introduction

LBSR DCLLAR ; Pronpt for hexadeci nmal

BSR | NHEXW Expecting an address (hex)
LBSR QUTCR Prefix the address

LBSR DOLLAR witha"g"

BSR CQUTHXW foll oned by the address
LBSR QUTSP separate by a space

LDA 0O, X Get contents of that address

LBSR QUTDCB Shown as deci mal val ue

LBSR DALAR and foll oned by the

LBSR QUTHXB hexadeci mal val ue

LBSR QUTSP Then a space

LBSR | NDECB Assume deci mal change

BCS QUERY Too big a nunber?

BVC CHANGE If K LUSt change the byte

for hex prefix
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CvMPB #DOLLCH ;  Hex nunber?
BNE CHKCR
LBSR | NHEXB ; yes, so get the rest
BVC CHANGE ; If OKjust change the byte
* At this point an early end to the nunber has
* been typed. Only CR (ENTER) will be all owed.
* Note: If only a CRis typed then the byte is
* cleared to zero!. Be careful!
CHKCR CVMPB #CR ; CR (ENTER) ?
BEQ CHANGE ; yes, then change the byte

Check for the "up arrow' key since this
* returns to the previous |ocation.
CMPB #UPAROW ;o "up arrow'?
BEQ LSTLOC ; yes, move back to |ast
Now check for the BREAK key since this exits
* the Mnitor

CVMPB #BREAK ;  BREAK in?
BEQ MCDXI T ; yes, then exit
NXTLOC LEAX 1, X ; Move location address on
BRA EXAM N ; and repeat
LSTLOC LEAX -1, X ; Back up location address
BRA EXAM N ; and repeat
CHANGE STA 0, X ; Make the change
CWPA 0, X ; and check afterwards
BEQ NXTLOC ; OK?, move on if so
QUERY LDA #QVARK ; Made a m st ake.
JSR OUTCH ; SO report it.
BRA EXAM N ; Don't do anything untoward

Il/CDXI T RTS Ret urn

* JCMND - junp to start of program
*
: Regi ster inputs NONE
JCOVND LBSR DCOLLAR ; Put out $ pronmpt
LBSR | NHEXW ;  Get hex address
BVS JERR ; MJUST be all 4 hex digits
JMP 0, X
JERR RTS ; Only get here on error
*
* DRAMON - main driving routine
*
* Register inputs NONE
* Registers destroyed X, A, B, CC
DRANMON LBSR QUTCR ; Prompt on a new line
LEAX | NTRO, PCR ; Qutput intro.
LBSR QUTSTR
NXTCNVD LBSR READY ; Pronpt the user
LBSR | NECHO ; Read the command
CVPA #' M ; Menory exam ne and change?
BNE TRYJ
BSR MCOWVND ; yes, then obey it

BRA NXTCMD ; and repeat
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TRYJ

TRYBRK

OWPA #J
BNE TRYBRK
BSR JCOMN\D
BRA NXTOVD
OWA #BREAK
BNE NXTOMVD
RTS

Is it the Junp command?

no, then check for BREAK
yes, so obey it

but don't expect to get here
Is it the B key?

no, then pronpt again

yes, return to caller



Chapter 6
Subroutines and strings

Wen we try to solve a problem we do not go directly
fromthe general statement of the problemto a detailed
solution unless the problem is very trivial indeed.
Rather, we split the problem into a sequence of sub-
probl enms and work out the individual solutions to these
snmal ler problens. The sub-problem solutions are then
integrated and coordinated to form the general problem
sol uti on.

Wien a problemis intended for conputer solution, we
can use exactly the same approach. he overall problem
solution is a conputer program but, rather than
generate this as a nonolithic code sequence, it can be
nade uP of calls to subroutines. Each subroutine is
the solution to a particul ar sub-,orobl em By adoPting
this approach, we reduce the overall conplexity of the
program because we never have to understand or think
about any nore than one subroutine at any one tine.

The idea of a subroutine as a self-contained section
of code which can be initiated from el sewhere in the
program was one of the earliest advances in conputer
progranm ng. Subroutines are an essential tool for the
proPranma_r as they allow himto create 'black boxes'
I nplementing particular functions. Onhce these have been
witten and tested, the programmer need not be bot hered
how they work as long as he knows their function and
how to use them

To nake the nost effective use of this problem
solving method, the programm ng |anguage which we use
nust allow us to «create subroutines which are
i ndependent of their environment. Unfortunately, BAS C
subroutines are very primtive indeed and are not truly
self-contained. Their disadvantages can be summarised
as follows:

(1) BASI C subroutines cannot be nade independent of
their environment because the only way of passing
information to and returning information from a
subroutine is through its environnent. That is,
program variables nmust be used to pass inforna-
tion to and from the subroutine. This neans that
BASI C subroutine libraries cannot be created be-
cause both the subroutine and the program nust
‘agree’ on what variables should be wused for
passing input and output paraneters.

121
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(2) There is no way, in BASIC, for a subroutine to
have a conpletely private data area which no
other subroutine nay tanper with. A private or
| ocal variable area is essential if the
subroutine is to be self-contained and if the
programmer is to be sure that a call of the
routine always does exactly what's expected of
It.

(3) The BASI C programmer cannot give his subroutine a
nane which reflects its function. Rat her, he
must refer to it by a meaningless |ine nunber.
When a program has nany subroutines, it is
difficult to discern what operations are
inpl emented by a sequence of subroutine calls,
especially i the program is not properly
comment ed.

The subroutine facilities available to the assenbly
| anguage  progr anmer are actually SIightIXt | ess
primtive that BASIC S subroutine nechani sm | east
In assenbly |anguage, a mmenonic nane rather than a
nunber can be given to a subroutine. As in BASC
there are no  built-in nechanisns for passi ng
information to and from a subroutine or for
establishing local data space.

However , the flexibility of assenbly |anguage
programmng is such that the programrer nay establish a
set of conventions which allow local data areas to be
created and which allow paraneters to be passed to and
from a subroutine wthout wusing global variables.
These conventions provide a nore powerful, effective
and safer nechanism for wusing subroutines than that
avail able to the BASI C programer.

In this chapter we show how the Ms809' s architecture
is well suited to the inplenmentation of self-contained
subroutines and we describe a very general way of
declaring and calling subroutines. W also describe a
subroutine calling technique which can be used when
execution speed is the paranmount consideration and we
explain how to construct subroutines which are position
i ndependent. The final sections of the chapter discuss
techniques for representing and manipul ati ng character
strings and we show how assenbly |anguage subroutines
may be integrated with BASIC prograns.

6.1  ASSEMBLY LANGUAGE SUBRCUTI NES
VW have already shown in section 56 how the BASC

GBWB and RETURN staterments can be inplenented in
assenbly language wusing the BSR  JS and RIS
i nstructions. In that secti on, we showed how
paranmeters could be passed to and from subroutines
using shared global variables but this is not a

recommended technique. Furthernore, if it is inportant
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to produce very efficient code, using shared variables
for parameter passing has the additional disadvantage
that it takes time to set up and access these shared
vari abl es.

In many cases, there is no need for separate
variables to be used for parameter passing. Rather, if
one or two paranmeters only are to be passed to and from
the subroutine, it is often possible to pass their
val ues or addresses in registers. This saves both the
calling program storing register values and the
subroutine reloading these values into registers.

The use of registers for paraneter passing al so has
the advantage that the parameters do not take up nenory
space and that the inpermenent nature of register
val ues enphasises that subroutine paraneters are
di stinct from other permanent program vari abl es.

Program 6.1 shows how the A and X registers can be
used to pass paranmeters to and froma subroutine.

* SQUARE - conpute square of input paraneter
*
* Register input A - positive nunber to be squared
* Register output X - square of input
* Method used 1s to add n to itself n tines
SQUARE PSHS B ; Save B register
TFR A B ;. B=A
LDX #0 ;. Qear X
SQOP  ABX : X=X+ B
DECA : Use A as counter of the
* nunber of adds
BNE SQLQOCP
TFR B A . Restore value of A
PULS B, PC . Restore B and return

Program 6.1  SQUARE - conpute square of input

Notice that a return from subroutine instruction, RTS,
is not required as the program counter is explicitly
restored using a PUS instruction.

To call this subroutine, the input parameter must be
get up in register A A possible calling sequence night
e:

LDA #28 ; Conpute 28 squared

PSHS X : Save value of X as it is
* destroyed by SQUARE

BSR SQUARE : Call routine

STX RESULT : Store result of call

PULS X . Restore X

Notice how the S stack is used to save register values
which are subsequently restored. O course, the value
of X before the call of SQUARE is not necessarily
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preci ous. If this is the case there is no need to
save it before the call and restore it after the
subroutine has been execut ed.

Any of the registers A, B, X Y, or Unay be used to
pass paraneters to and from subroutines. However, the
S register is never used for this purpose because of
its role as a system stack pointer. As the return
address, the value of PC when the routine is called, is
stacked, it is inportant that the value in S is not
corrupted otherwise a proper return from the subroutine
i s inpossible.

In some subroutines it is useful to return an error
i ndi cator specifying whether or not the subroutine has
succeeded in its task and the best way to do this is to
make use of the OC register. The programmer nay use
CC.Vor CCCas error indicators or, alternatively, the
settings of GC.Z and CC N nmay indicate that an event
has or has not occurred.

V¢ have already seen an exanple of how this latter
net hod can be used to determne if an input routine has
returned a character. If a character has been input,
CC.Z is unset otherwise CC.Z is set. Therefore, the
following code loops until a character is input:

CETCH JSR I NCH ; CGall input routine
BEQ CGETCH

When using the CC register to return results from a
subroutine, the ANDCC and CRCC instructions rmay be used
to set and unset particular bits in that register.

Using registers for subroutine input and output
paranmeters is an efficient parameter passing technique
which should be used when subroutine calls nust be
executed as quickly as possible. However , this
technique requires that the programrer knows exactly
what registers nust be set up when the subroutine is
called and what registers are used by the subroutine to
return results. Typically, different subroutines have
different conventions in this respect dependi n% on the
nunber and type of input paranmeters and on whether they
return one or nore results. The programrer rnust know,
in detail, the conventions for each subroutine before
he can nake use of it.

If there are only a few subroutines used in a
program it nay be fairly easy to nmenorise such
details, but in a large program where there mght be
tens or even hundreds of subroutines, this is not
possi ble. Furthernore, the programrer nmay w sh to build
up a library of wuseful subroutines to be included in
his prograns as they are required. It is obviously a
good idea to have all the subroutines in the library
used in a consistent way so passing paranmeters in
registers is not really suitable.

There are two different general nechani sns which can
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be devised to support subroutine paraneter passing.
The first technique, which we do not describe in
detail, is to allocate a specified paranmeter area for
each subroutine and store the addresses of the
paraneters in that area. Wen calling the subroutine,
this area is set up imrediately prior to the subroutine
call. The address of the paraneter area is assigned to
an agreed register such as the Y register, and indirect
indexed addressing is used to access the subroutine

par anet ers.

This technique works well in nost cases but cannot
sugport_ so-called recursive subroutines. Recur si ve
subroutines are subroutines which contain an enbedded

call to thenselves. Athough this may seem an unusual
idea to the programrer who has only ever programred in
BASIC, recursion is very useful in nany situations as
it allows you to wite conpact prograns which, wth
practice, are easy to understand. Readers who wish to
experinment wth recursive programmng should consult
t ext books which describe data structures such as lists
and trees to see how recursion is used.

The second generalised technique of subroutine
paraneter passing can handle recursive routines. It
makes use of a stack to pass paraneters to and return
results from subroutines. This technique can be
i npl emented very efficiently on the M809 because of
its built-in stack rmanipulation instructions. It is
described in detail bel ow

6.1.1 Paraneter passing using a stack

The MB809 processor is designed so that two stacks nay
be used, at the sane time, by the assenbly |anguage
programmer. One of these stacks, the hardware or system
stack, is referenced via the S register and is always
in existence as it is used to hold the program counter
when a subroutine is called. The user stack, or U
stack, is referenced via the U register and may or nay
not be used depending on the application being
pr ogr amred.

A paraneter passing nechanism can be devised which
uses the Sstack to hold information such as the
subroutine return address and which uses the Ustack to
hold subroutine paraneters. This works perfectly well
and is often used. It does, however, require
consi derabl e housekeeping by the calling and called
routine to mnmake sure that the stacks are always
consi stent.

The technique which we describe below uses only a
single stack, the S-stack, but uses two stack pointer
registers, S and U As well as being useful to the
assenbly |anguage progranmmer, this technique of
subroutine paraneter passing is that used by structured
hi gh-1 evel |anguages such as Pascal .

To understand this paraneter passing nethod, we nust
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introduce the idea of a stack frame. A stack frane is
a data area which is set up on the stack when a
subroutine is called. The exact nunber of bytes making
up a stack frame depends on the nunber of subroutine
paraneters, the registers saved by the subroutine and
the local data space required by the subroutine.
Figure 6.1 is a diagram of a stack frame in its nost
general form

Fig. 6.1 Stack frame organisation

The saved registers are those registers which are
nodified by the subroutine. The return address is the
val ue of PC stacked by the BSR or JSR instruction.

The subroutine paraneter area is set up by the
calling programw th the values of the subroutine input
parameters and, if a result is returned by the
subroutine, the calling program reserves a location on
the stack for it.

To illustrate how stack frames are used, consider
the SQUARE subroutine described wearlier in this
chapter. This is a subroutine which we nmght wish to
i npl ement as a function which returns the square of its

par arnet er . Assuming that we wuse the stack for
paraneter passing, we would call the function SQUARE
using the follow ng i nstruction sequence:

LEAS -2, S ; Decrement S by 2.
* As stacks in the M809 grow downwar ds
* this leaves a 2-byte "hole' in the
* stack for the result

LDA N ; A = nunber to be squared

PSHS A ; Put parameter onto the stack

BSR SQUARE : call SQUARE

The call of SQUARE pushes PC onto the S stack. The
subroutine SQUARE flrst Eushes the registers which it
uses onto the stack and then sets up a register so that
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i ndexed addressing nay be used to access the subroutine
parameters and result. As the X and Y registers are
often used for array accessing, it is best to use the U
regi ster as the stack index register set to the base of
SQUARE' S stack frane.

Gven that the subroutine SQUARE saves the registers
A, B, X U, and CC, the stack structure after
subroutine entry is show in Figure 6.2.

decreasing

addresses

Result Hi

Result Lo
Fig. 6.2 Stack structure after entry to SQUARE

In general, a called routine should save the val ue
of the U register then reset it so that it points to
the current stack frane. It is inportant to ensure
that the U register is set to the same relative
position in the stack frame for every subroutine but
the particular |ocation chosen does not matter a great
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deal. In our exanples, the U register is set so that
it refers to the hi-byte of the subroutine return
address on the stack.

The U register is assigned after the registers have
been saved using an LEAU instruction. As S points at
the top location on the stack, the stack address
assigned to U is conputed using the S register value
and the nunber of register bytes stacked.

The code inplenenting the subrouti ne SQUARE is:

* SQUARE - returns the square of its input

*

SQUARE PSHS A B U X CC

LEAU 7,S set Uregister

LDA 2,U ; Get paraneter from stack
* it is 1mrediately bel ow
* the return address
TFR A B ; Use repeated addition to
LDX #0 ; square N
SQ.OCP ABX : X=X+B
DECA ;A counts adds
BNE SQLOCP
STX 3, U : Store result
* Result is always i mredi ateIK
* bel ow paraneter on the stac
PUS A B U X CCPC ; Restore and return

Program 6. 2 SQUARE with stack paraneter passing

O return fromthe subroutine, the S register is set so
that it points to the subroutine paranmeter on the
stack. As this is no longer required, the calling
program nust increnent S to discard the paraneter or
par anet ers. After this nodification of S S then
refers to the result returned by the subroutine.

The conplete «call/return sequence for SQUARE is
t her ef ore:

LEAS -2,S ; Space for result
LDA N
PSHS A ; paraneter onto stack
BSR ccall routine
LEAS 1,S ; discard paraneter
PULS D ; result in Dregister
* for processing, store, etc

Qoviously, if the subroutine does not return a result,
there is no need to reserve space on the stack for the
result. It is, therefore, very inportant that the
programrer ensures that each subroutine has an
associated comment at its head which states the size,
in bytes, and the type of any result. This is
essential so that the correct call/return sequence may
be used for that routine.
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In general, the call sequence for a subroutine where
the stack is used for paraneter passing is as follows:

Reserve space, if necessary, for subroutine result
Eval uate paraneters and store on S stack

Call subroutine

D scard paraneters

Retrieve subroutine result from the stack

The called routine nust have an entry and exit sequence
as foll ows:

Save U register and other registers as necessary
Set up U as stack frane register

<Body of subroutine>

Restore registers including PC

An inportant advantage of wusing this technique of
paraneter passing is that the stack may al so be used as
a local variable area for the called subroutine. These
local variables are accessed using indexed addressing
via the Uor S registers.

Rather than allocate specific nenmory locations as
private working store for the subroutine, it is
possible to use stack locations for this purpose. This
store is allocated dynanmically on entry to the
subroutine and de-allocated on exit from the routine.
Thus store is only allocated when it is required and
need not be set aside permanently for subroutine Iocal
vari abl es.

Program 6.3 takes an array base address and an array
length as parameters on the stack and returns the
maxi nrum and mni mum values of that array as results.
It uses local variables to hold the maxi numand m ni num
val ues which have been determned so far.

MXM N - determines MAX and MN array val ues

Results are left on the stack in space |eft
by calling routine.

* k% % *

MXMN PSHS UAB

LEAU 4, S ; Upoints at return address

LDA 2, U ; Array length in A

LDX 3, U ; address in X

LDB , X+ : 1st elenent in B

PSHS B

PSHS B : Push locals onto stack
* Both MAX and MN initially set up
* to be the value of 1st el enent
* MAX=st ack(S), M N=stack(S+1)

DECA

BEQ DONE ; If only one elenent, all done

MWLOCP LDB , X+ ;. Array elenent in B
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; Conpare with MAX

; If greater, re-assign MAX
owB 1,S ; Conpare with MN

; Value greater, go on to next

STB 1,S ; O herw se re-assign MN
BRA ELOCP

NEVWAX STB , S ; Re-assign MAX

ELOCP DECA
BNE MMLQOCP

DONE LDA |, S+ ;. Maxi num val ue
STA 5, U ; into result space
LDA , S+ : M ni num val ue
STA 6,U ; into result space

PULS UABPC ; Restore and return

Program 6. 3 MYXMN - find naxi num and m ni num of
array

This technique of local variable allocation allows
r ecur si ve subrouti nes, subrouti nes whi ch cal
thensel ves, to be inplenmented. Wen a subroutine calls
itself, a conpletely new local variable area is set up
on the stack and the data area of the calling routine
is not destroyed.

- W illustrate this using a recursive routine which,
given an input paraneter N returns the Nh Fibonacci
nunmber. Fibonacci nunbers are nunbers in a sequence

where the value of a given nunber is con‘ﬁut ed by adding
the previous two nunbers in the list. The first values
in the sequence are 0 and 1 so the first 10 Fi bonacci
nunbers are:

01123581321 34

Fi bonacci nunbers are not just mnathematical oddities
but have practical uses in sorting large data files
held on magnetic tape. Readers interested in how they
are wused should consult a textbook on sorting
t echni ques.

A general forrmula for conputing the N h Fi bonacci
nunber s recursive:

if N=1 then
FIB(N =0

el se
if N=2 then

FIB(N) = FIB(N-1) + FIB(N2)

So, if the 5th Fi bonacci nunber is required, this
formul a woul d be eval uated as foll ows:

FI B(5) FI B(4) + FIB(3)
FIB(3) + FIB(2) + FIB(2) + FIB(I)
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= FIB(2) + FIB(l) +1+1+0
=1+0+1+1+0
=3
The assenbly code routine below takes an 8-bit input
paraneter N and returns a 16-bit result which is the
Nt h  Fi bonacci number . As BASIC does not support
recursion, we cannot first translate our |[ogical
solution above into BASIC but nust go straight to
assenbly code.
* FIB - Computes Nth Fibonacci nunber
*
* Result left on stack in location P+1 where P
* is parameter address
: Set up equates to refer to stack |ocations
FRES1 EQU 3 ; Result
FPARL EQU 2 ; Paraneter
FI BL1 EQU -5 ; Local wvariable
FI BL2 EQU -7 ; Local wvariable
FI B PSHS A U, CC ; Save registers
LEAU 4, S ; Set stack frame register
LEAS -4, S ; Space for local variables
* FIBL1 and FIBL2
LDA FPAR1L,U ; Get input paraneter
BLE ERRL ; If it is not positive, error
CVPA #1 ; is it 1st Fi bonacci nunber?
BNE FI B2 ; If not, try the second
LDD #0 ; D= FIB(Il)
BRA EXIT ; Get out of routine
Fl B2 CVPA #2 ; Is FIB(2) required
BNE FI BN ; No, compute FIB(n)
LDD #1 ; D= FIB(2)
BRA EXIT ; Get out
Fl BN LEAS -2, S ; Get stack space for result
DECA ; FIB(N-1) is being computed
PSHS A ; Parameter for recursive call
* of FIB
BSR FI B ; Call FIB
LEAS 1,S ; Discard paraneter
* S now refers to result
PULS D Pull result into D
STD FIBL1,U ; Store D into local variable
* Now call Fib again to conmpute FIB(N-2)
DECA 7 A= N- 2
LEAS -2, S ; space for result
PSHS A ;  stack paraneter
BSR FI B ; and call FIB recursively
LEAS 1,S ; discard paraneter
PULS A B ; D = FIB(N-2)
STD FIBL2,U ; Assign to |ocal
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+ Now add locals to get Fibonacci nunber

LDD FIBL2, U
ADDD FIBL1,U ; D = FIB(N1)+FI B(N2)
BRA EXIT ; get out

ERRL LDD #-1 . D=-1if error

EXIT STID FRESL, U Store Din result space
PULS A U CC PC : Restore and return

Program 6.4 FIB - conpute nth F bonacci nunber

This routine can be optimsed by using the space on the
stack reserved for the result of FIB as local working
store and by renoving sone redundant |oad instructions.
VW leave this optimsation as an exercise for the
reader.

You will probably have to think quite hard to
understand exactly what the FIB program is doing. You
may find it helpful to draw a diagram of the stack
structure and see how it expands and contracts as the
routine is called recursively. Wilst this exanple
denonstrates the power of assenbly |anguage, it also
shows that, if you try to do conplex things, the code
to inplement themcan be difficult to understand!

The generalised parameter passing and |ocal variable
allocation techniques which we have described are
useful when you are witing large prograns with many
subroutines or when you are building a subroutine
library. For fairly snall assenbly |anguage prograns
their generality can be confusing and it is better to
adopt a sinpler parameter passing technique.

However, we do recommrend that you should avoid the

allocation of fixed |ocal variable space for
subroutines. In nmany cases, Yyou can use registers as
local work areas and this is often the nost efficient
approach. In other cases, where this is inpossible,

you should use the stack as a local work area. You nay
either set up the U register as a pointer to this area
or nmay use S register relative addressing to access
local subroutine wvariables. These techniques are
illustrated in sone  of the character string
mani pul ati on routines which are described later in this
chapter.

6.2 CHARACTER STRI NGS

W have described how BASIC arrays can be set up using
the FCB, FDB, and RMB directives. These arrays can be
accessed using index registers with the array length
held in an accumulator register. Natural ly, these
arrays can be arrays of characters and this is one way
of carrying out character manipulation in assenbly
| anguage.

However, the use of fixed-length arrays to hold
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character strings neans that the decision as to the
nunber of characters in a string nust be nmade when the
array holding the string is declared. In this respect,
character arrays are not like BASIC S character strings
where the nunber of characters in a string may vary
fromO to 255. Wen this flexibility is required, it
is not usual to inplenent character strings as fixed-
I ength arrays.

In this section we describe how the assenbl
| anguage  progr amrer may  set up variabl e-| engt
character strings and we explain how various string
mani pul ati on operations can be inplenmented. In section
6.3 we provide listings of a package of subroutines
whi ch inplement character string operations.

In order to inplement variable-length strings the
programmer nust set aside a large data area for string
storage where the actual characters making up the
string are kept. The string name is associated with a
2-byte area which holds the address of the string
characters within the string storage area.

The fundarent al operations which are normally
allowed on character strings are as foll ows:

(1) Conpari son
Character strings are conpared for equality

(2) Assi gnnent
One character string is assigned to another

(3) Cat enati on _
Two character strings are put together (catenat-
ed) to forma longer string

(4) Substring selection
Part of a character string (a substring) is
sel ected

(5) Length conputation
The nunber of characters making up a string is
conput ed

There are also other operations which may be carried
out with character string operands such as determ ning
the ASCl value of a particular character and
converting nuneric strings to integers and vice-versa.

G ven that all character strings are to be stored in
a common string storage area, the first decision that
the programrer nust make is how to represent strings so
that the length of the string can be determned. Al of
the string operations listed above need to know the
string length in order to operate correctly.

Pr obabl y t he si npl est vari abl e-1 engt h string
representation technique is to associate an explicit
"end-of -string' character with each string. Thi s
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character is catenated with the characters naking up
the string so that the storage space required for the
string is the length of the string plus one byte.
Usual 'y the null byte, hexadecinal 00, is used as the
string termnator. Therefore the string 'H THERE
woul d be stored as 'H THERE<NULL>'

There are two advantages of using this technique of
vari abl e-1 ength string representation.

(D There is no limt to the length of the strings
whi ch may be represented.

(2) Strings whose length cannot be predicted can be
store in this way as t he strin
nodi fication (adding the null byte) is carrie
out after the entire string is known. This neans
that the technique is very useful for represent-
ing strings which are input from the keyboard or
some other device. oviously, the length of such
strings is not known in advance.

The disadvantage of this representation technique is
that string length determination requires a programto
explicitly count the string characters wuntil a null
byte is detected. This takes tine and when a program
does a lot of character manipulation, this tine penalty
may be unaccept abl e.

An alternative technique for string representation
is to hold the length of the string as the very first
byte of the string. For exanple, the string 'H THERE
would be stored as <8>H THERE This neans |ength
conputation is very fast but has the disadvant ages t hat
the maximum string length is 255 characters and that
the length of the string nmust be known in advance
before it can be entered in the string store.

As character strings are represented as a 2-byte
reference to the string store, the assignment of one
character string to another is a very efficient
OEeration. There is no copying of the string
characters thensel ves. Assignment  sinply invol ves
assigning one string reference to another. However,
this can result in nuch wasted store. The reason for
this is best illustrated by an exanpl e.

Assune that the variables STRl1, STR2, and STR3 have
been set up wusing an FDB directive and have been
initialised to refer to strings as foll ows:

STRL -> 'H THERE
STR2 -> ' WELOOWE
STR3 -> 'HELLO

If STRL is assigned to STR2, this means that STR2 now
points to the string 'H THERE and the string
"WELCOME is no longer referenced by anything. However,
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the space occupied in the character store by this
string cannot nmagically disappear so, if many string
assignnents are executed, the string store soon fills
up wth such inaccessible 'garbage'.

This is a general problemwhich is inherent in all
systens where variable-length strings are allowed. The
BASIC programmer has the advantage that the BASIC
system has an in-built 'garbage collection' routine

ich finds all wunreferenced strings in its string
store and marks the store which they occupy as
reusabl e. Garbage collection is a falrly conplex
operation and the interested reader should refer to a
conput er science textbook which covers data structures
for a description of various garbage collection
al gori t hns.

Rat her than di scuss garbage collection, we describe
how routines can be witten to allocate and deal | ocate
space in the string storage area so that the amount of
arbage is mnimsed. The first routine described
elow is called GETSP. This takes one paraneter, sa
n, and returns an address in the string storage area o
n consecutive unused bytes. The second routine Dbel ow
is FREESP, which is called after string assignnment, to
mark a group of bytes as being available for re-
al | ocati on.

Let us assunme that the string storage area is called
HEAP and is set up using the follow ng directive:

HEAP RWB 4096 ; String storage area

Furthernore, let us assune that we use an explicit
length byte at the start of each string. |If this byte
has a value between 0 and 254, this Is taken as the
string length. If the length byte is 255, the
following two bytes hold a nunber which is the nunber
of unused bytes in that area and therefore available
for string allocation.

Figure 6.3 shows part of HEAP wth intermngled
character strings and free space. Initially, HEAP is
set up so that the very first byte (byte 0) is 255 and
bytes 1 and 2 hold the 16-bit integer 4096 indicating
that the entire storage area 1s available for
allocation. The routine GETSP starts at the begi nning
of HEAP searching for a byte whose value is 255. Wen
such a byte is found, GETSP checks if the nunber of
free bytes available is enough to satisfy its request.

If so, CGETSP clains what it needs from this free

space and narks the renainder as free. If the free
space is not sufficient, CGETSP goes on to find the next
byte whose value is 255. If no free space is found

before the end of the string storage area, CETSP
returns an error indicator showing that it is unable to
satisfy the request for space.
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T 0 B R | G H T 0 N | 255 0 12

255 | 0 10 0 255 0 19

Fig. 6.3 String storage area organisation

The code for the routines GETSP and FREESP is ﬁrovi ded
in section 6.3. For the monent, let us assume that they
are available and have the follow ng specifications:

GETSP - gets space on heap

Regi ster input B - nunber of bytes required
Regi ster outputs Y - pointer to space requested

CI;V=0i; no space avai*,able
CCV=1If request satistied

FREESP - returns free space to heap

Regi ster input X - address of space to be freed
Register output CCV =0 if invalid address
CCV=1if space freed

$ ok ok Kk KKK ok ok ok

G ven these routines, the initialisation of strings can
be inplenented as shown below Assunme that a string,
termnated by a null byte, has been read into an input
buffer area called INBUF. The routine STINT takes the
address of INBUF as its parameter in register X and
returns in register Y the address of the initialised
string on the heap. The assenbly code for this routine
is:

STINT - Initialise a string

t buffer address
ing address in heap
O1f error

1if noerrors

* ok ok * k *

Register input X - inpu
Regi ster outputs Y - str
V=
V=
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STINT PSHS X, A, B, PC ;. Restore and return
CLRB : Bis counter
holding length of string to be
initialised

TFR X, Y ; Save value of X
STCNT LDA |, Y+ ; Get string byte
BEQ FSPCE ; If null byte, stop count
| NCB ; Otherwi se, count it
BRA STCNT
FSPCE I NCB ; To account for length byte
BSR GETSP ; get space
BVC XIT No space found - error
DECB No of characters in string

STB , Y+ Store length

BSR CPSTR String copy -see exanples

ORCC #2 Set success flag

LEAY -1,Y To point at length byte
XIT PULS X A B Restore and return

Program 6.5 STINNT - string initialisation

Fur t her exanpl es illustrating string manipul ation
techni ques are provided in the follow ng section.

6.3 STRI NG MANI PULATI ON ROUTI NES

This section is entirely taken up wth |Ilistings of

routines which carry out string manipulation. Al the

exanples here are witten in a position-independent way

and may readily be incorporated with your own prograns.
CHKHP - check string validity

*
*
* Register input X - string address
*
*
*

Regi ster output CC.V = 1 if string in heap
CC.V =0 if not in heap

CHKHP PSHS X ; Save register
LEAX  HEAP, PCR ; Heap start
CWX S ; conparison
BH HPERR ; Input address <e heap start
LEAX HEAPEND, X ; Heap end
WX , S ; conparison
BLO HPERR ; Input address > heap end
ORCC #2 ; Set CC.V
BRA XIT1

HPERR  ANDCC #$FD ; CCV =0

XIT1 PULS X, PC ; Restore and return

Program 6.6 CHKHP - check string address validity
* CPSTR - copy string characters

* Register inputs X - source string address
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Y - destination string address
B - string length

CPSTR PSHS X Y, A B ; Save registers

TSTB ; Check for zero length
CPLOOP BEQ XI T2 ; Check if finished

LDA | X+ ; Get character

STA , Y+ ; and copy it

DECB ; B is counter

BRA CPLOOP
Xl T2 PULS X Y, A B, PC ; Restore and return

Program 6.7 CPSTR - copy characters

* GETSP - get space for string
*
* Register input B - nunber of bytes required
* Register output Y - string address
* CC.V =0 if request fails
* CC.V =1 if request satisfied
* Uses first-fit algorithm ie, returns first area
* large enough to satisfy request. Returns excess
* space as free if space found > space requested
CGETSP PSHS A B, X, U ; Save registers
TFR S U ; Uis pointer to locals
LEAX HEAPEND, PCR ; 1st local = U2
CLRA ; U4 is 16-bit length
PSHS X, A B ; Locals onto stack

FFREE CWPY -2, U

SPFND LDD 1,Y

*

*

LEAY HEAP, PCR Initialise to heap start

At heapend?

BHS NTFND Yes, no space avail able
LDA Y Check if free area
CVPA #255 by conparing with 255

LEAY 1,Y O herwi se increnent Y
BRA FFREE and keep | ooking

BEQ SPFND ; If so, space found
: Pick up free area length

CWPD -4,U Compare with |ength needed
BHS LENCK We have enough

LEAY 3,Y No, look for next free
BRA FFREE area on heap

Now check if too much space. Don't return
an extra 1 or 2 bytes as they are unusabl e

LENOK LDD -4,U ;  Space requested
ADDD #2 ; If D+ 2 >= that available
CwD 1,Y ; don't return space
BHS EXI TOK ; and exit
LDD 1,Y ; get space avail able
SUBD -4, U ; subtract space requested
PSHS A, B ; and save on stack
LDB -3, U ; B =8 bit length
LEAX B, Y ; start of free string

LDA #255 Free indicator
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PULS A B

STD , X

BRA EXI TOK
ANDCC #$FD

BRA XI T3

ORCC #2

LEAS -4,S

PULS A B, X, U, PC

NTFND

EXI TOK
XT3

Program 6.8
* FREESP -

* Register input X -
* Regi ster output CC V
* CC. Vv

FREESP PSHS A B, X, Y
BSR CHKHP
BVC EEXIT
LDB , X

I NCB

LDA #255

STA , X

CLRA

STD 1, X

LDA #255
CWPA B, X

BNE LKLAST
LEAY B, X

BSR JO N

TFR XY

CWPA ,-X
BEQ CHKJN
BSR CHKHP
BVC XI T7

BRA FLOOP
LDD 1, X
STD
TFR X, D
ADDD , S++

PSHS Y

CWPD , S++

BNE XI T7

BSR JAO N

ORCC #2

BRA END7

ANDCC #$FD

PULS A B, X Y, PC

0

LKLAST
FLOOP

CHKIN
,--S

X T7

EEXI T
END7
*

* JON -
* Regi ster
* freed

i nputs XY -

GETSP -

free space on heap
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and mark byte free

get free string length
and store it

and exit

Error indicator

No errors
Di scard |ocal space
Restore and return

get string space

address of space to be freed

1 if space freed
i f

invalid input

Save registers
I's input valid?

No, error return
String length
To get actual no of bytes

Free space indicator
Mark string free

and store 16-bit

free string length

See if followi ng string
is free

No, try preceding string
yes, SO join strings

Find preceding free string
Is byte free

Yes, can it be joined

At heap start?

No preceding free string

Length of free string
Stack it

D = address+l ength

Are strings adjacent
No, return

Yes, join them

Set CC.V

Clear CC.V

join adjacent free segments
addresses of areas to be
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JAON PSHS A B
LDD 1, X ; Length of 1st area
ADDD 1,Y ; Length of 2nd area
STD 1, X : Store total
CR ,VY : CGet rid of free indicators
R 1Y
arR 2,Y
PULS A B, PC
Program 6.9 FREESP - free string space
* OWPSTR - conpare strings for equality
* Register input X - string 1
* Y - stri 2
* Register output CCZ =1 if strings equal
x CCZ=0if not equal
COWPSTR PSHS A B X Y ; Save registers
LDA | X+ ; Length of string 1
OWPA | Y+ ; nust be sane as length 2
BNE CVPXI T ; If not, exit, CC Z=0
TSTA ; Check for O length
CWPLP BEQ OWXI T : A=0, so al done, QC Z=1
LDB |, X+ : Get character
CVPB |, Y+ ; and conpare
BNE CWXI T : Not the sane, CC. Z=0
DECA ; Yes, decrenent length
BRA OWLP ; and continue conparisons
OWXIT PUS XY, A B,PC : Restore and return
Program 6.10 OWSITR - conpare strings
* STRCAT - catenate strings
*
* Register inputs X - string 1
* J P Y - stri n% 2
* Register outputs Y - new string
* QC.V=1- noerrors
: aC.VvV=0- error
STRCAT PSHS X, A B
BSR CHKHP ; Check 1st string
BVC XI T8 : lnvalid, abort
BEXG X Y
BSR CHKHP ; Check 2nd string
BVC XI T8 : Invalid, abort
LDB ,Y ; work out length
ADDB | X ; of new string
BVS EEXI T ; Too | ong(overfl ow), abort
COWPB #255 ; 255 also too |ong
BEQ EEXI T
STX ,--S ; Stack string addresses
STY ,--S
| NCB ; Total space needed incl.
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BSR GETSP ; length byte. Get space
BVC XI T8 ; No space, abort
DECB ; New string length
STB , Y+ ; stored as 1st byte
LDX , St+ ; Cet source address
LDB , X+ ; and its length
BSR CPSTR ; and copy characters
LEAX -1, X ; Then free space
BSR FREESP
LEAY B, Y ; Update destination
LDX , S++ ; Get source address
LDB , X+ ; and its length
BSR CPSTR ; and copy characters
LEAX -1, X ; Then free space
BSR FREESP
ORCC #2 ; Set CCV
BRA XI T8
EEXIT ANDCC #$FD ; Error indicator
X1 T8 PULS A B, X, PC
Program 6. 11 STRCAT - catenate strings
* SUBSTR - select substring
*
* Register inputs X - source string address
* A - substring length
* B - offset from string start
* Register outputs Y - new address or error nunber
* CC.V=1- noerrors
: CC.V =20 - error
SUBSTR PSHS X, A, B ; Save registers
BSR CHKHP ; Is string valid?
BVS STRXX ; yes, next check
LDY #0 ; error type indicator
BRA EEXIT1 ; error exit
STROK I NCB ; To get offset from 1st char.
LEAY B, X ; Substring address
PSHS Y ; Stack it
LDB , X ; Total string length
I NCB ; To account for length byte
LEAY B, X ; End of string address
CWY ,S ; Wth substring address
BLS | NDXCK ; If invalid index
LDY #1 ; Index error =1
BRA EEXIT1
| NDXOK LDU , S ;  Substring address
LEAU A U ; Add length
PSHS U ; and stack it
CWPY | St+ ; Conpare with end of string
BLS LENOK ; Is index + length valid?
LDY #2 ; No, length too |ong
BRA EEXI T1
LENCK | NCA ; To get nunber of bytes for
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TFR A B ; getspace paraneter
BSR CGETSP ; Get the space
BVS GSPCK
LDY #3 ; No space available error
BRA EEXI T1

GSPCK  PULS X ; Source address
DECB ; For string length
STB , Y+ ; New string length
BSR CPSTR ; Now copy characters
CRCC #2 : No errors
BRA XI T5

EEXI T1 ANDCC #$FD : Indicate error

Xl T5 PULS X A B, PC : Restore and return

Program 6. 12 SUBSTR - select substring
6.4  PCSI TI ON | NDEPENDENT CCDE

One of the problens which can arise when you tr% to use
machi ne code routines which have been witten by other
people is that these routines make assunptions about
the contents of particular nmenory |ocations which you
have used for other things. Wat has happened is that
the operation of the routines depends on particular
instructions and/or data residing at fixed addresses
and, if these instructions/data are not at these
addresses, the routines will not work.

Routines like this are called 'position dependent'
and often cause many problens for the assenbly |anguage
programer. However, it is possible to wite 'position
I ndependent’ code whi ch executes correctly irrespective
of where it is loaded into the machine menory. If you
are building a library of subroutines or witing a
program which nay run on other machines, you should
always wite position-independent code.

Posi ti on-i ndependent code (PIQ is code that
executes in the sane way regardl ess of where it resides
in nmenory. In other words, if it is located at a
different address from that which it was originally
assenbled, it will still execute correctly. To produce
position-i ndependent code for the Dragon, you nust
adhere to a single fundanental rule:

Al addresses which you use in your program shoul d
be relative rather than absol ute addresses.

In general, it is best to wite your routines so that
addresses are all relative to PC but it is also
possible to use the direct addressing node of the M809
in the production of PIC For the neantine, however,
we shall concentrate on how to produce PIC by using
PG rel ative addressing.

VW have already seen exanples of PGrelative
addresses as all the MB809 branch instructions refer to
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the destination address as an offset from the current
value of the program counter. Therefore, even if the
code is noved (relocated) to some other address, the
relative distance between the branch instruction and
its destination remains the same. However, you cannot
cheat by adding or renoving machine code instructions
W thout re-assenbly. If you do so, the programw || not
work as the relative distance specified in the branch
instruction will be incorrect.

In early mcroprocessors, the production of PIC was
often difficult because relative branch instructions
only allowed an 8-bit offset thus restricting the
relative branch to the range -128 -> 127. However, no
such problem exists in the M8C as Iong branch
instructions allow ng offsets from 32767 to -32768 may
be used. In fact, if you wish to use sonme of the
exanpl es discussed in earlier chapters in conbination
with the exanples in this chapter, you may have to
change sone  of the BSR instructions to LBSR
instructions as the subroutine code may be |ocated nore
than 127 bytes away from the subroutine call.

As well as addressing instructions in a position-
i ndependent way, it is also essential that data are
al so addressed using the PGrelative addressing node.
A though we introduced this addressing node in Chapter
2, our exanples so far have nostly wused direct,
extended or indexed addressing. The reason for this is
that we felt that the introduction of PGCrelative
addressing was peripheral to the concepts illustrated
in the exanpl es.

Recall that the Ms809's PG relative addressing node
uses the program counter as an index register and adds
either an 8-bit or a 16-bit offset to 1t. The table
bel ow shows exanples of how data can be addressed in a
position-independent way using PG relative addressing.
Assune that TABLE, WORD, and \TA are storage | ocations
set up using an FCB or RVB assenbl er directive.

Non-PI C PIC
LDX STABLE LEAX TABLE, PCR
LDX WRD LDX WRD, PCR

STA DATA STA DATA PCR
Notice how easy it is to wite code in a position-
i ndependent way. Instead of referring to the absol ute

synbolic address, all you have to do is to tell the
assenbler that PGrelative addressing is to be used.
The assenbler works out the correct displacenent from
the instruction position and generates the appropriate
postbyte and of f set.

The only instructions which cause any real
difficulty are those which wuse 16-bit immediate
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addressing where the 16-bit wvalue in the instruction
refers to an absolute address. To |oad such addresses
in a position-independent way, the LEA instruction
rather than the LD instruction is used. Ther ef or e,
rather than saying LDX STABLE to load the address of
TABLE into register X this should be witten LEAX
TABLE, PCR

However, other instructions such as OW which nmght
also use immediate values which are addresses do not
have position-independent forns. This neans that when
a 16-bit register is to be conpared with an imediate
val ue representing an address, we have to make use of a
tenporary location on the stack.

For exanple, consider the following fragnment of
non-PIC code which is often found in prograns which
| ook up tabl es of val ues.

LDX #TABLE ; Set up base address of table
LoCP e

Code to | ook

up table

X #TABEND ; is table conpletely scanned

BNE LOCP
TABLE FCB <<table data val ues)
TABEND EQJ * : table end
In this exanple, TABLE and TABEND represent absolute
addresses and, if relocated wthout reassenbly, this
code woul d not execute properly. In order to nake this

code position independent, we nust ensure that all
absol ute addresses are elimnated. V¢ do this by using
the LEA instruction to conpute an address and we then
store this address where it nmay be accessed and
compar ed. V¢ need a tenporary location for the
absolute address and, as always, the best place to
allocate tenporary store is on the stack.

W mght, therefore, wite the above exanple in a
posi tion independent way as foll ows.

LEAX TABEND, PCR
PSHS X ;. Stacks address of TABEND
LEAX TABLE, PCR

LooP
awx | S ; Conpare X with top stack
BNE LOCP
LEAS 2,S ; Discard top stack el ement

In general, when you are witing your own routines you
should always try and use PGrelative addressing so
that PIC is generated by the assenbler. However, if
you are making use of routines built into the BASC
system such as the input and output routines INH and
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QUTCH described in Chapter 5, PGrelative addressing
shoul d not be used.

The reason for this is that these routines always
reside at fixed locations and if you relocate your own
program the system routines do not nove wth your
program Therefore, you should always use junp rather
than branch instructions to reference these system
routines.

For exanple, to reference the input routine at
address 8006, you mght wite the followi ng code:

INPUT  EQU $8006

JSR INPUT

It would be quite incorrect to say LBSR INPUT as
rel ocating your code woul d cause the displacenment built
into the branch instruction to e incorrect.
Naturally, the same applies to nmenory areas which have
a dedicated function, such as the BASI C screen area.
This starts at absolute address 400, so LD rather than
LEA instructions are used to pick up that address.

6.4.1 Junp tables

The only real problem associated with PIC arises when
sonme other program is assenbled and uses PIC routines.
Natural ly, the addresses of these routines are
assenbled into the program and, if the routines are
r el ocat ed, these addresses will be w ong. After
relocation, it is necessary to nodify the program to
reflect the new, relocated addresses and this seens to
negate sone of the advantages of producing PIC.

In order to avoid a great deal of tedious address
nodi fi cation, an addressing technique can be used which
isolates the necessary changes so that only a single
table need be changed. This technique is based around
the idea of so-called 'junp tables' or ‘'vector
| ocations' .

Ajunp table contains, at known positions, a link to
the actual addresses of routines and data used by a
program If these addresses change, only the junp
table need be nodified to reflect the new addresses.
There is no need to change the program which refers to
these addresses through the junp table.

Where routines are addressed, the junp table is
usually made up of ju or branch instructions (hence
the nane) which inmmediately junp to the addressed
routines. W shall see shortly how such a table, which
is called a direct junp table, nay be set up.

Wien data are referenced via a junp table, the table
locations do not contain instructions but merely hold
the address of the referenced data. The data item can
be accessed usi n? i ndirect addressing. Hence, this
type of junp table is often terned an indirect junp
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table. O course, there is no reason why the data in
such a table should not be subroutine addresses. The
actual routines would then be called using a JSR
instruction with the indirect addressing node.

Junp tables are the nechani sm which provi des access
to the BASIC I/Oroutines. 1In fact, there are two junp
tables referencing these routines - a direct junp table
starting at address 8000 and an indirect junp table
starting at address A00O.

As an exanple of how these tables can be used,
consider the character input routine discussed in
Chapter 5. In the direct junp table, address 8006
holds a junp to this routine whereas the first |ocation
in the indirect junp table (A000) is set up with the
address of the input routine.

If we wish to use the direct ju table, the
followng instruction is wused to cal this input
routine:

JSR $8006

O the other hand, if the indirect junp table is used,
i ndirect addressing nust be used to reference the input
routine:

JSR ($A000)

The junp tables for these BASIC I/O routines are set up
at nown |ocations but if you envisage that other
programs  will use  your routines, it is a
straightforward matter to set up your own junp tables.

The skeleton exanple below shown how direct and
indirect junp tables may be defined by the assenbly
code progranmmer.

SUB1

<code for subroutine 1>
SuB2

<code for subroutine 2>
SUB3

<code for subroutine 3>

Now set up an origin for the junp table

CRG $1000
SUB1V JMP SUB1

SuB2vV JMP SUB2
SUB3V JMP SUB3

* |f an indirect junp table is required it
¥ mght be set up as follows:

SUBL1V FDB SUB1
SuB2v FDB SuB2
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SUB3V FDB SUB3
This is a si V\ﬁ._y to set up junp tables but the
t hi

le
di sadvantage wth s technique is that the addresses
filled in the ju table are those known when the

program is assenbl ed. They are called ‘'static
addresses’' . If the program is relocated, t hese
addresses remain as they were and are therefore
i ncorrect. Wat is needed is a technique which

allocates addresses to a junp table immediately before
the programruns. That is, the junp table must be set
up dynamcally each time the programis executed.

To calculate the addresses at run-time requires the
use of initialisation code which fills in the junp
table addresses. The following initialisation code
shows how this can be achieved.

INT LEAX SUB1, PCR

STX SUB1V+1 ;. SUB1V+1 because the
* JMP opcode is at SUBLV

LEAX SUB2, PCR

STX SUB2V+1

LEAX SUB3, PCR

STX SUB3V+1

CRG $1000 ; Junp table address

SUBLV  JMP $0000
SuB2vV - JMP $0000
SUB3V  JMP $0000

W leave it as an exercise for the reader to work out
how to initialise an indirect junp table dynamcally.

Normal ly, the INT routine is the very first routine
in a program as it is essential that its address is
known 1n order that it may be called to set up the junp
table. Placing INT at this position also neans that
the program can be initiated Trom BASIC once C.QADWed
by using the EXEC command. There is no need to specify
an address for EXEC.

The use of an initialisation routine opens up the
possibility of using an alternative technique of
produci ng position-independent code. This technique
relies on all addresses bei ng direct addresses with the
actual address conputed by adding the contents of DP to
the address specified in the instruction. In other
words, the instruction address is actually a DP-
rel ative address.

In order to produce PIC code wusing direct
addressing, DP must be set L'J\E) dynamcally at the start
of program execution. The INT routine nust search for
an available page in menory and assign its address to
the direct page register. You mght wish to explore
the possibilities of this technique but be warned that
t he | C system keeps many pages for its own use and



148

assumes that they will not be used by the programrer.
You have to be very careful about saving and restoring
the value of the DP register and it is our opinion that
the use of PC-relative addressing is a better way of
produci ng position-independent code.

6.5 COMBI NI NG ASSEMBLY LANGUAGE W TH BASIC

A di sadvant age of assenbly |anguage progranming is that

it is difficult to wite and test |owlevel |anguage
prograns even when strict rules of programmng are
adhered to. This is in contrast to BASIC prograns
whi ch, because of the way in which BASIC s
i npl emented, are easy to test. It is sinmple to print

out the values of variables as the program executes or
to break in and inspect variable values that you think

m ght be wong. Ideally, we would like this flexibility
but with the speed and power of assenbly | anguage.
There is no such ideal systembut, in many cases, it
is possible to call assenmbly code routines from BASIC
programs thus using high and low level programming in
the nost productive way. It is a fact that nost

progr ams spend nost of their tinme executing a
relatively small proportion of the total program code.
The speed of BASIC programs can be significantly
increased by identifying execution-intensive sections
and replacing these by nachine code equivalents. In
this way, the mpjority of the program made up of user
pronpts, print statenents, etc. can remain in BASIC
with only tine critical sections progranmed in assenbly
| anguage.

The easiest way to incorporate nachine code routines
in a BASIC program is to use BASIC S EXEC statement.
The EXEC statenment takes an address as a paraneter and
transfers control to the code residing at that address.
It is used as foll ows:

EXEC <addr ess>

In actual fact, the address operand, which nust lie in
the range 0000 to FFFF, in the EXEC statement is
optional. If it is present, the machine code routine at
that address is executed with control returned to BASIC
after a RTS or PULS PC instruction is executed. If the
address is omtted, EXEC consults a junp table (the
EXEC vector) to find the address of the code to be
execut ed.

The EXEC vector is located at address 9D and is mnade

up of a single word only. Therefore, the nenory
locations 9D and 9E should contain the address of the
code to be EXECed. Initially, the EXEC vector is set

up to contain the address of an error routine which
expl ai ns why the message '?FC ERROR is output when an
EXEC wi thout a parameter is used as the first EXEC in a
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program If an address is specified in an EXEC cal |,
that address is filled into the EXEC vector with the
result that subsequent EXECs without an address
paraneter call the machine code at that address.

An alternative way to set up the EXEC vector is via
the CLOADM comrand.

EXEC

This instruction sequence sets up the EXEC vector to

refer to the execution address of the machine code

%(E ramcall ed "Nane" which has just been |oaded. The
instruction then transfers control to this code.

The main advantage of EXEC is its sinplicity and the
fact that it can be used to invoke any nunber of
machi ne code routines. The main disadvantage with EXEC
is that any routine parameters nust be passed in nenory
| ocati ons and the programmer nust PCKE these paraneters
into known locations before the EXEC call. Simlarly,
the results of executing the machine code routine nust
be in known |ocations and can only be retrieved using
PEEK.

An alternative way to invoke nachine code routines,
whi ch permts paraneter Passi ng, is to nmake use of the
USR call. The nunber of USR calls available to the
BASI I nachi ne code programmer is restricted to ten and
these are naned USRO to USR9. USR calls do not take an
explicit address but transfer control to the address
which the programrer has previously associated wth
that USR call.

The addresses to which particular USR calls shoul d
transfer control are set up using a DEF USR statenent.
This has the general form

DEF USRh = address

The nunber n nust be a single digit in the range 0 to 9
and the address nust lie in the range 0 to FFFF. The
general formof the USR call itself is:

USRn( <ar gunent >)

Executing a <call of USRh causes control to be
transferred to the address speci fi ed in the
corresponding DEF USRn statenent. Al though the
definition of the USR call function states that the
nane USR should be followed by a single digit fromO to
9, readers who try to call USR in this way wll find
that all USR calls actually result in a call to USRO
This is due to an error in the BASIC system which,
fortunately, can be circunvented very easily.

The bu% in the BASIC system causes the interpreter
to skip the digit so that USRO is taken to be the sane
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as USR1, USR2, etc. As BASIC takes a USR call without
a parameter to be equivalent to USRO, the effect of the
bug is to make all USR calls default to USRO

Rather than call a USR call as USR1, USR6, USR9,
etc., the digit indicating which USR call is to be used
should be padded with an extra zero. Therefore, to
call USR1l, you nmust actually wite USRO1, to call USRS,
you nust wite USRO6, etc. Qoviously, this is not
necessary for USRO but for reasons of consistency it is
probably better to call this as USROO.

A USR call from BASIC is treated like a BASIC
function so that it is used as part of an expression
and should return a value to the BASIC program
Exanpl es of USR calls are:

10 DEF USRO = &H1000 : DEF USRL = &H2000

20 A = USROO(A) : ' Transfers control to &H1000
30 IF USRO1(0) =0 THENB=B + 1
If a USR call is wused without first defining the

address it refer to, the USR call wll cause a nessage
'"?FC ERRCR  to be printed. Li ke the EXEC statenent,
each USR call has an associated vector which contains
the address of the entry point of the mnachine code
routine to be executed. The USR vector is initially set
up to refer to the error routine which prints the '?FC
ERRCR mnmessage. Wen a DEF USR statenent is used, this
fills in the address in the appropriate vector.

The table below lists the vector addr esses
associated with each USR call.

USR Cal | USR Vect or
USRO 134: 135
USR1 136: 137
USR2 138: 139
USR3 13A: 13B
USR4 13C:. 13D
USR5 13E: 13F
USR6 140: 141
USR7 142: 143
USR8 144: 145
USR9 146: 147

If you are trying to link nmachine code and BASIC for
the first tine, we recomrend that you experinent wth
the technique by using EXEC rather than USR calls.
Unfortunately, to set up USR call paranmeters requires
know edge of how BASIC represents nunbers and strings.
W therefore return to the use of USR calls in Chapter
9 after BASIC S data representation has been descri bed.



Chapter 7
Graphics programming

e of the greatest advantages of assenbly code
programming, its total flexibility, is also one of its
nost serious drawbacks as the programmer has to concern
hinself with every detail of the problem e area in
particular where this lack of support is very evident
Is in graphics and aninmation.

The problem becomes very obvious if the would-be
animator has relied on the graphics facilities provided
in Extended Color BASIC and has conme to expect such
facilities when designing and witing ?ra hi cs
prograns. However, the nmajor disadvantage o | C
programming is its inherent slowness and it is in
graphics applications that this is nost evident. Onl
the sinplest of games, for exanple, wth mnim
novenent can be programmed in BASIC if they are to
present a challenge to the player.

A very large part of the Dragon's BASIC system is
dedicated to providing graphics facilities and it 1is
not an easy task to duplicate those features as
assenbly code routines. Neverthel ess, if speed is
required, some graphics programmng must be carried out
in assenbly code but the programmer should, as far as
possible, nake use of BASIC for those parts of his
program which are not tine critical.

In general, a good graphics programmng strategy is

to develop the —conplete program using. ICS
facilities and to iron out program bugs at this stage.
This will probably result in a systemwhich is far too

slow but you nay then replace BASIC routines . with
assenbly code routines to speed up your system

It is seldom necessary to duplicate the BASIC
routines exactly unless they are conponents of other
routines. Rather, it is usually possible to nake all
sorts of sinplifications and later in the chapter we
look at how to design, code and animate screen
patterns. The chapter also discusses, in some detail,
the Dragon's graphics hardware and describes the
di fferent graphics nodes available to the programrer.

Firstly however, we describe in general terns, how
the Dragon's display system is organised. As in nost
ersonal conputer systens, the display system on the

agon is menory-mapped. This nmeans that an area of
menory is scanned 50 or 60 times per second, depending

151
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on the local nains frequency, and the contents of that
area are translated by special hardware to a standard
TV signal which may be displayed on a donestic
tel evision set.

The nachine allocates a 512 byte area of nenory for
an al phanuneric display and it is this area which is
used to display BASIC program text as it is input, and
program results as they are output. The Dragon's
al phanuneric display is organised as 16 lines with 32
characters per line. W show later that this di Sﬂl ay
area can also be used as a lowresolution graphics
area. This text segnent is always allocated at address
400 in menory so locations 400-5FF are dedicated to the
al phanurreri c di spl ay.

The nmenory dedicated to graphics, that is, the
display of pictures rather than text, is organised into
graphi cs segnents of 512 bytes each. In full graphics
node, a mninum of 2 segnments nust be allocated but
there is no inherent rmaximum nunber of graphics
segnent s. Qovi ously, however, the maxi num nunber of
such segnents is limted by the anount of free nenory
available to the graphics programrer. These graphics
segments are usually allocated from address 600
onwards, that is, imediately after the BASIC text
segnent. The BASIC system organises these graphics
segrments into 'pages’ of 1536 bytes and a nmaxi numof 8
pages is available to the BASIC progranmer.

In order to display characters, the display screen
is considered as a two-dinensional array of 'picture
el ements' or pixels. The nmore pixels on the screen, the
finer detail which can be resolved and the Dragon
conpares favourably with other personal conputers in
this respect. The Dragon's display is nade up of 256
hori zontal pixels by 192 vertical pixels. The Dragon's
graphi cs hardware provides various graphics nodes where
the screen is considered as a matrix of elenments. Each
elenrent is made up of a single pixel at the highest
resolution or consists of an array of pixels.
Depending on the resolution chosen, this array can vary
from2 by 1 pixels to 12 by 8 pi xel s.

In a menory-mapped graphics system all infornmation
about a particular screen elenent nust be encoded in
nmenory. is means that the pixel settings and col ours

must be held in menmory locations so there is a trade-
off between display resolution and the nunber of
colours available to the programmer. H gh-resolution,
mul ti-colour displays require a great deal of nenory to
encode the screen information so the Dragon's (r;rap ics
system limts the nunber of colours available when
resol uti on graphics are used.

7.1 GRAPH CS DI SPLAY HARDWARE

The Dragon's graphics display hardware is made up of 3
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m crochi ps. Wrking in conbination, these chips extract
information from the systemis menmory and display that
information on a standard television screen. The so-
called "Video RAM is the menory area which is devoted
to the display and the contents of this menory area
determne what is actually displayed on the user's
screen.

The chips making up the graghi csS system are the
Vi deo D splay ?eneratoer\ﬁVIIB - 6847), the nchr onous
Address Ml tiplexor ( - 6883), and a ri pheral
Interface Adapter(PIA - 6821). The interconnections of
these chips is shown in the system block diagram in
Figure 1.2. In spite of the fact that the nanes of
these chips sounds daunting, it is fairly easy for the
assenbly |anguage programmer to control these devices.
Each of them and the Video RAM is described bel ow.

7.1.1 The VDG chip

The video display generator (VDG chip is the nain
conponent of the Dragon's graphics system As the name
suggests, it generates the video signals that are input
to the user's television set to provide the screen
di spl ay. For those readers wth experience in
electronics, a conplete description of this chip is
provided in Appendi x 3.

However, you do not need experience in electronics
to understand how to control this chip. Al you nust
understand is that the chip has a set of control |ines
which nmay be in one of two states representing the
binary values 1 and 0. Wen a line represents a 1, we
say that it is H, when it represents a binary zero, we
say that the line is LO Control signals can be
generated by witing information to specific nenory
addr esses.

The VDG chip determnes the graphics capabilities of
the Dragon and it does so by providing a selection of
nodes of operation. These nodes dictate the resol ution
of the display, the nunber of display colours, the
actual colours displayed, etc. In all, there are a
total of 14 different display nodes:

(D Four al phanumeri c nodes

(2) Two Sem graphi cs nodes

(3) Four col our graphi cs nodes

(4) Four resolution graphics nodes

The PMCDE statenment in BASIC all ows some of these nodes
to be provided but not all of themare available to the
BASIC programrer. However, the assenbly |anguage

programrer nmay use all of the display nodes by directly
configuring the VDG chip. Each of these nodes is
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described in a separate section later in this chapter.

The VDG chip has eight control lines which are used
to select the node of the display. The table bel ow
shows the function and the names of each of these
control |ines.

Control |ine ~ Function _

AG Set LO to indicate A phanureric
H to indicate G aphic node

A'S LO to indicate A phanureric

| NT/ EXT by 88 & "ELERESH SEM 9 AR ¢ e

and external (H) character
generator ROM
GV, GvL, G Sel ects the graphi cs node

CSS Sel ects between the two col our sets
I NV S_e{jects bet ween i nverse and nornal
vi deo

The nmode control lines, AG |NI/EXT, GW, GV, GwW,
and CSS, are connected to the PIA chip as described in
the followi ng section. The desired node may be set up
by setting the aflo_ﬁropriate bit pattern in the PIA s
data register. is causes the appropriate control
signals for the VDG chip to be generat ed.

Al though six of the VDG control lines are set up via
the PIA, there are only five output lines fromthe PIA
to the VDG chip. There is no need for six lines as the
INT/EXT and GWO input |ines share a single PIA output
line. Wwen GW is needed in graphics node, the value
of INT/EXT is irrelevant and when the value of |NI/EXT
is actually needed in al phanuneric/Sem graphics node,
the value of GW is not used.

The remaining VDG control lines AS and IN are
connected to two of the RAM data lines, D6 and D7.
These lines can therefore be set on a character by
character basis in the al phanureric/sem graphi c nodes.

The VDG chip has the capability of generating eight
colours but, when colour graphics nodes are used,
manor% restrictions limt the nunber of colours which
my be displayed to four. The weight colours are
therefore separated into two colour sets and the CSS
control line on the VDG indicates which colour set is
in use.

The colours in each colour set are:

Col our set 1 Col our set 2

G een Buf f

Yel | ow Cyan
Bl ue Magent a
Red QO ange

Wien the nenory bits defining an elenent are set, this
nmeans that the element is 'on' and it is displayed in
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col our. Wien the associated bits are unset, the
elenent is off and is displayed as bl ack.

7.1.2 The peripheral interface adaptor

The PIA is an exanple of a general -purpose programabl e
interface device which is used to interface the M809
processor to other devices. W describe the operation
of the PIA in Chapter 8 as it plays a very inportant
role in input/output programmi ng.

The bl ock diagramof the Dragon in Figure 1.2 shows
that the systemcontains two Pl A chidps. The PIA used to
control the VDG chip is PIAL and, by setting the
appropriate bits in the PIA's Bside peripheral data
register, control signals for the VDG chip can be
gener at ed.

As the M809 uses nenory-mapped addressing, this
data register is set by witing bit patterns to the
appropriate nenory address. PIAL is addressed via
manor% locations FF20 through to FF23 with the B-side
peripheral data register located at |ocation FF22. W
mght therefore set up the VDG inputs as foll ows:

LDA <VDG input state>
STA $FF22

In fact, only bits 3 to 7 of this register are used to
set the VDG control lines with bits O to 2 used for
ot her purposes by the Dragon. The values of these bits
are irrelevant for graphics programing. The table
bel ow shows the association of bits in the PIA register
and VDG control |ines.

Bt 3 CSS
Bt 4 GW
Bt 5 GW
Bt 6 QW
Bt 7 AG

7.1.3 The video RAM

Wiilst it is the VDG chip which determnes how data is
di spl ayed on the user's screen, it is the contents of
the video RAM which specifies what is displayed.
Remenber that the display is nade up of 256 by 192
pixels and the contents of the video RAM determ ne
which pixels should be displayed and the colour of
di spl ayed pi xel s.

The VDG continually scans the video RAM and uses the
data there to build up an inage on the screen.
Therefore, by changing a data byte in the video RAM
the  programrer can change the pixels in the
corresponding screen position. The resolution of the
display is deternmined by the nunber of pixels affected
when a single data byte of video RAM is nodifi ed.
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7.1.4 The synchronous address nultipl exor - SAM
The SAM chip has been specifically designed to provide
the necessary control and timng signals for the Ms809,
the VDG chip, and the video RAM Mich of this
information is of no relevance to the programrer but
sone aspects of the operation of the SAM chip are
i mportant. V¢ concentrate on these aspects in this
section rather than describe the SAMchip in detail .
Three bits in the SAM control register are used to
set the appropriate display node. These bits should be
set to the same value as bits 3-5 in the VDG control
regi ster. The SAM control register is nenory n'aggc%d at
address FFQ and occupies the address range to
FFDF. As the control register is 16 bits wide, why are
32 bytes allocated in nenory to that register?

The 16-bit control register maps onto the 32-bit
range FFA to FFDF so that each register bit is
represented by two nenory bytes which have adjacent
even and odd values. Therefore bit O in the control
register is represented by FFQ0/ 1, bit 1 by FFC2/3, bit
2 by FFCG4/5 etc. In order to clear a particular bit, a
wite operation to the even address is carried out, and
to set a SAMcontrol register bit you must wite to the
associ ated odd address. This technique of setting and
unsetting the control register bits is the reason why
32 bytes are allocated to a 16-bit register.

The SAM control register bits which indicate the
current graphics node are the bottom three register
bits terned VO, V1, and V2. These have associ at ed
addresses FFCO 1, FFC2/3 and FFC4/5. To set up the
graphics node required, you nust carry out the
requisite wite operations to these addresses.

As well as these node control bits, there are seven
other SAM control register bits (bits FO-F6) which are
used to indicate the base address in mam)r)ll_ of the
graphics segnments used for the video RAM he table
bel ow shows the association between these SAM control
register bits and nmenory bytes:

FO  FFOB/ 7
F1  FFC8/9
F2 FFCA/B
F3 FFOOD
F4 FFCE/F
F5  FFDO/ 1
F6  FFD2/ 3

The 7-bit wvalue in the SAM control register is
miltiplied by 512 to conpute the base address of the
graphics segnments used. This is the reason why
graphi cs segnents always have a base address which is a
mul tiple of 512 and why thegw\;alre al ways 512 bytes | ong.

Because the VDG and chips nmust operate 1In
tandem they are normally set up in the sane node so



that signal timngs, etc. are conpatible. If set up in
different nodes, the systemw || produce garbage except
when the VDG chip is in alphanuneric node and the SAM
chip is in one of the colour graphics nodes. 1In this
case, extra Semgraphics nodes are available and these
are described in section 7.6.

7.2 | NTEGRATI NG BASI C AND ASSEMBLY GCDE GRAPH CS

One of the strengths of the BASIC system on the Dragon
is the graphics facilities Provi ded by Mcrosoft's
Extended Color BASIC. These ftacilities allow conplex
graphics prograns to be witten with relative ease but,
as with all BASICJ)rograrrs, they are relatively slow
Using assenbly code speeds up the systems (draphics
very considerably but is much less convenient for the
pr ogr anmer . The ideal solution is to wuse the
convenience of the BASIC facilities when execution
speed is not inportant and to program time-critical
sections of the programin assenbly | anguage.

Typically, those parts of a graphics program which
are not time critical are the parts involved wth

initialisation and hardware setup. In this section we
look at some wuseful BASIC graphics comands and
describe a BASIC subroutine which wll set up the

graphics system then call an assenbly |anguage program
which actually creates the display.

G the many BASIC commrands used for high resol ution
graphics, three are of particular inportance to the
assenbl y | anguage programer.

(L) SCREEN t ype, col our set

This command is wused to specify whether full
graphi cs or al phanuneric/ Sem graphics node is to
be used. For a full graphics node, type is 1

or 0 and selects the colour set as defined i
section 7.1.1.

otherwise 0. The colourset parameter is either 1
n

(2) PMDE node, st art page
This statenment selects one of the five graphics
nodes available with Extended Color BASIC and is
only meaningful if a SCREEN 1, colourset conmand
has been issued. The nmodes avail able are summar-

i sed bel ow
Mode Resol uti on RAM Dbyt es Graphics type
0 128 by 96 1536 Resol uti on
1 128 by 96 3072 Col our
2 128 by 192 3072 Resol uti on
3 128 by 192 6144 Col our
4 256 by 192 6144 Resol uti on

The startpage value is used to select the base
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address of the graphics display. In Extended
Color BASIC, the display area is nmade up of one
to four pages of 1536 bytes each with up to eight
pages used for the display. Therefore, the start-
Ing page value nust lie in the range 1 to 8 wth
page 1 starting at address 600, immediately after
the text page. The table below shows the rela-
tionship of pages to RAM addresses.

Page RAM addr ess range
600- BFF
C00- 11FF
1200- 17FF
1800- 1DFF
1E00- 23FF
2400- 29FF
2A00- 2FFF
3000- 35FF

coO~NO TR~ WN

(3) PCLS c

This command is used to clear the high-resol ution
di splay screen to the background colour c, pro-
vided that ¢ is in the available colour set for
the current node. |If this is not the case, or c
is omtted, the default background colour is
used. This is green if colour set 1 is selected
and buff if colour set 2 is used.

SCREEN, PMDE and PCLS are wuseful to the assenbly
| anguage programmer since they can be used to set LrJrB a
?raphi cs display prior to 1ts wuse in an assenply
anguage program In other words, the use of these
commands avoids the need to wite machi ne code routines
to performsimlar functions.

W show how these can be wused in the BASC
subroutine bel ow This routine initialises the
graphi cs system using SCREEN, PMODE, and PCLS cormmands
ZES? calls an assenbly |anguage routine at address

1000 SCREEN 1,0 ' Select graphics screen

1010 PMXDE 0,1 "Sel ect graphi cs node

1020 PCLS "Aear graphics display

1030 EXEC &#E21 'Gll nachine code

1035 " Don't return imediately to BASIC

1036 ' as this nmeans switch to text screen

1040 | F I NKEY$="" THEN 1040 ' and display is |ost

1048 Switch colour sets and watch
1049 'screen col ours change
1050

1060 IF IN<EY$:" " THEN 1060
1070 SCREEN 0,0 'Now revert to text node
1080 RETURN

Program 7.1 BASIC test rig for graphics prograns
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7.3  ALPHANUWMERI C DI SPLAY MCDES

The al phanuneric mode is the node adopted by the Dragon
when it is switched on or reset. n this node, the
display is nade up of a 32 by 16 matrix of display
elements with 512 bytes of video RAM dedicated to this
display. The BASIC system allocates this display area
at address 400 so that the SAM control register bits
FO-F6 are set to 02.

Although the VDG chip supports four different
al phanuneric nodes, the Dragon hardware is only
designed to make use of one of these. The other nodes
require special read-only menories to be installed and
attenpting to use them wll result in unpredictable
access to RAM Nevertheless, it is possible to use
these nodes if you are prepared to spend sone time in
experinentation to determne where the VDG accesses

The information in the VDG data sheet should be
sufficient to get you started with these experinents.

Each character on the display is represented by 8 by
12 pixels although only 5 by 7 pixels are used to form
the actual character. The remaini n% pi xel s define the
space between the characters. he shape of the
characters in alphanuneric node is deternmined by a
read-only nmenmory (ROM) which is build into the VDG
chip. Unfortunately, this ROM has space for only 64
characters so this neans that the full ASO I character
set is not avail able. In articul ar, | ower case
characters have been excluded and this limts the
di splay capabilities of the Dragon.

As the naxi num nunber of characters which nay be
held in the VDGs ROMis 64, this neans that 6 bits of
an 8-bit byte are required to represent the character
value. The renmaining 2 bits represent the INV and AS
control inputs to the VDG chip. One bit specifies
whet her the display node is al phanurmeric or Sem graphic
and the other specifies whether the character is to be
displayed in reverse or nornmal video. The table bel ow
shows the usage of the bits in an 8-bit data byte:

Bits 0-5 Character code
Bit 6 IN/ control bit
Bit 7 AScontrol bit

e of the problens which arises with this display node
is that there is not a one-to-one correspondence
between the character code in the video RAM byte (which
is an ASOIl character) and the character which is
actually displayed. To illustrate this, you mght Ilike
to run the follow ng BASI C program

5 OS

10 FORK = 0 to 127
20 K$ = CHR$(K)

30 PCKE &H#00 + K K
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40 PRNT @56 + K K$;
50 NEXT K

Program 7.2 Screen character mnappi ng

The statenments at lines 30 and 40 should be equival ent
in that they should both place the ASAIl value of a
character in the video RAM However, sonme characters
will be displayed differently.

To further illustrate this point, type in the
foll owi ng anendnents to the program

10 K$=I NKEY$: |F K$="" THEN 10

20 K =ASC( K$)

50 P1 = PEEK(&H00 +K)

60 P2 = PEEK(&H00 + 256 + K)

70 PRINT @80, HEX$(K) , HEX$( P1) , HEX$( P2) ;
80 @QOTO 10

Wien the programis run, you will see that the actual
ASCI| codes K and P1 remain the sane but that P2, the
result of printing a character, is different. This
nmeans that the BASIC print routine is altering the
character code before placing it in the video RAM

This conversion is carried out by the standard BASI C
character printing routine QUTCH. W have already
nmentioned this routine in Chapter 5 and, because it
takes care of the necessary character conversions for
the VDG chip, we recoomend that it always be used for
character output.

QUTCH places the character to be output at the
current cursor position on the screen. The cursor
position is held in a systemvariable called CURADR and
the contents of that variable determ nes where, on' the
screen, the cursor is displayed. Qursor blinking is
under the control of a systemroutine called CBLINK and
the bli nki n% effect is the result of inverting and re-
inverting the cursor position character.

As well as performng code conversions, the routine
QUTCH also carries out other screen 'housekeeping'
duties. It handles screen scrolling when the end of a
line is reached, deletes characters from the screen
when the delete key is pressed, and updates the cursor
position so that the next character input is at that
posi tion.

Normally, the Dragon display consists of dark
characters on a |light background. In fact, the
‘nornal' character set of the VDG chip consists of
light characters on a dark background so the Dragon's
display is actually the inverse character set. This
means that the IN/ control bit (bit 6) of each data
b?/te nust be set to indicate dark-on-light display. To
illustrate this, the follow ng program mani pul ates the
INV bit of every character in the display:
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LDX #$400 ; Display start address
NEXTCH LDA |, X ; Character into A
* INV bit manipulation here - see bel ow
STA | X+ ; Put character back
CWPX #$5FF ; Reached end of screen?
BLS NEXTCH ; No, repeat
RTS
Program 7.3 INV bit manipul ation

The INV bit can be manipulated in the foll owi ng ways:

I nstruction Ef f ect
ORA #$40 Sets INV to 1 so 'nornalising’ the
di spl ay
ANDA #$BF Clears INV so inverting the display
ECRA #%40 If INV is set, it is unset and vice
ver sa. The effect of this is to
reverse the display

7.4 COLOUR GRAPHI CS DI SPLAY MODES

The VDG provides eight full graphics nodes although
only five of these are directly supported by Extended
Color BASIC. The npdes range from a four-col our 64 by
64 el enent display requiring 1024 bytes of video RAM to
a two-colour 256 by 192 display requiring 6144 bytes of
video RAM Four of these npdes are terned colour
graphi cs nodes and these are described in this section.
Each of these npdes is nunbered 1, 2, 3 or 6 depending
on the nunber of graphics pages required and col our
graphics nodes are indicated by using this nunber and
suffixing it with C

In any colour graphics node, the setting of each
element in the display is controlled by two bits in the
video RAM byte so that the element may be one of four
col ours. The general format of a video RAM byte for
colour graphics is shown in Figure 7.1.

C1Co GG GG GG

E3 E2 El EO

Fig. 7.1 Colour graphics byte format

Because the VDG is capable of generating eight colours,
two colour sets each of four colours are available.
VWich colour set is in use is determned by the CSS
input line to the VDG The table below shows the
avail able colours and their associated coding in the
vi deo RAM byte.
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CSsS Col our C1C0

0 G een 00

0 Yel | ow 01

0 Bl ue 10

0 Red 11

1 Buf f 00

1 Cyan 01

1 Magent a 10

1 Or ange 11
To illustrate each of the graphics nodes avail able, the
assenbl y | anguage routine shown as Program 7.4
generates a checkerboard pattern on the screen. As

each graphics nmode has different requirenments, the
appropriate constants have been defined using an EQU
directive so that they nmay be weasily altered for
anot her node. The appropriate equates are defined al ong
with the description of each of the graphics nodes and
are initially set up for the colour graphics 1 node.

The nmethod used to generate the checkerboard pattern
is to set up alternating on-off patterns in the video
RAM byte and then wite a conplete row of such bytes to
the screen. After a row has been written, the on-off
patterns are reversed and another row witten. This
means that an on-pattern falls immediately below an
of f-pattern whi ch is bl ack t hus creating t he
checker board.

VWhen in colour graphics node, two bits are used to
define each screen location so the appropriate on-off
pattern in the video RAM byte is 00110011. This is
encoded, in hexadeciml, as $33.

DSTART EQU $0600 ; Display start address
DSl ZE EQU 1024 ; Display size

DEND EQU DSTART+DSI ZE ; Display end address
DW DTH EQU 16 ; Display width in bytes
DBI TS EQU $33 ; Display bit pattern

ORG $4E21 ; Set up code address
PATGEN PSHS A B, X ; Save registers

LDX #DSTART ; Set up base address

LDA #DBI TS Set up pattern

LDB #DW DTH Set up wdth
NXTCOL STA 0, X+ generate pattern
DECB
BNE NXTCOL ; are we finished?
COVA ; yes, conplement pattern
LDB #DWwW DTH and reset row length

BLO NXTCOL no, do next colum
PULS A B, X, PC restore and return

Program 7.4 Checkerboard routine

CWMPX #DEND Reached end of display
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7.4.1 The col our graphics 1 node

This node provides a 64 elenment wi de by 64 elenent high
four colour graphics display and is referred to as the
1C mode. As the display screen is 256 by 192 pixels,
this nmeans that each elenment is 4 pixels by 3 pixels in
size. Gven that the code for 4 screen elements can be
held in each byte, the display nenory requirenent for
this node is therefore 1024 bytes.

The pattern generator programis set up initially in
this node. However, as the BASIC PMODE comrand does not
recognise this particular nmode, the SAM and VDG chips
have to be set up directly in the BASIC test rig by
poki ng values into their control registers. It is still
possible to wuse the SCREEN conmand to select the
graphics screen since this is independent of the node.
It is also possible to use one of the colour graphics
PMODEs (1 or 3) to set up the start page and PCLS to
clear the screen graphics display since the byte fornmat
is the sane. This does nean that 3072 (3C) or
6144 (6C) bytes wll be cleared when only 1024 bytes
need be but this is not usually a problem

The follow ng anendnents to Program 7.1 configure
the graphics hardware for the 1C node.

1010 PMODE 1,1

1022 POKE &HFFC1l,1 'Set VO in SAM
1024 POKE &HFFC2,0 'dear V1 in SAM
1026 POKE &HFFC4,0 'dear V2 in SAM
1028 POKE &HFF22, &H80 ' Configure VDG

The lines 1022-1028 are used to configure the VDG and
SAM directly and therefore override the PMODE 1
command.

7.4.2 The colour graphics 2 node

The display generated by this nmode is in four colours
on a 128 by 64 grid. Elenents are made up of 2 by 3
pixels and a total of 2048 bytes of video RAM is
required to support this nmode. To convert the
checkerboard generator to this nmode, the follow ng
equat es must be made:

DSI ZE EQJ 2048
DW DTH EQU 32

Agai n, the programmer nust configure the SAM and VDG
chips by the use of POKEs to set their control
registers. The anendnents to the BASIC test rig bel ow
set these devices for this node.

1010 PMODE 1,1

1022 PCKE &HFFCO, O

1024 PCKE &HFFC3, 1

1026 PCKE &HFFC4, 0

1028 POKE $HFF22, &HAO ' Configure VDG
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7.4.3 The col our graphics 3 node
This node considers the screen to be nade up of 128 by
96 elerments and, like all the colour graphics nodes,
can display up to four colours. The total video RAM
requirenent for this node is 3072 bytes or two high-
resol ution graphi cs pages.

To reconfigure the checkerboard program for this
node requires the follow ng redefinitions

DW DTH EQU 32
DSl ZE EQJ 3072

BASI C recogni ses this node so the hardware can be set
up using a PMDE 1 comrand.

7.4.4 The col our graphics 6 node
This is the highest resolution colour graphics node.
The screen is nmade up of 128 by 192 elenents and there
are four possible colours. Henents are each 2 by 1
pixels in size. The menmory requirenments for this node
are 6144 bytes which needs four high-resol ution
graEI)_hi CS pages.

he following alterations to the pattern generator
program are needed:

DSI ZE EBEQJ 6144
DWDTH EQU 32

Again, this node is recognised by BASIC and can be set
up by using a PMDE 3,1 conmand.

7.5 RESCLUTI ON GRAPH CS DI SPLAY MXDES

Resol ution graphics, as the name inplies, are nore
concerned with screen resolution rather than col our so,
in these graphics nodes, the colours are linted. The
display is black on a background colour or a foreground
col our on bl ack.

The background or foreground colours are green and
buff as shown in the table bel ow

CSsSs Col our RAM bit val ue
0 Bl ack 0
0 G een 1
1 Bl ack 0
1 Buf f 1

In resolution graphics, each elenent in the display is
controlled by a single bit which means that an el ement
can be one of two col ours.

The bit pattern used to define the checkerboard
consists of bits with alternating values, that is,
01010101, so for all resolution graphics nodes the
DBI TS constant in Program7.4 is set to $55.
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The general format of a video RAM byte for
resol ution graphics is shown in Figure 7.2.

E7 E6 E5 E4 E3 E2 El EO

Fig. 7.2 Resolution graphics byte format

There are four resolution graphics nopdes which are
given the names 1R, 2R, 3R and 6R These are the
resol uti on graphics equivalents of nodes 1C, 2C, 3C,
and 6C and each is described bel ow.

7.5.1 The resolution graphics 1 node
This npde generates a 128 elenment wide by 64 elenment

high two-colour graphics display. Each elenent is
controlled by a single bit in the video RAM byte and is
2 pixels by 3 pixels in size. The total nenory

requirements for this node are 1024 bytes. Like the 1C
node, this node is not supported directly by BASIC.

The pattern generator can be altered for this node
by redefining some of the constants as foll ows:

DSI ZE EQU 1024

The BASIC test rig nust be nmodified to set up the VDG
and SAM chips but a PMODE O conmand followed by a PCLS
will clear enough screen bytes for this node. The
followng anendnents to the BASIC test rig wll
configure the VDG and SAM chips for the 1R node.

1022 POKE &HFFC1,1 'Set VO in SAM
1024 POKE &HFFC2,0 'Cear V1 in SAM
1026 POKE &HFFC4,0 'Cear V2 in SAM
1028 POKE &HFF22, &H90 ' Configure VDG

7.5.2 The resolution graphics 2 node
This resolution graphics npde generates a display of
128 elements wide by 96 elements high. This means that
each element is 2 pixels by 2 pixels in shape. |Its
menory requirements are 1536 bytes or 1 high-resolution
graphi cs page.

The checkerboard program may be nodified for this
node by redefining the equates as foll ows:

DSI ZE EQU 1536

The 2R nmode is supported by BASIC and can be invoked by
i ssuing a PMODE 0 command.
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7.5.3 The resolution graphics 3 node
This nmode generates a 128 by 192 elenent display in tw
col ours. ch elenent is 2 pixels by one pixel and the
total menory requirenent is 3072 bytes.

To reconfigure the pattern generator for this mnode
only requires DSIZE to be equated to 3072. The node is
supported by BASIC as PMXDE 2.

7.5.4 The resolution graphics 6 node

This is the highest resolution node possible since each
pixel is controlled by a single bit in the video RAM
The display is arranged as a 256 by 192 pixel grid and
therefore the video RAM size required for this is 6144
bytes. To set up the checkerboard routine for this node
requires DSIZE to be equated to 6144 and the BASIC test
rig n&Jst be nodified so that a PMIDE 4 command is
i ssued.

7.6 SEM GRAPH CS DI SPLAY MXDES

As well as graphics and al phanuneric nodes, the VDG
chip has two Senigraphics nbdes where special - purpose
characters representing graphics synbols can be built
up and displayed on the screen. As the fundanental
display element is the character, it is possible to mx
t hese ?raphi cs characters wth nornmal al phanunerics
thus allowng text and graphics to appear together on
the Dragon's display. urthermore, the use of a
Sem graphics node allows the use of eight-col our rather
than four-col our graphics, thus opening up nore
creative possibilities for the graphics progranmrer.

The I n-bui |t Sem graphics  nodes are terned
Semgraphics 4 and Semgraphics 6 nodes wth the
associ ated nunber referring to the nunber of elenents
making up a graphics character. As well as these in-
built nodes, it is also possible to set up three
addi tional Sem graphics nodes (8, 12, 24) by setting
the VDG chip in alphanuneric node and the SAM chip in
2C, 4C, or 6C colour graphics node. Details of these
additional nmodes are briefly described bel ow and fully
described in Appendix 2.

Wien in Sem graphi cs node, each character is nade up
of a nunmber of elenments. The character organisation
for Semigraphics 4 node is shown as Figure 7.3. The
ot her nodes have a simlar pixel organisation although,
obviously, they offer higher resolution graphics as

each character is nmade up of nore elements. In all
cases, the horizontal width of an elenent is 4 pixels
but the vertical width varies from1l to 6 pixels. art

from the Semgraphics 6 node, all of the Sem graphics
nodes al | ow ei ght-col our graphics and use three bits in
each byte to represent the colour of the character
elements represented in that byte. Bits 4-6 in the
byte hold the colour information and the table below
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defines the <colours associated with each three-bit
col our val ue.

Col our Bit pattern
G een 000
Yel | ow 001
Bl ue 010
Red 011
Buf f 100
Cyan 101
Magent a 110
Or ange 111
4 4
L3 L2 6
L1 LO 6

Fig. 7.3 Semigraphics 4 character organisation

A Senigraphics byte is arranged so that bits 0-3 hold
the settings of character elements, bits 4-6 hold the
colour and bit 7 is the node bit. 1In Semgraphics 4
and 6 nodes, bit 7 is 1, in Semgraphics 8, 12, or 24
nodes, bit 7 is 0. Al elenents that are 'on' are
displayed in the colour specified in bits 4-6 and
el ements which are 'off' are displayed as black. There
is no way that elenents represented in the sanme byte
can take different col ours.

7.6.1 The Sem graphics 4 node

In Semgraphics 4 node, each character is split into 4
elements of size 4 by 6 pixels. A single video RAM
byte is therefore needed to hold each character where
bits 0-3 are naned LO-L3.

To experiment with this node, you mght like to
nodi fy Program 7.2 which nanipulates the INV bit in the
video RAM byt es. Rather than manipulate bit 6, you
mani pulate bit 7 using AND, OR and ECR instructions.
These will turn the Sem graphic node on and of f.

7.6.2 Sem graphics 6 node

The Sem grafphi cs 6 node splits each character into 6
elements of size 4 by 4 pixels giving a display
resolution of 64 horizontal y 48 vertical elenents.
Each elenent is controlled by a bit in the video RAM



168

byte so, as a single byte is used for each character
position in this npbde, six bits of that byte are
required to encode elenment settings. This |eaves only
two bits (bits 6 and 7) for colour information so only
four colours nay be represented. As in the colour
graphics nodes, the setting of CSS determ nes which
col our set is used.

In fact, the nunber of colours available in this
node is even nore restricted as bhit 7 has a double
function as a colour coding bit and as a node settin
bit. In order to renmain In Semgraphics node, bit
nust always be set to 1 so this means that only blue
and red from colour set 0 and magenta and orange from
colour set 1 may be used.

7.6.3 The Sem graphics 8 node

The Semgraphics 8 node is the first of the extra
Sem graphi cs nodes which can be used by setting up the
VDG chip to al phanunmeric node and the SAM chip to one
of the colour graphics nodes. |In this node, a standard
8 by 12 pixel character is split into eight elenents of
4 by 3 pixels.

In order to set up the Semgraphics 8 node from
BASIC you nust issue a SCREEN 0,0 command to put the
VDG chip intoszu)hanuneric node then poke the bit value
Al into the control bytes as shown in the graphics
exanpl es above.

In this node, 4 bytes of video RAM are required to
represent each character position and only the bottom
two bits (LO and L1) are used to hold el ement settings.
As before, bits 4-6 hold the colour value and bit 7
should be set to indicate Sem graphic node. Bits 2 and
3 are not used but should be set so that bit 2 has the
sane value as bit 0 and bit 3 is the same as bit 1.

Each character is built up as 4 rows of 4 b%/ 3 pi xel
el ements. However, the bytes representing these rows
are not contiguous but are actually Sﬁaced 32 bytes
apart. The reason for this is that the SAM chip is
configured to a colour graphics node where the inmage is
built up row bgerow, wth each conplete row taking up
32 bytes. As m graphi ¢ el enents consist of a nunber
of rows, this nmeans that the bytes specifying the
el ement nust be set up at this spacing.

As four bytes are wused, it is possible to mx
elenent colours when using this node as, obviously,
each pair of elements in a byte has its ow colour
i nfornati on. Furthernmore, it also allows character
rows fromdifferent characters to be incorporated into
new characters and synbols. This means you can provide
facilities such as character underlining by swtching
to Sem graphics node at the appropriate tine.

However, using this facility requires great care as
you must build up each character individually with each
row of elements defined in a separate byte. You also
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have the problem of spacing character definition bytes
32 bytes apart as explained above so we recomrend that
you wite a programto help you organise byte layout if
you wish to use this facility.

7.6.4 The Sem graphics 12 node
In this mpde, the VDG chip is set to al phanumeric node
and the SAM chip to colour graphics 4C node. Each
character elenent is represented by twelve 4 by 2 pixel
el ements held in six bytes. As in the Sem graphics 4
node, only the bottom two bits per byte are used for
element settings and different bytes may be set to
di fferent col ours.

To set up this mpde, you nust issue a SCREEN 0,0
conmand from BASIC then poke the value 001 into the SAM
control bytes.

7.6.5 The Semi graphics 24 node

In this mbde, the SAM chip is set up to 6C npde and
each character elenment is made up of twenty four 4 by 1
pi xel elements thus giving a screen resolution of 64 by
192 elenments. A total of 12 bytes is required to hold
these elenent settings and, again, the colour of the
two elements represented in each byte may be set up
i ndependent|y.

To set up this mpde, you nust issue a SCREEN 0,0
conmand from BASIC then poke the value 011 into the SAM
control bytes.

7.7 GRAPHI CS UTI LI TI ES

So far we have shown how the various display nodes can
be set up from BASIC and we have assuned that this is
carried out before an assenbly code graphics routine is
cal | ed. Sometimes, setting up the display hardware
fromBASIC is neither possible nor desirable so in this
section we describe how BASIC commands such as SCREEN,
PMODE, PCLS, =etc. may be inplemented in assenbly
| anguage.

W have described, in section 7.1, the wvarious
hardware control bits and have explained that they are
set up via menory-mapped /O addresses. Remenberi ng

which bit means what is difficult, so it is good
practice to set up menmonic names for the various

control bit settings. A table of equates defining
these nanes, which we use throughout the remainder of
this chapter, is shown bel ow.

: VDG Pl A and SAM addr esses

VDGPI A EQU $FF22 ; Port B of PEA - VDG control
SAMWOC  EQU $FFCO Used to clear VO

SAMOS EQU $FFC1 Used to set VO

SAW1C EQU $FFC2 Used to clear V1
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SAW1S EQU $FFC3 ; Used to set Vi
SAW2C EQU $FFC4 ; Used to clear V2
SAW2S EQU $FFC5 ; Used to set V2
SAMFOC  EQU $FFC6 ; Base address of FO-F6

* VD@ PIA bit patterns - assumes CSS=0

*

ALPHAI EQU $00 ; Internal al phanumneric
ALPHAE EQU $10 ; External al phanuneric
MO DES4 EQU ALPHAI ; Sem graphics 4

MODES6 EQU ALPHAE ; Semi graphics 6

MODESS8 EQU MODES4 ; Sem graphics 8

MODS12 EQU MODES4 ; Semi graphics 12

MODS24 EQU MODES4 ;  Sem graphics 24
© Full graphics nodes

MODEIC  EQU $80 ; Graphics 1C
MODELIR  EQU $90 ; Graphics 1R
MODE2C  EQU $A0 ; Graphics 2C
MODE2R  EQU $BO ; Graphics 2R
MODE3C EQU $Q0 ; Graphics 3C
MODESR  EQU $DO ; Graphics 3R
MODE6C  EQU $EO ; Graphics 6C
MODE6GR EQU $FO ; Graphics 6R

Normal ly, the nodes of the VDG and the SAM chip are the
same but for some of the extra Sem graphics npdes they
must be set up differently. Therefore, rather than use
a single routine with conplex paraneters to set up
these devices, it is better to use tw separate
routines. The routine to configure the VDG chip is
called VDGMOD and the routine to configure the SAM chip
is SAMMOD. They are shown bel ow as Program 7.5.

* VDGMOD - sets up VDG chip

* Sets control lines AAG GMI-2, and CSS

*

* Register input A - configuration bit pattern

* to be witten to PIA

* Note only bits 3-7 of PIA are set so bits 0-2 nust

* be preserved

*

VDGMVOD PSHS A ; Preserve setup pattern
LDA VDGPI A ; Preserve bottombits
ANDA #7 ; of PIA register
ORA | S ; O in setup pattern
STA VDGPI A ; Setup VDG

. PULS A, PC ; Restore and return

© SAMMOD - Setup SAM chip

*

Register input A - bit pattern used to set up VDG
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BPL NOTGWD
CMPA  #MODE1C

Text node (B7=0)
no, is it 1C?

* In general, VO,V1,V2 in SAM are set up as GMD, 1, 2
* in VDG but there are three special cases:
* If AG = 0 then VOViv2 = 000
* If AG=1 and GVOGMLGM2 = 000 then VOV1V2 = 100
*If AG=1 and GVOGMLGM2 = 111 then VOV1V2 = 01|
SAMMVCD PSHS A ; Preserve VDG pattern

STA SAWCC ; Clear VO

STA SAW1C ; Clear V1

STA SAW2C ; Clear V2

ANDA #$FO0 ; Clear bottom4 bits of A

BNE NOT1C
ORA #$10 ; yes, special case->IR
NOT1C CVMPA #MODEGR ; Is it 6R
BNE NOT6R
ANDA #$EO ; yes, special case->6C
NOT6R ROLA ; CGet rid of AVG bit
BPL NOTGWR ; GV set?
STA SAW2S ; yes, set V2
NOT G2 ROLA ; get rid of GW2 bit
BPL NOTGM ; GWL set
STA SAWI1S ; yes, set V1
NOTGM ROLA ; get rid of GML bit
BPL NOTGWVD ; GWD set?
STA SAMVOS ; yes, set VO

NOTGVD PULS A, PC Restore and return

Program 7.5 VDG and SAM setup routines

These routines set up the SAM and VDG chi ps. Nor mal | y,
these devices are configured in the sane node so the
bit pattern defining the VDG s control bits is set up
in register A and each routine is called in turn.

* GMODE - sets up graphics hardware

* Register input A - VDG s control bit settings

*

GMCDE BSR VDGMVOD
BSR SAVMOD
RTS

You can use this routine in conjunction with the equate
table defined above to set up any of the graphics
nodes. You sinmply have to load the A register with the
node required then call GMODE to configure the VDG and
SAM chi ps. The exceptions to this are when Sem graphics
8, 12, or 24 nodes are to be set up when VDGMOD and
SAMMOD nust be called individually to configure the VDG
and SAM chips to different nodes.
For exanpl e:
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* SEM8 - selects Sem graphics 8 node

SEM 8 LDA #ALPHAI ; Al phanuneri c node
BSR VDGVCD ;. for VDG
LDA #MXDE2C ; and 2C node
BSR SAMVCD ;. for SAM
RTS

© FULL6R - Selects resolution graphics 6 node

FUL6R  LDA #MJIDEGR
BSR GMCDE
RTS

These node setup routines conbine sone of the features
of BASIC S PMXIDE and SCREEN commands which, together,
set up the node required, define the colour set and
det erm ne whi ch graphics pages are to be used. In fact,
it is better programmng practice for a routine to do
one thing and one thing only so we have defined
separate assenbly code routines to select the colour
set and to define the starting page. These are shown as
Program 7. 6.

* CSS - Select colour set

* Input register A= 0 -> colour set O

* =1 ->colour set 1
*
CSsSs PSHS A . Preserve A
LDA VDGPI A : Read current state of VDG
TST ,S : Check set selection
BEQ
CRA #8 ; Set the CSS line
BRA XIT
ANDA #$F7 ; Qear the CSS line
XIT STA VDGPI A ; update the VDG
PULS A PC . Restore and return
* To set up the SAM control bits, we nust manipul ate
* 7 bits. W use the utility routine
* from Eage 16 of Appendix 2 to carry out
* this bit manipul ation
*
¥ SAMBET - Configures SAM control bits
* Register inputs X - address in SAMcontrol register
* A - SAM configuration bit pattern
* B - nunber of bits to be copied from
* A to SAMR
% NB. This routine does not preserve registers
SAVBET LSRA ; Shift bit O to carry

BCC NOTSET ; Set corresponding CR bit?
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LEAX 1,X ; Yes, odd address
STA 0, X+ ; set bit and adjust X for
BRA CHKCNT ; next address
NOTSET STA 0, X++ ; Clear bit and continue
CHKCNT DECB ; Al done?
BNE SAMSET
RTS ; Yes, return
*
* SAMSET is used by PAGEX to set the page nunber
* in the control register. This is passed to PAGEX
* as a 16-bit address and PAGEX selects the top 7 bits
* to get the graphics segnent base address. This means
* that you can pass an address within a segment
* not just the segment base address
*
¥ PAGEX - Set up graphi cs segnent base address
* Register inputs X - Address of or within display area
PAGEX PSHS X, D ; Save registers
TFR X, D i A= X(HI'), B = X(LO
LSRA ; We only need top 7 bits
LDB #7 ; as specified in B
LDX #SAMFOC ; Copy to FO-F6
BSR SAMSET
PULS X, D, PC ; Restore and return

Program 7.6 Col our set and graphics page setup

We have now defined those utility routines which allow
the assembler progranmmer to dispense with BASIC S
SCREEN and PMODE commands and also with any POKEs that
are needed to set up extra graphics nodes from BASIC.
W leave it as an exercise for the reader to convert
the BASIC test rig, defined as Program 7.1 to assenbly
code.

Now let wus look at other wuseful graphics utility
routines which may be used by the assenmbly |anguage
programrer. The first of these is a routine to clear
the screen to a given col our.

CLS - Clear screen to specified col our

Regi ster input B - col our specification
0 Black, 1 = Green, 2 = Yell ow,

* % kX X ok X

3 = Blue, 4 = Red, 5 = Buff,
6 = Cyan, 7 = Magenta, 8 = Orange
CLS PSHS X, B ; Save registers
TSTB ; B =0 is special case
BEQ SEM ON ; as all elenments turned off
DECB ; BASIC -> VDG col our code
ASLB ; Move col our code bits

ASLB into bits D4-D6
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ASLB

CRB #$0F : Turn on all elenents
SEMON CRB #3$80 ; Set up Sem graphics bit

LDX #$400 ;. Set default screen address
NXTBYT STB |, X+ : Col our el enent

OWPX #$5FF on the screen
BLS NXTBYT If not finished, repeat
PULS X B, PC Restore and return

Program 7.7 dear screen

Wien considering the graphics screen, the programer
thinks in terns of row and colum nunbers but, in
nenory, the screen is sinpl a one-di mensi onal
contiguous area. There are 32 character bytes per row
so it is useful to have a routine which, given a row
and colum nunber, translates this to the appropriate
address. This routine, R32COL, is also useful for full
graphi cs nodes whi ch have 32 bytes of colour/resol ution
information per row Q her giraphi cs nodes need a
variation of this which is easily derived by replacing
the LDB #32 instruction with an LDB #16 instruction.
The code for this routine is shown bel ow

* R32Q0L - Cal cul ate screen position

* Register inputs B - colum nunber
* A - row nunber
* Register output D - screen position

* Calculates position as A* 32 + B

*

R32CCL STIB ,-S Save col um on stack

LDB #32 ; Set up nultiplier
ML ; D=A* 32

ADDB |, S+ ; D=D+ B

ADCA #0 ; Propagate carry
RTS

7.8 DESIGN NG AND | MPLEMENTI NG GRAPH CS PROGRANMS

An essential first step in the design of a graphics
programis to sketch out the graphics synbols which you
would like to use in your pro?ram anpl es of such
synbol s are space- shi ps, aser bursts, bonbs,
expl osions, etc. if you are witing games prograns, and
character fonts, pie charts, maps, etc. i you are
concerned with nore serious applications.

A well-designed graphics rogram is built up
incrementally wth later developnments built up on
earlier design stages. It is therefore very inportant
that assenbly |anguage routines should be as flexible
and as general -purpose as possible. In this section we
di scuss various tools and techni ques used in the design
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and inpl ementation of graphics synbols and we use the
Dragon logo as an exanple of a synbol that mght be
used in a graphics program

7.8.1 G aphic synbol design

The first stage in graphics synbol design is to make a
very rough sketch of the synbol required and, depending
on the details of the synbol, choose the nost
appropriate screen resolution for that synbol. It
mght seemthat it is always best to use the highest
resolution but this may limt the colours available
and, in fact, nay mean nore work in synbol design as
the setting of nore picture elements has to be
consi der ed.

Anot her factor which nust be taken into account is
the height to width ratio of your synbol. Sone nodes
have picture elements which are square and others have
el ements which are longer than they are high. For our
exanple, the Dragon logo is slightly longer than it is
high so the nost appropriate resolution to chose is 128
by 192 el enments. his means using either the col our
graphics 6 node, if a colour di SP ay is required, or
the resolution graphics 3 node, it a foreground col our
on black is all that is wanted.

Fig. 7.4 Grid representation of Dragon logo

Ohce you have decided on the resolution to use, the
next thing to consider is the size of the synbol.
Govi ously, you nust choose a size which is appropriate
for the resolution. For our exanple, we have chosen
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that the Dragon logo should be contained in a 16 by 16
el enent grid.

The next stage is to work out how to set up the
icture elements in this grid so that the shape of a
agon is produced. The easiest way to do this is to

use a graphics worksheet, which is sinply lined graph
paper with the sane height to width ratio as the chosen
resolution. If this is not available, squared Paper can
be used but you nust take into account any differences
in the height to width ratio. The grid representation
of the Dragon logo is shown as Figure 7.4.

Ohce the synbol has been mapped out on the graphics
wor ksheet, the binary patterns for each row nust be
encoded and included as data for the assenbly | anguage
program The sinplest way to do this is to make up a
data array of constant byte values using the assenbl er
directives FCB and FDB. Thi s pr ocess is
straightforward when resolution graphics is used but
requires rather nore care when colour is required as
there is not a one-to-one rel ationshi% bet ween synbol s
on the worksheet and bits in the data byte.

Let us take the easiest case first and |look at how
the graphic grid can be converted to resolution
graphics data bytes. Since there is a one-to-one
relationship between the screen elements and the grid
el ements, row O, byte O is encoded as $00 (all el enments
off) and row O, byte 1 is encoded as $3F (00111111).
Row 1, b,%’te 0 is encoded as $20 (00100000), row 1, byte
1 as $3F, and so on. Therefore, the first few bytes of
]Ehiel assenbly language data table mght be witten as
ol | ows:

FCB $00
FCB $3F
FCB $20
FCB $3F

However, as we are dealing with a 16-bit entity, it is
better practice to encode the information as a single
16-bit value using FDB directives. For exanple:

FDB $003F

After you have worked out the appropriate byte val ues,
you should then label the table with a synbolic nane
such as DRAGON. The conplete table for the Dragon |ogo
i s shown bel ow

DRAGON FDB $003F ;Row O bit pattern
FDB $203F ;FRow 1 bit pattern
FDB $F860
FOB $18DE
FDB $E9BC
FDB $2B7C
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FDB $52E0
FDB $B6CO
FDB $BFFC
FDB $BFFE
FDB $C007
FDB $7FEB
FDB $3FFD
FDB $140A
FDB $2814
FDB $0000 ;Row 15 bit pattern

After encoding the graphics symbol, the next step is to
design a routine which takes the encoded synbol and
displays it on the screen. Because the display is
menory mapped, all that you need to do is to copy the
data from the graphics synbol tabl e into t he
appropriate locations in the video RAM The copy
routine must map the row columm representation of the
screen onto the video RAM which is organised as a
i near sequence. As the Dragon logo only takes up part
of the screen, succeeding row addresses are actually
located 16 bytes from each other in this resolution
gr aphi cs node.

This is an exanple of a situation where you should
wite a general -purpose routine which can carry out the
mappi ng of data tables to screen locations for any
graphics node. This routine has to satisfy the
followi ng design criteria:

(1) It must be able to nove data from any source ad-
dress to any destination address.

(2) It must be able to cope with any row separation.

(3) It must be able to cope with any nunber of rows.

(4) It must not interact, in any way, wth its cal-

ling program

A general -purpose copy routine which neets these
criteria is showm as Program 7. 8.

COPY2B - Copies 2 byte chunks to video RAM

*

*

* Register inputs X - destination address (in RAM

* Y - source address

* B - row width (nunber of bytes

* bet ween video RAM addresses)

* A - nunber of rows (nunber of words
*
*

to copy)

COPY2B PSHS X Y, U A B ; Save registers
NEXT2B LDU , Y++ ; Pick up source word
STU , X ; and store in row



178

ABX ; Add row wi dth
DECA ; Repeat until all
BNE NEXT2B ; rows dealt with

PULS X, Y, U, A B, PC Restore and return

Program 7.8 COPY2B - update video RAM
An exanple of how this routine mght be used is shown

in the program fragnent bel ow which displays the Dragon
logo in the top left hand corner of the screen.

DSTART EQU $0600 ; Display start

DW DTH EQU 16 ; Display w dth

LOGOTL LDX #DSTART ; Destination address
LEAY DRAGON, PCR ; Source address
LDB #DW DTH ; Display w dth
LDA #16 ; Number of rows
BSR COPY2B ; Transfer logo to screen
RTS

Now that we have nanaged to draw a dragon in the corner
of the screen, we can now go on to repeat the pattern
over and over again.

FILLER - fills screen with dragons

*
* Register inputs NONE
* Registers destroyed X Y,A B

FI LLER LDX #DSTART ; Destination address
LDB #DW DTH ; Col our display row w dth
LDA #16 ; Number of display rows
NXTPCS LEAY DRAGON, PCR ; Address of source
BSR COPY2B ; Now start copying

LEAX DW DTH+2, X dragons di agonal Iy
CWVPX #DEND- 512 until no room | eft

BLS NXTPOS
RTS

for another one

Program 7.9 FILLER - fills screen with dragons

Now let us look at how the Dragon |ogo can be displayed
using the colour graphics 6 node which allows a four-
col our display at the sane resolution. The first stage
in this process is to convert the grid pattern to the
appropriate four-colour data bytes.

The best way to tackle this is to encode the diagram
as if it was to be displayed in resolution graphics
then convert every element that is off (0) to the
chosen background colour (green in this <case) and
convert elements which are on to the chosen foreground
colour (red, naturally). This means that the col our
data table is twice the size of the resolution graphics
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data table because two bits rather than a single bit
are used to represent each screen elenent. Exanples of
the conversion of resolution data to colour data are
shown bel ow.

Resol uti on data Col our data

$00 $0000

$3F $OFFF

$20 $0C00
The conversion from the resolution grid data to col our
data is a tedious, nmechanical, error-prone process
which neans that it is ideal for automation. Pr ogram

7.10 below is a BASIC program which does the conversion
for you.

100 PRI NT"RESOLUTI ON TO COLOUR GRAPHI CS"
110 PRI NT" DATA CONVERSI ON PROGRAM'

120 PRI NT" COLOURS AVAI LABLE ARE:"

130 PRI NT"COLOUR SET 0"

140 PRI NT" GREEN 1, YELLOW 2"
150 PRI NT" BLUE 3, RED 4"
160 PRI NT"COLOUR SET 1"

170 PRI NT" BUFF 5, CYAN 6"
180 PRI NT" MAGENTA 7, ORANCE 8"

200 | NPUT" BACKGROUND COLOUR (1-8)";BG
210 IF (BG&<1l) OR (BG>8) THEN 120

220 | NPUT" FOREGROUND COLOUR (1-8)"; FG
230 IF (F&<1) OR (FG>8) THEN 120

240 |F (BG<5) AND (FG<5) THEN 300

250 IF (BG4) AND (FG>4) THEN 290

260 PRI NT" FOREGROUND/ BACKGROUND NEED TO'
270 PRINT"BE IN THE SAME COLOUR SET"

280 GOTO 120

290 BG=BG-4: FG=FG-4 'Convert to CS O
300 BG=BG-1: FG-FG'1 'Convert to VDG code
310 PRI NT"ENTER RESOLUTI ON GRAPHI CS CODE"
320 INPUT"BYTE (IN HEX)"; RB$

330 RB=VAL("&H'+RB$) 'Convert to nuneric val ue
340 BME1 'Bit Mask (first power of 2)
350 BP=1 'Bit Pair (first power of 4)

360 CW0 ' Colour Word value (16 bits)

370 BC=0 'Bit Col our (FG or BG

380 'Now convert the single resolution
390 'bits into pairs of colour bits

400 FOR BIT = 0 TO 7

410 IF (RB AND BM THEN BC=FG ELSE BC=BG
420 CWCWHBC*BP ' Add col our pair to CW
430 BMEBMF2 ' Next power of 2

440 BP=BP*4 'Next power of 4

450 NEXT BIT

460 PRI NT"COLOUR CODE WORD (HEX) 1S "; HEX$(CW
470 PRI NT: GOTO 310

Program 7. 10 BASI C col our conversion program
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The conplete data table for the Dragon logo as a red
dragon against a green background is:

DRAGON  FDB $0000, $OFFF
FDB $0C00, $OFFF
FDB $FFCO, $3C00
FDB $03C0, $F3FC
FDB $FCC3, $CFFO
FDB $0CCF, $3FFO0
FDB $330C, $FC00
FDB $CF3C, $F000
FDB $CFFF, $FFFO
FDB $CFFF, $FFFC
FDB $F000, $003F
FDB $3FFF, $FCCF
FDB $OFFF, $FFF3
FDB $0330, $00CC
FDB $0CCO, $00CC
FDB $0000, $0000

Wth this colour data table, the COPY2B routine can now
be used to wupdate the 128 by 192 colour graphics

di spl ay. However, the wupdating process is slightly
nore conplex since 16 bits of data are needed to
represent 8 elenments. Therefore, it is best to nodify

this routine so that 4-byte chunks nmay be copied. This
nodi fication sinply involves adding statenents to copy
another word before the ABX instruction. The code for
this routine is provided as part of Program 7.12.

7.8.2 Animating a graphics display

Until now, all the graphics displays which we have
di scussed have been static in nature. In this section
we describe how to create sinple animation sequences.
The technique wused in animating graphics are very
simlar to those used in cartoon filmng because the
animation relies on rapidly flicking through different
versions of a basic graphics synmbol. If the flicking is
sufficiently rapid, the movement will be smooth but if
it is too slow, as is often the case with BASIC, the
novenent of the synmbol is very jerky.

To illustrate this technique we shall breath some
life into the Dragon logo introduced in the |ast
secti on. To be nore exact, we shall breath sone fire
into the beast as it is well-knowm that no self-
respecting dragon is without this nythical power. \hat
we shall do is to add flanes which will flare out from
the dragon's mouth, flicker and dance and then die
down.

At first sight this mght seemto be a difficult and
complex task but, in fact, if tackled one stage at a
time, it is relatively easy. The secret is to build up
the flames one at a time, flicker the flames wth
slightly differing sequences and then extinguish the
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fire in the opposite order to that used to build it up.
This is best illustrated by nmeans of an exanple.

Say an 8 by 8 element grid is used to contain the
flame pattern and the flame colour chosen is yellow
The data tables for building up the final flame
sequence | abelled FLAMEO to FLAMES are shown bel ow. It
is left as an exercise for the reader to reconstruct
the actual flanme patterns which have been used to
derive this data.

FLAMEO FDB $0, $0, $0, $0, $0, $0, $0, $0

FLAVEL FDB$0, $0, $0, $5, $0, $0, $0, $0

FLAME2 FDB $0, $0, $50, $5, $0, $0, $0, $0

FLAME3 FDB $0, $0, $50, $5, $150, $0, $0, $0

FLAME4 FDB $0, $500, $50, $505, $150, $1400, $0, $0

FLAMES FDB $5000, $500, $1050, $505, $4150, $1400, $5000, $0

The first flame sequence (FLAMEO) is conpletely blank
as this is used to extinguish the flames completely.
The next flame sequence (FLAME1l) is slightly more built
up than FLAMEO, the sequence FLAME2 is more devel oped
t han FLAMEl1 and so on.

Since 2 bytes of colour data has to be copied to the
video RAM we can make use of the COPY2B routine to set
up the display area in memory. However, if we had used
resolution graphics instead of colour graphics, then we
would only have needed to copy 1 byte of resolution
data to the video RAM A routine called COPY1B that
performs this function is provided in this section for
the sake of conpleteness.

COPY1B - copy data in 1 byte chunks

*

*

* Register inputs X Y,B as COPY2B

: A - nunber of bytes to copy

COPY1B PSHS X, Y, A B Save registers

STA ,-S Save count on stack
NEXT1B LDA | Y+ Pick up row byte pattern
STA |, X+ and store it

ABX Add row width indicator

DEC ,S Decrement count
BNE NEXT1B ; Al rows done?
LEAS 1,S Di scard | ocal

PULS X, Y, A B, PC ; Restore and return

Program 7. 11 COPY1B - video RAM update

The next stage in the developnent of the animted
sequence is to provide the neans to display the
i ndi vidual flame sequences. This is also the tine to
consider the delay between sequence updates since too
short a delay wll result in the animtion sequence
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lasting only a fraction of a second whilst too long a
delay will result in faltering effect. The follow ng
routine is used to inplement a short delay and is based
on a software delay | oop.

* DELAY - hold up activity for a while

DELAY PSHS X ; Save register

LDX #$4000 ; This value nay be changed
LOCP LEAX -1, X ; to adjust the timng

BNE LOCP ; del ay

PULS X PC : Restore and return

The next routine is typical of routines needed to
di spl ay the individual sequences:

FI REO LEAY FLAMEO,PCR ; Set up flane sequence address

FI RE BSR QOPY2B ; Update display wth sequence
E%QDELAY ; Stop for a while

The two subroutine calls to QOPY2B and to DELAY are
coomon to all the updating routines so we can enter
FIREO at label FIRE to allow them to be called as a
subroutine. This is a fairly common and harmess trick
of assenbly |anguage rp;rogramn' ng which serves to reduce
the size of the finished code.

The next routine, to continue the animation, mnakes
use of this technique:

FIREL  LEAY FLAMEL, PCR
BSR FI RE
RTS

This process of routine devel opment continues until you
end up with a conplete animation program Program 7.12
is an animated fire-breathing dragon which is an
appropriate conclusion to this chapter. For brevity,
we have not duplicated the code of routines which have
been described earlier in this chapter. Rat her, we
have indicated by comments where these routines shoul d
be i ncl uded.

*
* ANl MATED DRAGCON PROGRAM
CRG 20001
LBRA ACTION ; This preserves the entry point
* DRAGON - Data for the Dragon |ogo
*

on a 16x16 colour grid
* | NCLUDE DRAGCON DATA TABLE HERE



* Flane data foll ows.

* | NCLUDE FLAME TABLE HERE

This is on an 8x8 colour grid

* Constants used in the program foll ow

*

DW DTH
RON5B16
ROAGS
DSTART
*

EQU 32
EQU 16
EQU 8

EQU $0600

Due to 128x196 col our node
For a 16 row grid

For an 8 row
May be changed

grid

* | NCLUDE VDG Pl A and SAM ADDRESS EQUATES HERE
* | NCLUDE VDGMOD, GMCDE and SAMMOD ROUTI NES HERE

* FULL6C - Sel ects col our graphics 6 node

*

FULL6C LDA #MODE6C
BSR GMCDE

. RTS

¥ INCLUDE CSS RQUTI NE HERE

: | NCLUDE SAMBET AND PAGEEX RQUTI NES HERE

¥ I NCLUDE CCPY2B ROUTI NE HERE

» COPY4B - Copies 4 byte chunks to video RAM

* Register inputs X - destination address (in RAM

* Y - source address

* B - roww dth (nunber of bytes

* bet ween vi deo RAM addr esses)

x A - nunber of words to copy

COPY4B PSHS X Y, U A B ; Save registers

NEXT4B LDU |, Y++ ; Pick up source word
STU , X ; and store in row
LDU |, Y++ ; Pick up next word
STU 2, X ; and store after first
ABX : Add row width
DECA ; Repeat until all
BNE NEXT4B crows dealt with

* DELAY -

DELAY
LOCP

PULS X Y,U A B PC ;
hold up activity for

PSHS X ;
LDX #$4000 ;
LEAX -1, X ;
BNE LOCP ; del ay
PULS X, PC ;

Restore and return

a while

; Save register
; This value may be changed
to adjust the timng

: Restore and return

* The following routines play with fire!
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* FIRED - Deals with the first flame sequence

FI REO LEAY FLAMEQ,PCR ; Set up address first pattern
* FIRE - Used throughout the fire routines for display

FI RE BSR acPY2B ; Flames 8x8 in colour
BSR DELAY ; Vit briefly
RTS ; before returning

* FIRE1 - Deals with the second flame sequence

FIREL  LEAY FLAVEL, PCR
BSR FI RE
RTS
* FIRE2 - Third flame sequence

FI RE2 LEAY FLAME2, PCR
BSR FI RE
RTS

* FIRES - Fourth flame sequence

FI RE3 LEAY FLAME3, PCR

BSR FI RE
RTS

* FIRE4 - Fifth flane sequence

FI RE4 LEAY FLAME4, PCR

BSR FI RE
RTS

* FIRES - Sixth flane sequence

FI RE5 LEAY FLAMES, PCR
BSR FI RE
RTS

*

* KINDLE - Ignite (start the flame sequence) and
* gradually build the fire up.

*

KINDLE BSR FI REO
BSR Fl RE1
BSR Fl RE2
BSR Fl RE3
BSR Fl RE4
BSR FI RE5
RTS

* % K ok

FLARE - Plays flames by varying flame sequences.

FLARE BSR FI RE4
BSR Fl RE5
BSR FI RE3
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BSR FI RE1
BSR FI RE4
BSR FI RE3
BSR FI RE5
. RTS
* DOUSE - Gradually extinguish the flames

by reversing the sequence.
*

DOUSE BSR Fl RE4 ; Was at full flane
BSR FI RE3
BSR FI RE2
BSR FI RE1
BSR FI REO ;. Fire now out.
RTS

* FLAMES - Animates the fire-breathing dragon.

FLAMES BSR Kl NDLE ; Kindle the fire.
BSR FLARE ; Play the fl ames.
E%g DOUSE ;. Now douse the fire.

* ACTION - Set up the display and start the ani mation.

ACTI ON LBSR FULL6C ; Sel ect the graphics node
LDA #0 ; Choose col our set O
LBSR CSS
LDX #DSTART ; Set up the display start
LBSR PAGEX ; and sel ect the page
LEAX 16, X ; CGet breathing space
LEAY DRAGON, PCR ; Set up dragon data
LDB #DwW DTH ; and display width

LDA #RONG16 and nunber of rows
LBSR COPY4B for a 16x16 col our grid

LEAX -2, X Fl ames cone out of nouth!

LDA #ROWS8 Now di spl ayi ng fl anes
RETAKE BSR FLAMES on an 8x8 colour grid
BRA RETAKE Repeat the ani mation

Program 7. 12 A fire-breathing Dragon



Chapter 8
Input/output  programming

The topic of input/output programming is one that is
often neglected in books like this. The reason for
this is that the subject is so detailed and conplex
that it is wvery difficult to present a coherent
overview of it in a single chapter. However, we have
tried to do so and, in this chapter, we explain sone of
the general principles of 1/0 programmng and describe
the specifics of the Dragon's 1/0O system

As we explained earlier in the book, the Dragon's
/O system is nenmory mapped which neans that 1/0
devices (or nore accurately controllers) are accessed
by reference to sPecific nenory |ocations. Reading or
witing to these locations results in an I/O transfer
fromor to the 1/0 devi ce.

The Dragon's offers a variety of |/O interfaces such
as a cassette interface, two joystick interfaces, a
printer interface, etc. These are shown in Figure 81
which is a block diagram of the Dragon's 1/O system
Sone of the terns in this diagramw !l be unfamliar to
the reader who is new to I/O programmng but they wll
be explained as the chapter progresses.

Because the [1/O system is so conplex, it is
inpossible for us to provide a description here which
contains enough detail for the electronics enthusiast
to connect his own devices to the system Rather, we
have concentrated here on information for the 1/0O
programmer and have avoided going into specific details
of the system electronics. Readers who want to
interface hardware to the Dragon nust use the data
sheets presented in the appendices for conplete
hardware details of the |I/O system devices. These data
sheets have been provided by the chiﬁ manuf act urer and
contain conplete details of the chip functions and
si gnal s.

There are four major sections in this chapter. The
first two are concerned with the generalities of 1/0
programm ng and cover the concept of interrupts and 1/0
programm ng techniques. The final two sections cover
details of the Dragon's 1/O system wth section 3
concentrating on the PIA chip, which is the principal
interface controller on the system and section 4
describing the various I/O ports built into the system

186
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8.1 | NTERRUPTS

The central concept on which nuch /O progranmmng i
based is the notion of an interrupt. An interrupt 1s
signal to the processor to tenporarily stop what it
doi ng and carrP/ out sone other task. V¢ shall explai
the steps involved in this by means of an anal ogy.

Say you are busy programming your Dragon when your
doorbell rings. You stop what you are doing to answer
the door and you find the occupier of the apartnent
bel ow who tells you that water is dripping through his
ceili n%. You imredi ately rush to the bathroomwhere you
find that you have left the water running and the bath
has overflowed. You turn off the water, nop up the
nmess then %o back to your programm ng. Wil st nopping
uE the bathroom you ignore other interruptions unless
they are very urgent such as flanmes shooting from the
cooker .

In this scenario, events can be identified which

correspond to the events which occur in a conputer
systemwhen an interrupt is received and processed.

S
a
S
n

(L The interrupt

This is the doorbell ringing to tell you to stop
what you are doing as sonme other task requires
your attention. A conputer system has one or
nore interrupt request control lines. A signal
on one of these lines is an interrupt which
causes the currently executing task to be
suspended and the interrupt processed.

(2) The interrupt vector
This is the front door. The interrupt (doorbell)
tells you to go to a known place in order to

start interrupt processing. In a conputer there
are usually several pre-determned nenory |oca-
tions, called interrupt vectors. The program

counter is autonatically loaded with the contents
of one of these locations when the interrupt is
detected and this causes a transfer of control to
an interrupt service routine.

(3) The interrupt service routine

This is the nopping up of the bathroom or, in
other words, what you nust do to clear the condi-
tion causing the interrupt. In a conputer the

address of this routine is held in the int_erru,ot
vector and control is transferred autonatically
toit.

(4 The interrupt mask
This is, effectively, what you do when you ignore
interruptions in order to get the water off your
bathroom floor. 1In a conmputer it is usually pos-
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sible to set up a so-called 'interrupt nmask'
which indicates that an interrupt is bei n% pr o-
cessed and that no more interrupts should be ac-
cepted until that processing is conplete.

(5) The priority interrupt

This is the cooker catching fire. Some events
are so urgent that they nmust be handled in spite
of the fact that another interrupt-handling pro-
cess is already underway. In a conputer, there
is often a non-maskable interrupt control |ine.
A signal on this line nmeans 'sonething urgent has
happened' and nust be processed imredi ately.

(6) Process resunption
After handling the interrupt, you can breath a
sigh of relief and go back to programming. 1In a
conputer, the interrupted process is restarted
and execution proceeds as if the interrupt had
not occurred.

Interrupts are very inportant in [|/O programm ng
because they are one way that a peripheral controller
can tell the processor that data are ready for input or
that the peripheral is ready to accept nore data for
output. If interrupts are not used the processor has
to examne all the peripheral devices at periodic
intervals to see if they have conpleted their input or
out put operations.

The MB809 processor has a total of four interrupt
request control lines, a nunber of interrupt handling
instructions and wuses three of the bits in the
condition code register in its interrupt processing.
Before going on to describe these in detail, however,
we describe a typical sequence of actions which take
pl ace automatically when a 'normal' interrupt occurs.

The "'nornal' interrupt control line on the M6809 is
called IRQ and a signal on this line causes the
processor to suspend the currently executing process
after it has conpleted execution of its current
instruction. The processor then sets the Entire flal
in the condition code register (CC.E) and pushes al
the processor registers, except S onto the S stack.

The processor then sets the IRQ Mask flag in the
condition code register (CC 1) to indicate that an
interrupt is being processed and that no nore
interrupts on IRQ should be accepted. PC is then
loaded with the contents of the IRQ interrupt vector
(mem)r?/ | ocati ons FFF8: FFF9) which causes a transfer of
control to the interrupt service routine whose address
is held in the interrupt vector.

The interrupt service routine services whatever
condition caused the interrupt then returns to the
interrupted process by executing a Return from
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Interrupt instruction. This instruction restores the
register contents thus transferring control back to the
interrupted process when PC is restored and clearing
the interrupt mask bit GC 1 when CC is restored.

As well as the standard interrupt request line |IRQ
the M6809 also has three other interrupt reciuest l'i nes
called NM (non-rmaskable interrupt), FIRQ (fast
interrupt request) and RESET.

The RESET line is used when the system is swtched
on. An interrupt on this line is not handled in the
sanme way as other interrupts as, obviously, there is no
executing process to be suspended. Wen the machine is
switched on, a RESET signal causes transfer of control
to a systeminitialisation routine in ROMwhich sets up
the Sstack and causes some other process, which is
usually the BASIC interpreter, to be initiated.

The FIRQ interrupt line signals that fast interrupt
processing is to take place. This is simlar to the
processing of an IRQ interrupt but instead of all
registers being stacked and unstacked, only PC and CC
are stacked Dbefore control s transferred to the
interrupt service routine. The E flag in CC is unset
to indicate that only GC and PC have been stacked.

Wen an RTl instruction restores CC, the top stack
location, it examnes the CCE flag to see if it nust
restore all other registers or if it is only necessary
to restore PC.  An FIRQ request causes the FIRQ mask in
the condition code register (CCF) to be set thus
| ocking out other interrupts on Fl

The NM interrupt line is used to signal an urgent
interrupt which should not be ignored. |If CC1 or F
is set, the processor ignores interrupt requests on IRQ
and FIRQ but NM interrupts are always processed
irrespective of the settings of these flags. The
processing sequence is the sane as that for an IRQ
request although, obviously, a different interrupt
vector is used.

As well as these hardware interrupts, the M809 can
al so process so-called 'software interrupts'. Software
interrupts occur when an SW instruction is executed
and, like hardware interrupts, they have an associ ated
interrupt vector and service routine. Sof tware
interrupts are handled in the same way as IRQ
interrupts and will be discussed in nore detail in the
following section where the SW instruction is
descri bed.

In all, there are seven 'levels' of interrupt which
can be processed by the M6809. The table bel ow shows
the locations of the interrupt vectors associated wth
each of these.

Vector location  Associated interrupt
FFF2: 3
FFF4: 5 SW2
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FFF6: 7 FI RQ
FFF8: 9 | RQ
FFFA B SW
FFFC D NV
FFFE: F RESET

The interrupt priorities are as foll ows:
RESET > N\M > SW > FIRQ > IRQ > SW2 > SW3

Notice that this order is not the sane as the order of
the interrupt vectors.

8.1.1 Interrupt handling instructions

The sequence of actions described above which initiates
an interrupt device routine takes place autonatically
whenever a hardware or software interrupt is detected.
No explicit instruction is needed to start interrupt
processing but a return from interrupt instruction Is
necessary to restart the interrupted process.

W have already introduced, in Chapter 3, the four
MB809 instructions which are wused in interrupt
processi ng. Now, we descri be each of t hese
Instructions, SW, CMI, SYNC, and RTI, in nore detail.

RTI - Return from Interrupt

This instruction is always executed as the |last
instruction in an interrupt service routine. The
instruction unstacks the CC register and exam nes CC. E.
If it is unset, RITl then unstacks the next two stack
bytes to PC thus returning control to the interrupted
pr ocess.

If CCE is set, this indicates that all t he
registers were stacked before entry to the interrupt
service routine so RTl restores all register values
from the stack. As PC is the last register restored,
control is thus returned to the interrupted process.

SW - Software Interrupt
There are three levels of software interrupt which may
be used by the Ms809 progranmmer. There are identified
by the instructions SW, SW2, and SW3. Each of these
has a different priority in the order SW > SW2 >
SW3. The SW instruction also has a higher priority
than FIRQ and IRQ hardware interrupts and sets the
interrupt nmask bits GCF and CC.|I.

The sequence of operations executed when an SW
instruction is executed is the same as that which takes
ﬁ)_l ace automatically when an IRQ interrupt is detected.
he register values of the interrupted process are
stacked and control is transferred, via the appropriate
interrupt vector, to the interrupt service routine.

The execution of an SW instruction is not unlike
calling a subroutine. The advantage to the programrer,
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however, is that SW instructions can be used to call
SKSt em routines wthout the programrer having to know
the routine address at either load or run tine.

CMW - Wit

The wait instruction is used to suspend the execution
of a process until a hardware interrupt occurs. The
instruction takes a single-byte operand which is anded
wth O as the first step in the execution of the
instruction. This means that the programer can set u
QC prior to its stacking and can guarantee the value o
CC when the interrupted process is resumed.

After the ANDCC operation, OM sets CC E and stacks

all ~ the  processor registers. I't then  does
not hi ng (wai m until a hardware interrupt occurs. If
this is an or RESET interrupt, it is imediately

processed but if it is an IRQ or FIRQ interrupt and the
corresponding mask bit is set in CC, the instruction
continues to wait wuntil a higher priority interrupt
occurs or until the interrupt nmask is cleared.

SYNC - Synchroni se

The synchronise instruction, SYNC, is used to
synchroni se the operation of the M809 processor and
sone other external device. A situation where this
mght be necessary is when data are being transferred
fromsome fast 1/O device, like a disk, to nenory.

Wen a SYNC instruction is encountered, the
processor enters a V\ait-for-interruEt loop which is
called the 'syncing state'. If a hardware interrupt
occurs and is not masked, the appropriate interrupt
service routine is activated but the processor
registers are not stacked.

If the interrupt is masked and the processor is in
the syncing state, the effect of the interrupt is to
cause the wait-for-interrupt loop to termnate.
However, rather than cause a transfer of control to an
interrupt service routine, execution continues with the
instruction following SYNC Thus processor and
peri pheral operation are synchroni sed bR, the interrupt.

Note that the programmer nust explicitly set and
clear the interrupt mask bits OGC1 and OCF by using
ANDCC and CRCC instructions.

8.1.2 Dragon-specific interrupts

In the above section we explained that the M809 system
assuned interrupt vectors lying between addresses FFR2
and FFFF. In actual fact, t he Dragon's addr ess
decoder (the SAM chip) maps these addresses onto
alternative interrupt vectors in locations BFF2 to
BFFF. This neans that the interrupt vectors are in the
BASI C read-only mamarﬁ area and that their contents
cannot be altered by the user.

As a result, these l|ocations do not contain the
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address of the interrupt service routine but contain
the address of a secondary interrupt vector in RAM
which should be set up with a junp to the address of
the interrupt service routine. There is one exception
to this. e RESET interrupt which is issued when the
machine is switched on nmust, obviously, have a service
routine in ROM Its address is stored in the RESET
interrupt vector.

The table bel ow shows the how the interrupt vectors
are assi gned.

Vect or Contents Use

BFF2: 3 $0100 SW 3 secondary vector
BFF4: 5 $0103 SW2 secondary vector
BFF6: 7 $010F FI RQ secondary vector
BFF8: 9 $010C | RQ secondary vector
BFFA: B $0106 SW secondary vector
BFFC: D $0109 NM secondary vector
BFFE: F $B3B4 RESET service routine

The Dragon does not use all the Ms809's interrupts but
only makes wuse of the IRQ and FIRQ interrupts.
Therefore, their secondary interrupt vectors are set up
with a junp to their service routines, nanely JMP $9D93
and JMP $B469 respectively. Al the other secondary
interrupt vectors are set to 0O and nust be initialised
by the user if required.

8.2 I NPUT/ QUTPUT PROGRAMM NG TECHN QUES

In nenory-nmapped input/output, described in Chapter 2,
all 1/0O devices appear to the programmer as nenory
| ocations called 1/0O ports. A though nenory-nmapped 1/0
devi ces nust conmuni cate over the sane bus structure as

menory devices, it is not normally possible or
desirable to connect a physical device directly to the
computer's bus structure. Instead, a device interface

is used to control the peripheral device accordi n% to
commands from the CPU and to isolate that device from
the bus structure. The interface may also convert data
into whatever format is required by the physical device
and vice versa.

However, unlike nornmal RAM nenory where a read
returns the last value witten to a location, read and
wite operations to a particular /O port address nay
be conpletely independent. In other words, an input
port can occupy the same address as an output port and
which one is selected is dependent on whether the
operation is a read or a wite.

Mbst device interfaces that have been designed for
m croprocessor use are 'programmable’ thereby allown
themto be used in a variety of applications. A typica
exanple of such an interface is the PIA (Peripheral
Interface Adaptor) which is explained in detail in the
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follow ng section. This device has a nunber of built-
in registers corresponding to addressed |ocations which
can be accessed by the programrer. By witing the
appropriate bit patterns into these registers, the
programmer can configure the device in a variety of
ways. |In addition to these control registers, such an
interface contains a status register which can be read
by the 1/O program to determne the state of the
device; for exanple, 'is the data ready', 'can | send
data now , etc.

@ ven the programm ng nodel of a peripheral device's
interface, the programrer is faced with the probl em of
what technique to use to transfer data across that
interface under program control. In this section we
descri be t hree I/O  programmi ng t echni ques
unconditional /0 transfer, polled or conditional 1/0
transfer and interrupt-driven 1/O transfer.

8.2.1 Unconditional 1/0O transfer

This is the sinplest nmethod of /O transfer where the
programmer always works on the assunption that the
peripheral controller handling the 1/0O 1s always ready
for output and always has up-to-date input information
avail able. Data to be inﬁut or output can therefore be
read fromor witten to the device at any tinmne.

This, however, can lead to problens unl ess the exact
timng of the 1/O process is known. |If a request is
made for input before the peripheral controller has
received that input from the loeripheral device, the
information returned will probably be that input in the
Brevi ous operation. Smlarly, if output is sent
efore the device has conpleted its previous operation,
information may be |ost.

As a result of these timng problens, this 1/0
programmng technique is not advised wunless the
programmer is forced into it by primtive [/O devices
which have no neans of commnicating their status to
the processor.

8.2.2 Polled I/0O transfer

This is a widely used I/O programmng technique which
involves a program polling the status of a device
periodically. Wen the controller status indicates
that input Is available or that the device is ready for
output, the 1/0O transfer takes place. Because the
transfer is conditional on the controller status bits,
this nethod of 1/O programmng is sonetines called
conditional transfer.

In some cases the status bits of the peripheral
controller are continually examned and the program
waits for the I/0O device to becone available. In other
cases, the status bits are examned at periodic
intervals of, say, a mllisecond. The program nust
ensure that the intervals between checks are not so
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long that information is lost in the intervening
peri od.

The following fragment of BASIC program illustrates
this 1/O progranm ng technique by polling the button on
a joystick to see whether or not it has been pressed.

100 BS = PEEK(&HFF00) ' BS = button state
110 IF (BS AND 1) = 0 THEN 100 'Wait for press
120 'Button pushed so deal with it here

The drawback of sinmply looping indefinitely until the
button is pushed lies in the fact that it is necessary
to 'busy wait' for the peripheral to become avail able.
This tine is conpletely wasted as no useful work can be
done until the [1/O transfer is conplete. In our
exanpl e, the program will ' hang' until the right
joystick button is pressed.

In sone situations this may be acceptable but it can
cause problems in situations where several 1/0 devices
have to be serviced. For exanple, say a two-player gane

i nvol ves nmovenent and firing, both controlled by
j oysti ck. It would be inpossible for one player to
nove until the other fired thus making evasion very

difficult indeed!
However, the program can be nodified to cope wth

this situation. Rat her than |ooping indefinitely until
an event occurs, the program can check the status bits
of each device in turn. This is illustrated in the

program bel ow.

100 BS = PEEK(&HFF00)

110 IF(BS AND 1) = 0 THEN 140

120 ' Deal with right button

130 GOTO 100 ' Look at buttons again
140 IF(BS AND 2) = 0 THEN 100

150 ' Deal with left button

160 GOTO 100

However, the player with the left joystick still has a
problem as the right joystick button always takes
priority. It is polled first and, if it is held down,

the left button is ignored. The solution to this
particular problemis to poll the devices in a round-
robin manner where the program establishes a polling
or der. The program polls each device in that order
then cycles back to the beginning of the order. Qur
previ ous exanple can be converted to this form by
renmoving line 130.

8.2.3 Interrupt-driven 1/0 transfer

W have already introduced the idea of an interrupt and
suggested that they are very useful in 1/O programi ng.
In fact, the use of interrupt allows a programing
techni que to be devised which elimnates the need for a
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‘bu_sr% wait' or, indeed, any kind of polling system
e disadvantage of the conditional transfer method
of 1/O programmng is the fact that the processor
cannot do useful work whilst it is waiting for a device
to becone ready for 1/Q A nore satisfactory technique
is to have the device inform the processor when it is
ready thus elinmnating the need for the processor to
check the device's status at periodic intervals. The
sequence of events that occurs upon an interrupt has
al ready been explained in the previous section and we
shall not repeat them here.

Interrupt-driven transfers can be used as an 1/O
programmng technique if the peripheral control
register has the followng facilities:

(1) An interrupt enable/disable bit which allows the
programmer to switch interrupts off and on.

(2) Aninterrupt status bit which allows the service
routine to find out which device has initiated
the interrupt.

As it is common practice to connect a nunber of

peripheral devices to the sane interrupt line, the
Iinterrupt service routine nust poll each of these
devi ces to see which one caused the interrupt. Once the
i nterrupt service routine has identified which

device/condition is responsible, the condition is dealt
with by normal instructions on an |/O port.

The service routine nust also nake sure that dealing
with the condition includes rermoving the cause of the
interrupt request otherwi se, as soon as interrupts are
enabl ed again, that same condition wll cause another
interrupt. The service routine will still, presumably,
fail to renove the condition causi n? the interrupt and
thus the systemw |l hang indefinitely.

If you want to incorporate interrupts into a program
you nust carry out the tollow ng steps.

(L Wite a suitable interrupt service routine.

(2) Set up the appropriate interrupt vector with a
reference to that routine.

(3) Configure the devicel/interface for interrupts.
(4 Enabl e (switch on) processor interrupts.

It is very inportant the steps 1 and 2 above be carried
out before steps 3 and 4 and equally inportant that
interrupts should be disabled whilst any changes to the
interrupt system are being nmade. If this is not done
and an interrupt occurs while the service routine is
bei ng changed unpredi ctabl e consequences can ensue when
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the interrupt is processed.

To illustrate interrupt processing, we describe how
to nmake amendnents to the existing Dragon interrupt
system

The nornal interrupt (IRQ is derived fromthe video
circuitry which provides an interrupt request every 20
mlliseconds, that is, in correspondence wth every
cycle of the mains frequency. This wll be slightly
different in countries where the mains frequency is
60Hz rather than 50Hz. The role played by this
interrupt is to update the system clock which is used
by the BASIC function TIMER as well as the functions
SOND and PLAY. As we saw earlier, the IRQ vectors
through a secondary vector at addresses $010C, $010D,
and $010E which normally contain a junp to the clock
update service routine at address $9D3D. Qur exanple
replaces the existing interrupt service routine wth
one that nanipul ates the text character in the top left
hand corner of the screen. This manipulation is
carried out as follows:

ADDCH  LDA $400 , Pick up character at top left
I NCA ; alter 1t by adding one
STA $400 ; and return it to its place

To use this as an interrupt service routine, we nust
provide an IRQ vector set up routine. An exanple of
thisis::

IRBET  ORCC #$10 - Disable IRQ

LDX #ADDCH Set up entry address
STX $10D ; and store into | RQBV
ANDCC #$EF ; Enable IRQ

RTS

The new service routine also has to be augrmented by the
code that renoves the interrupt request. In this case,
the interrupt request may be removed with a read
operation to PIAO s perigheral data register which is
na|oped through address $FF00. V¢ also have to add an
RTl instruction so that the interrupted process nay be
restarted after the character has been altered.

W have excluded a check to see what device is
causing the interrupt since there is normally only one
IRQ ng device on the Dragon. V¢ have also omtted the
code that configures/enables the device interface as
this required detailed know edge of the PIA which wll
not be described until later in this chapter. However,
it is configured by the system as part of the
initialisation sequence when the machine is swtched
on.

The final version of the new service routine is
t her ef ore:
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| RQSET - set up interrupt vector

*
*
: Must be called to install new service routine
|

RQSET  ORCC #%$10 ; Disable IRQ and put entry

LDX #ADDCH ; address of new service

* routine
STX $010D ; in secondary |IRQ vector
ANDCC #$EF ; Enable IRQ
RTS

* |nterrupt service routine

ADDCH LDA $FF00 ; Clear interrupt condition
LDA $400 ; Pick up LH corner
I NCA ; Alter it
STA $400 ; And put it back

RTI Return from interrupt

Once the interrupt vector has been set up and I|IRQ
interrupts enabled you should see the top left hand
character cycle through the 256 character set of the
Dragon at the rate of 50 characters/second.

You will now find that the TIMER, PLAY, and SOUND
functions will not work properly. W leave it as an
exercise to the reader to add the above code to the
existing service routine so that the clock is updated
and a character is updated on the screen.

8.3 THE PERI PHERAL | NTERFACE ADAPTOR - PIA

The peripheral interface adaptors or PlIAs which act as
t he Dragon' s /0 i nterfaces are mul ti - pur pose
peri pheral controllers. W saw in the previous chapter
how one of these Pl As played an essential role in the
graphics display hardware where it is used to set up

the video display generator. This section is an
overview of the functions of a PIA but, for those
readers who require further i nformati on, a full
technical description of the PIA chip is provided in
Appendi x 4.

The function of a PIA is to interface a nenber of
the M6800 processor family (in this case, the Ms809) to

various peripherals and, to do so, it provides various
peri pher al dat a i nput/ out put l'ines as well as
peri pheral control/interrupt |ines. Each PIA has two
8-bit peripheral data buses and four control lines thus

giving a total of 20 lines which can be used to control
and interface peripheral devices.

The flexibility of the PIA is derived from the fact
that it is a 'progranmable' device. This does not mnean
that it can execute nmachine code instructions but
rather that the PIA is not dedicated to a specific
peri pheral type. It contains various internal registers
which can be manipulated by the assenbly |anguage
programrer to configure the PIA to a particul ar node of
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operation. Each of the peripheral data lines can be
configured to act as an input or as an output and each
of the control/interrupt lines nay be set up in one of
several control nodes.

A PIA is functionally split into two, independent
sides called the Aside and the B-side. Each side is
configured and controlled by three internal 8-bit
regi sters. These are:

(1) The control register (CR

(2) The data direction register (DDR

(3) The peripheral data register (PDR

Effectively, therefore, we have four programmable
i nput/output interfaces which may be used separately or

together. Figure 82 is a schematic representation of
this system

CRA

__CRA _Fi[_,: RA l.__.[_EIJ R P«. - CRA i-'jDRf« . DDRA
A-side A-side
PIAO PIA1

| = =
B-side B-side
—CF{-H I_J[_;HB ] __l_'_l DRB CRB . PDRB | ] DDRB .

Fig. 8.2 PIA organisation

The control register is used to configure/control the

four peripheral control |ines which are naned CAl, CA2,
CBl1, and CB2. It also allows the assenbly |anguage
programmer to enable and disable the interrupt Iines

IRA and IR®B and to nonitor the status of the
interrupt flags | RQAL, IRQA2, IR@®BL, and IRB2. A full
description of the functions of this register is
provided in the PIA Data Sheet (Appendix 4).

There is one bit in the control register which is
not used in the configuration of the peripheral
control/interrupt lines. This is the data direction
access bit which is used to select between the data
direction register and the peripheral data register.
The reason for this is that the PIA only responds to
four wunique addresses and, as the programmer always
needs access to the control registers, the other two
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addresses nust be shared by the data direction register
and the peripheral data register.

The data direction register (DDR is used to control
the direction of data through each correspondi ng
Peripheral data line of the peripheral data register.
f a DOR bit is 0, this means that the correspondi ng
peri pheral data line is an input whereas if the DDR bit
Is 1, the associated data line is an output |ine.

Therefore, each peripheral data register nay have

any conbination of input and output lines thus
providing a good deal of flexibility when interfacing
the PIA to external devices. However, it is the

responsibility of the programrer to keep track of which
lines are inﬂuts and which lines are outputs and to
make sure that when outputs are updated, ot her,
i ndependent outputs are not affected.

The data direction register and the peripheral data
reca;i ster share an address and the particular register
addressed depends on the setting of the data direction
access bit in the control register. Thi s sharing does
not usually cause problens as typical usage involves
setting up the data direction register and then
accessing the peripheral data register wthout further
changes to the DDR

The peripheral data register is used to transfer
data to and from peripheral devices. Each of the
peripheral data lines can be configured as an input or
as an output as described above. Wen a line is

configured as an output, it wll go H when the
corresponding bit in the PDRis set to 1 and will go LO
when the corresponding bit is cleared in the PDR In

general, after an output has been witten it can be
read back although this is dependent on the |oading of
the line (see Appendix 4) .

Wen a line is configured as an input, the data on

the peripheral data |ine appears directly on the
corresponding M6809 data line during a read operation.
As out put line states are also read back, the

programrer has to explicitly nmask themout when the POR
I's accessed.

8.3.1 The Dragon's Pl As

The Dragon's 1/0O subsystem nmakes use of two Pl As naned
PIAO and PIAl. This nmeans that there are 40 peri pheral
data/control lines but, as sone devices share |ines,
nmore than 40 lines can actually be sulﬁ)ported. Each P A
responds to four unique addresses with Pl AO associ at ed
with addresses FFOO to FFO3 and PIAL associated wth
addresses FF20 to FF23.

These address ranges can be further subdivided into
the individual addresses of the registers within the
PIA. In the exanples in this chapter, we shall nmake
use of these addresses and shall refer to them using
the synbolic names defined in the table bel ow
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* Equates for PIA O

* A side registers

PODDRA  EQU $FF00 ; Data direction register
POPDRA EQU PODDRA ; Peripheral data register
POCRA EQU $FFO1 ; Control register

* B-side registers

PODDRB EQU $FF02 ; Data direction register
POPDRB  EQU PODDRB ; Peripheral data register
EOCRB EQU $FFO3 ; Control register

+ Equates for PIAL

* A-side registers

PIDDRA EQJ $FF20 ; Data direction register
P1PDRA  EQUJ P1DDRA ; Peripheral data register
P1CRA EQU $FF21 ; Control register

* B-side registers

PIDDRB EQJ $FF22 ; Data direction register
P1IPDRB EQJ P1IDDRB ; Peripheral data register
P1CRB EQJ $FF23 ; Control register

The connections of the Dragon's PIA registers to
specific devices is summarised in Appendix 7.

8.4 I NPUT/ QUTPUT DEVI CES

Apart from the display, which we discussed in the
previous chapter, the Dragon is equipped with a variety
of input/output ports to which peripheral devices nay
be connected. Sone of these ports, such as the keyboard
port, are connected to |/O devices which are an
Inherent part of the system O hers, such as the
printer port and cassette port, are available for the
user to connect his own peripherals.

Each 1/O port in the system is connected to either
PIAL or PIAD so that each PIAis an I/O controller for
a nunber of devices. In particular, PIAO is responsible
for the keyboard, the joystick control, sound source
sel ection, the printer port and video synchronisation.
PIAL is responsible for printer handshake control,
sound generation, the cassette port, VDG node
sel ection, D-to-A voltage control, RAM type detection
and ROM cartridge detection.

In this section we shall look at how the user na%/
access these 1/O ports and how to make wuse o
peripheral devices connected to these 1/0 ports.

8.4.1 Keyboard control

The Dragon's keyboard is of extremely sinple design.
It consists of a nunber of ke%/switches arranged in a 7
b?; 8 matrix with the colums of the matrix connected to
the peripheral data lines of the B-side of PIAO and the
matrix rows connected to the peripheral data lines on
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the A-side of the same PIA. \Wen a key is pressed, this
causes the row colum position of that key to be
short-circuited and this change of state can be
detected by the keyboard control routine.

The keyboard is connected so that the colum
lines (PBO-PB7) are configured as outputs and the row
lines (PAO-PA6) are configured as inputs. Wth this
setup, a key depression can be detected by outputting a

0O to a colum line then reading the input |ines PAO-
PAG. If no key in that colum has been pressed, the
result read back wll be 1111111 whereas a key
depression causes a 0 to be read in one of PAO-PA6.

The keyboard scanni ng routine is activated
approxi mtely every ten nilliseconds and it outputs a
zero to each of the colums in turn. It imediately

| ooks at the inputs PAO-PA6 and, if the result is not
1111111, it knows that a key has been pressed. The
keyboard scanner keeps track of which colum has an
associated row input containing a zero and from the
position of that 0 in PAO-PA6, it can work out which
key has actually been pressed.

The actual arrangenent of the keys in the matrix is
shown in the table bel ow

PBO PB1 PB2 PB3 PB4 PB5 PB6 PB7
PAO O 1 2 3 4 5 6 7
PA1 8 9 * : , - . /
PA2 @ A B C D E F G
PA3 H I J K L M N 0
PAA P 9 R S T U V W
PAS X Z Up Down Left Right Space
PA6G ENT AOR BRK NC NC NC NC SHFT
To illustrate how a key depression can be detected, say
the user presses the 'U key. The keyboard scanning
routine outputs a zero on lines PBO-PB7 and, when a
zero is output on PB5, an input pattern containing a
zero will be detected. This zero will be in position

PA4 thus indicating that 'U (coordinate PA4/PB5) has
been pressed.

In order to keep track of which keys are pressed so
that it can ignore the sane key closure on the next
scan (remenber it scans about 100 tinmes per second) and
perform key rollover, the keyboard scan routine
mai ntains a record of key closures in nine bytes of RAM
at addresses 151-159 inclusive.

The first byte (151) records the seven row states,
that is, it records whether any of the keys in a
particular row are pressed. Wen a key in a row is
pressed, the corresponding bit in location 151 is set
to 0. Thus, if the 'D key is pressed, bit B2 in 151
is cleared to indicate that a key in row 2 has been
depressed. For other rows, where no Kkey has been
pressed, the bits in byte 151 are set.
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The individual bits in 151 are used by the keyboard
scan routine to determne whether there has been a
change of state of any of the rows. The value read in
PAO-PA6 is conpared with the value in location 151 and,
if these values are the same, the keyboard scanner
assunmes that the sane key is still held down by the
user. This is fairly sensible as, when you press a
key, you are likely to hold it down for nore than a
hundredth of a second. If there has been a change to
any of the rows, because the user has taken his finger
off a key perhaps, then the value of location 151 is
nodified to reflect this and a full keyboard scan takes
pl ?ce tdo find out which key has been depressed or
rel eased.

This two-stage scanning technique is used to speed
up the scanning routine although it does mean that key
rol |l over does not occur for keys on the sane row In
other words, holding the 'A key down and then pressing
a key on the sanme row, say ' C, does not register the
new character but pressing a key on a different row,
say 'H, does register.

The remaining 8 bytes 152-159 are used to record the
state of all the keys in the matrix as each byte
records the state of the rows for its corresponding
col um. Colum O state is held in 152, colum 1 in
153, etc. Wien a key is pressed, then the correspondin
bit in the colum byte is cleared. For exanple, i
address 152 contains FE, this indicates that the 'O
key has been pressed.

One drawback of this technique is that it prevents
the sane key from being recognised again unless it is
rel eased and re-pressed. Furthernore, if a key is held
down, it prevents other keys in the sanme nmatrix row
from being recognised. This Is illustrated by the BASI C
program bel ow which, at first sight, seens to be able
to recognise all the arrow keys.

10 RS = &R0 'Row 5 s position in colum byte
20 &4 = &HI55 '"Columm 4's byte

30 & = &HI56 'Golumn 5's byte

40 G = $HI57 'Columm 6's byte

50 C7 = &H158 '@olumn 7's byte

60 IF (PEEK(C4) AND R5) = 0 THEN PRI NT "UP"
70 IF (PEEK(C5) AND R5) = 0 THEN PR NT " DOM'
80 IF (PEEK(C6) AND R5) = 0 THEN PR NT "LEFT"
90 IF (PEEK(C7) AND R5) = 0 THEN PRINT "R GHT"

100 GOTO 60

In fact, this program does not recogni se nore than one
arr ow keK being pressed at a time. As the arrow keys
are on the sanme row, the keyboard scan routine does not
do a full scan because the row state byte indicates
that the row state has not changed. This is perfectly
reasonable for nmost nornal typing but can be limting
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for the game programmer who w shes to provide keys
whi ch al l ow si mul taneous novenent and firing.

However, it is possible to program around this
limtation and to force a conpl ete scan of the keyboard
by setting all bits in byte 151 before each IF
st at enent . This can be inplenented by including the
st at ement PCKE &H151, &H-F as statenents 55, 65, 75, and
gg in the above program and changing line 100 to goto

This has the effect of fooling the keyboard scanner
into thinking that all the keys on the row have been
released and so the next scan wll register any keys
that are down as new closures. Notice that it 1Is
necessary to poke the value FF to the colum state byte
between every BASIC statement as the keyboard scan
routine is executed after every BASIC statenent and
sets byte 151 to its old value. Although it works, this
technique is clunsy and we shall describe a better,
nmore elegant technique in Chapter 9 which does not
i nvol ve such program nodi fications.

A keyboard auto-repeat facility, where holding a key
down causes that character to be continuously input, is
very useful in applications such as ganes, where keys
may indicate novenent, text preparation, where you
mght want to input strings of the sane character and
screen |ayout design.

This facility is not provided on the Dragon because
a conpl ete keyboard scan is not carried out when a key
is held down. A conplete scan can be forced, however,
by using a technique conparable to that above and
poking a value to the individual colum bytes. By
setting a particular colum byte, we can force an
allready pressed key to be registered as a new key
cl osure.

The following BASIC program illustrates this
facility for the 1NKEY$ function

10 BB = &H151 ' Row state byte

20 CB = &H152 ' Columm state byte

30 PCKE RB, &8HF : POKE OB, &HF

40 A3 = INKEY$ @ IFA$ ="" THEN 30

50 PRI NT A$;

60 QOTO 30

It is left as an exercise to the reader to predict
which keys will auto-repeat given the above pro?ram and
to nodify the program so that auto-repeat wll work
with all keys.

It may seemthat you could wite your own sinplified
keyboard controller 1n BASIC which directly manipul ates
the Pl As using PCKE and PEEK statenents. Unfortunately,
this is not possible because there is no way of
di sabling the keyboard polling routine. If you try to
control the keyboard vyourself from within a BASIC
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program you are liable to get interactions between
your controller and the standard BASI C polling routine.
Naturally, you could wite your own routine in assenbly
code.

8.4.2 Printer control

The Dragon's printer interface is provided so that the
user may connect his own printer to the system The
interface is configured as a so-called Centronics
interface which neans any one of a nunber of printers
designed to use this interface type may be connected to
the Dragon. The wuser is not restricted to a single
specialised printer as is the case with sone personal
conput er systens.

Character data is output to the printer over eight
interface data lines DO-D7 which are connected to
POPDRB' s peripheral data lines. These Pl A peripheral
data lines are also used by the keyboard colum |ines
but, in practice, this does not cause problens. Wen
characters are being printed, the I/O system knows that
the keyboard should not be scanned and vi ce-versa.

There are also a nunber of control (handshake) Iines
which coordinate data transfer to the printer. These

are called "printer strobe', ‘'printer busy', and
"printer acknow edge'. Al though the Dragon hardware
supports all three of these control lines only two of

them (strobe and busy) are used by the standard Dragon
sof t war e.

The printer interface control lines are connected as
fol | ows:

(1) The 'printer busy' line is connected to bit 0 of
PIAl" s B-si de |oeri pher al dat a register
(P1PDRB/ PBO). This line is set up in the associ-
ated DDR as an input.

(2) The 'printer strobe' line is connected to bit 1
of PIAl's A-side peripheral data register
(P1PDRA/PAl). This line is configured as an out-
put .

(3) The '"acknow edge' line is connected to PIAl's CA
interrupt input but this line is not actually
used by the Dragon's 1/O system MNaturally, how
ever, you can make use of it if you wish to wite
your own printer control prograns.

The printer interface connections are shown in the
bl ock diagram of the 1/O system (Figure 8.1) which
shows the interface port pins and their associated
control /data |ines.

It is fairly straightforward to send characters to
the printer but appropriate control signals must be
organised so that a character is not sent before the
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printer is ready for it. The printer's state of
readiness is indicated using the 'printer busy' line
which is H when the printer cannot accept a character
for printing and goes LO when the printer is not busy.
To tell the printer that a character is to be printed,
that character nust be set up on the data lines and the
"printer strobe' line nust be taken fromH to LO and
then back to H again.

To send a character to the printer, the sequence of
events is therefore:

10 IF '"printer busy' THEN GOTO 10
20 Printer data lines = Character to be printed
30 Printer strobe = LO : Printer strobe = H

The strobe line is actually buffered through an
inverting buffer so that a O set up in PAl results in a
1 on the actual strobe pin and vice-versa. Therefore to
set the strobe line LO and then HI, you nmust send
signals which first set it H and then LO.

If you wish to use your own printing routine, you
must nmanipulate the PIA using assenbler rather than
BASI C POKE and PEEK statenments. The reason for this is
that the printer and the keyboard share PIA data |ines
and it is not possible to disable BASIC S keyboard
polling routine. Therefore, if you try to poke to the

PIA locations associated with the printer, to get
direct output say, the keyboard scanner resets the PIA
and your pokes will have no effect.

The standard Dragon printer output routine is called
LPOQUT and it can be addressed through Iocation 800F.
This routine expects register A to contain the
character code, in ASCII, of the character to be
printed.

Because a variety of printers can be attached to the
Dragon, some of the actions perfornmed by this routine
are determined by a set of parameters stored in RAM
| ocati ons. The initial values of these paraneters are
set up for the nmpost comonly connected printers but
they can be nodified to configure the routine for other
printers. Mdification involves poking the values for
your printer to the appropriate |ocation.

The table below gives the addresses of the RAM
| ocations wused by the printer routine and briefly
describes the functions of the information stored at
t hese addresses.

Addr ess Initial value Function
99 $10 (16) Line printer coma field
width. This is used by BASC
to determne which colums to
print itens s',\(rerparated by a
comma in a PR st at ement .
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9B $84 (132) Line printer width, that is,
f_he ength of the printed

i ne.
9C $00 (0) The line printer character

position. LPQUT keeps track
of the position of the next
character to be printed by
updating this byte.

148 $FF (255) Automatic line feed on buffer
full. If the line printer
does not automatically flush
its buffer when it is full
then setting this byte to O
will cause the routine to
send an end-of-1ine sequence
to the printer which forces
the buffer to be flushed.

14A $01 (1) The nunber of characters in
an end-of-1ine sequence. The
end-of -1ine characters follow
in succeeding |ocations from
14B to 150. Thus there nay
be a maxi num of 6 characters
in an end-of -1i ne sequence.

14B $0D (13) Carriage return (CR code
(normall EQL sequence)
14C $0A (10) Line feed (LF) code. If the

rinter needs a CRLF end-of -
i ne sequence, 14A should be
set to 2.

As an exanple of how the line printer routine may be
reconfigured, the following BASIC direct statements set
up the printer width to be the sane as the Dragon's
di spl ay wi dth.

POKE $H148, 0
PCKE &HOB, 32
LLI ST

The routine LPQUT carries out a  nunber of
" housekeepi ng' duties such as forcing end-of-line
sequences, outputting extra spaces to cause line feeds,
etc. Sonetines, you don't really want this to happen
but all you really want is a routine which sinply punps
characters to the printer. If this is what you need,
there is a no-frills printer output routine called
TXLPCH with entry point at l|ocation BCF5. Again, this
routi ne expects register A to contain the character to
be printed.

8.4.3 Sound control
In coomon with many other nodern personal conputers,
the Dragon is equipped wth facilities for sound
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eneration. In this respect, personal conputers differ
rom | arger, professional nachines and, unlike graphics
say, the creative use of sound in human/conputer
interaction is a largely wunexplored area. A the
nonment, the sound generation system is nostly used to
provide sound effects for ganmes but it seens Ilikely
that applications for sound generation will be
di scovered in many other areas of conputer usage.

There are four possible sound sources in the Dragon.
These are:

(1) Fromthe 6-bit digital to anal ogue converter.
(2) From the cassette unit.

(3) From the cartridge port.

(4 From PB1 of P1PDRB.

The first three of these sound sources above are
anal ogue sources which neans that they generate a
varying voltage level which is converted to sound. The
PIA bit, on the other hand, is a binary sound source
which generates either a H or a LO pul se. Sound out put
is channelled to the tel evision's speaker by nodul ating
the sound signal with the video signal that is fed to
the aerial (antenna) input of the user's television
set.

The anal ogue sound sources are connected to the
inputs of a device called an 'anal ogue nultiplexor'.
This is a device which can accept a nunber of inputs
and, according to control line settings, swtch any one
of these inputs to its output Iine. The Dragon's
anal ogue nultiplexor has four input lines, a single
output line and three control lines. e of the input
lines is not used so it is permanently LO  Two of the
control lines are used to select which sound source is
to be routed to the output line with the third control
line used to enable and di sable the multipl exor output.
This output must be disabled if a binary sound pulse
generated fromthe PIA is to be used as the input to
the sound generat or.

The multiplexor control lines are connected to AA
control lines. The lines used are PIAL-CB2 which is
connected to the output enable/disable nultiplexor
control line and PIAO-CB2 and Pl AO-CA2 which are used
for sound source selection. The table bel ow shows the
values which these control lines may take and the
associ ated sound sel ections.

Sound enabl e Sound sel ect Sound source
Pl A1- CB2 Pl AO- CB2 Pl AO- CA2
1 0 0 6-bit DAC

1 0 1 Cassette
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1 1 0 Cartridge

1 1 1 Not used

0 X X Single bit sound
To select a sound source, you mnust out put an
appropriate value to the PIA control Ilines which are
connected to the anal ogue nultiplexor. Wen you do so,

it is absolutely vital that you preserve the val ue of
the other bits in the PIA's control register otherw se
you are liable to cause all sorts of havoc. An exanple
BASI C subroutine which selects the 6-bit DAC sound
source is shown bel ow

2000 ' Select and enable 6-bit DAC sound source

2010 ' POCRA = &HFFO1l: POCRB = &HFF03 : P1CRB = &HFF23
2019 ' Now set PI A0-CA2 LO

2020 PCKE &HFFO01, ( PEEK( &HFF01) AND &HF7)

2029 ' Set PI A0-CB2 LO

2030 POKE &HFFO03, ( PEEK( &HFF03) AND &HF7)

2040 POKE &HFF23, ( PEEK( &HFF23) OR 8) ' Enabl e sound
2050 RETURN

Rather than wite your own routine for sound source
selection, you can make wuse of an inbuilt system
routine which we shall call SNDSEL. This can be called

via address BD41. Its specification is:

* SNDSEL - Selects 1 of 4 input lines for anal ogue MJX
*

* Register inputs B - input |ine nunber

* 0 = DAC, 1 = Cassette

* 2 = Cartridge

*

Regi sters destroyed U, A B,CC

This routine does not enable the output of the
mul tiplexor so you nust do this as a separate step.
The routine below will switch it on and select the
source required by calling SNDSEL.

* SNDON - Switch on sound output from MJX
: Regi ster inputs - as SNDSEL

SNDON PSHS U, A B Save registers

JSR SNDSEL ; SNDSEL equated el sewhere
LDA P1CRB ;  Now enabl e the

ORA #8 ; source by setting

STA P1CRB ; PIA1-CB2 HI

PULS U, A B, PC Restore and return

To switch off the sound source, a simlar routine is
requi red although, obviously, SNDSEL is not called and,
rather than or 8 into P1ICRB, you nust and $F7 into that
register.
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The 6-bit digital to anal ogue converter (DAC) is a
devi ce which takes a 6-bit binary value and converts it
to an anal ogue voltage. Such a device is very useful
as nmany external devices rel8y on anal ogue rather than
bi nary signal s whereas the M6809, obviously, deals onl
with binary information. As well as being an integral
part of the sound generation system the DAC is also
used in joystick manipulation and in the recording of
data on cassette. V¢ shall look at these applications
in later sections of this chapter.

You don't have to understand how the DAC works to
make use of it. Basically, it converts a 6-bit value
between 0 and 63 to an equivalent voltage in the range
0.25V to 4.75V. The approximate output voltage
corresponding to an input si F]nal may be conputed
according to the follow ng formula.

Qut put voltage = (Input value * 0.0715) + 0.25V

The DACs six input lines are connected to PLPDRA' s
peripheral data |ines PA2-PA6. Because the top 6 bits

of P1PDRA are used to control these input lines, the
6-bit value to be input to the DAC nust be offset by 2
bit positions before loading it into the PIAS

register. Furthernmore, the bottom 2 PIA bits are used
for other purposes so their values nust be preserved
before the PIA is set up for DAC input.

The following assenbly code routine acconplishes
this by shifting the input value then oring it into
P1PDRA.

* DACOUT - Qutput a 6-bit value to DAC
+ Register inputs A- 6 bit value

DACQUT  PSHS A ; Save register

ASLA : Move bottom6 bits
ASLA ; into top 6 bits

STA ,-S ; and save until later
LDA P1PDRA ; Preserve the original
ANDA #$03 : bottom2 bits

RA |, S+ :and or in new val ue
STA P1PDRA ; Qutput to DAC

PULS A PC . Restore and return

The equivalent BASIC routine is:

1000 ' BASI C DAC out put routine

1010 ' Input paraneter N, 6-bit val ue

1020 PCKE &HFF20, (( PEEK(&HFF20) AND 3) CR (N * 4))
1030 RETURN

The DAC is used to support Extended Color BASIC S SOUND
and PLAY comrands. To create a sound waveformwith this
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devi ce, suitable values nust be sent to it at
appropriate intervals. The volune of the sound out put
is determned by the magnitude of the val ues outBlg:[ to
the DAC and the pitch depends on how often the DAC is
updated with new wavef orm val ues.

VW illustrate this with Program 8.1 which generates
a very crude approximation of a sine wave. Thi s
program requires that a DAC sound selector routine be
available at line 2000 and a routine to send a value N
to the DAC be available at Iine 1000.

10 GOSWB 2000 ' Sel ect DAC sound source

20 FORV =1 to 15 ' V = vol ume

30 V2 = Vv*2: V4 = V4 '\V2=m d-vol une, VA=max- vol une
40 PRINT "MAX VOLUME = "; V4

50 TTMER = 0 ' Reset tine period

60 FORC =1 to 50 'MNo. of cycles

70 N=0: QGO8UB 1000 ' Vary the waveform

80 N=V: @GO8WB 1000 ' frommn vol une

90 N=V2: 8UB 1000 ' through md vol une
100 N=V4: GOsUB 1000 ' to nax vol ume

110 N=V2: @O8UB 1000 ' and back down

120 N=V: GO8UB 1000 ' to mn vol urme

130 NEXT C ' Start next cycle

140 CP = (TIMER/'50)/50 ' Cycle period

150 PRNT "CYCLE PER (D = "; CP;" OF A SECOND'
160 NEXT V ' Repeat for next volune setting
170 END

Program 8.1 Sound output generation via the DAC

If you run this program you should hear a steady but
ragged note wth increasing vol une. The print
statements giving details of the volume and the cycle
period give an indication of how Ion% it takes to
update the DAC when using BASIC and the slowness of
BASIC does linmt the upper frequency range. The note
sounds ragged because the DAC is not producing a
continuously varying voltage which is necessary to
produce a pure sine wave. Rather, the voltage steps
from one value to another and to produce a snoother
note you would have to include nore approxinations to a
sine waveform by reducing the differences in step
| evel s. Since this would slow the system down, this
would also reduce the wupper frequency range of the
sound.

Because of the restrictions on the upper frequency
range when programmng in BASIC, it is better to use an
assenbly code subroutine for DAC sound generati on.

The input signal fromthe cassette recorder can al so
be used as a sound source. Al that happens in this
case is that the multiplexor routes the cassette input
signal directly to the TV |oudspeaker so you can ay
back nusic, comrentary or anything else you have
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recorded on the cassette wunder the control of a
program

This facility is directly supported in BASIC by the
AUDIO ON and AUDI O OFF conmands which actually switch
the nultiplexor to cassette input. You can use the
SNDON routine above to perform the equivalent action if
you are progranmng in assenbly code.

Simlarly, the cartridge ROM port has one of its

input lines connected to the sound nultiplexor and an
input signal from the cartridge can be switched to the
| oudspeaker. This is a rarely-used facility and if you

are using the cartridge input port to connect sone
ot her device to your Dragon (we discuss this later), we
do not recommend that you use this sound input because
the voltage levels for it are unspecified.

Apart from the DAC, the alternative nmethod of sound
generation on the Dragon is to use the single bit sound

source. In this case the sound nultiplexor is bypassed
and nust be disabled. The signal fromthe PIA which is
the single bit sound signal, is fed directly onto the
output line of the nultiplexor. Naturally, as this is

a binary value, the sound generated consists of a train
of pulses corresponding to the binary input to PBl of
the PIA

To make use of the single bit sound source, the
progranmer nust take the follow ng steps.

(1) Di sabl e the sound multipl exor output
(2) Sel ect P1DDRB by clearing bit 2 of P1CRB

(3) Configure PB1 as an output by setting bit 1 of
P1DDRB

(4) Sel ect P1PDRB by setting bit 2 of P1CRB

We denonstrate this in the following BASIC program
whi ch shows how single bit sound rmay be used.

10 GOSUB 3000 ' Disable MJX out put

20 GOSUB 4000 ' Select single bit sound

30 TIMER = 0 ' Reset tiner

40 OV = PEEK(&HFF22) ' Save value of P1PDRB
50 HH = OV OR 2 ' To set PB1 H

60 LO= O/ AND &HFD ' To set PBl1 LO
70 FOR C =1 TO 50

80 POKE &HFF22,H ' Set PBl1 HI

90 POKE &HFF22,L0 ' and LO

100 NEXT C

110 CP = (TIMER/50)/50 ' Cycle period

120 PRINT "CYCLE PERIOD WAS "; CP;" OF A SECOND'
130 GOSUB 5000 'Switch off single bit source
140 END
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W leave it as an exercise for the reader to wite the
subroutines at l|ines 3000, 4000 and 5000 which disable
the multiplexor output and select the single bit sound
source. It is inportant to switch off the single bit
sound as it may interfere with the output when the
mul tiplexor is in use. To switch off this sound source,
P1PDRB- PB1 shoul d be configured as an input rather than
an out put.

8.4.4 Cassette control

One of the great advantages of personal conput er
systens is that they can make use of comercially
avail abl e tape cassette recorders and standard cassette

tapes for input and output. These recorders are
designed for recording and playing back nusic or speech
so are anal ogue devices. Therefore, to use them for
data input and output, there nmust be a way of

converting a binary output to an analogue signal
recorded on the tape and vice-versa for inputs from the
t ape.

The technique used in the Dragon to record prograns
and data on a cassette tape is knows as Frequency Shift
Keyi ng ( FSK). This technique involves representing
ones and zeros as different frequencies as they are
recorded. A LO signal (binary 0) is recorded as a
single cycle of frequency 1200Hz and a H signal
(binary 1) is recorded as a single cycle of frequency
2400Hz. This neans that the effective data transfer
rate from Dragon to cassette recorder is 1800
bits/second as, on average, there wll be an equal
nunber of ones and zeros recorded for a program or data
file.

The choice of recording frequencies is not entirely
arbitrary as the 6-bit DAC, described in section 8.4.3,
is used to generate the appropriate sine waves of
1200Hz and 2400Hz, with the signal attenuated to about
1V before output to the recorder. The choice of
frequencies is the result of a trade-off between the
nunber of approximations required to produce these sine
waves and the execution speed of the instructions
needed to update the DAC.

VWhen a tape is used to store progranms or data, it is
not sufficient sinply to dunp these on the tape and
hope that you will be able to read them back at some
|ater date. Rather, the information witten to the tape
must be preceded by header information which gives a
nane to the information stored, specifies its type,
and, per haps, cont ai ns information which allows
har dware synchronisation. As well as this header, a
trailer or end-of-file block nust also be witten
mar ki ng the end of the data or programon the tape.

Al the information on the tape, including the
initial information and end-of-file information, is
witten out in a sequence of blocks which nmay store
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from 0O to 255 information bytes. Each block also
contains header and trailer information as well as
actual dat a.

The overall tape format assumed by the Dragon splits
the tape into six |ogical sections:

(1) A leader consisting of 128 bytes where each byte
has the hex val ue 55.

(2) A narefil e bl ock.

(3) A blank section of tape to allow BASIC tine to
evaluate the nanefile block. Around 0.5 seconds
are needed for this.

(4) Anot her |eader of 128 bytes where each byte has
the hex val ue 55.

(5) e or nore data bl ocks.

(6) An end-of-file bl ock.

Nanmefil e, data blocks and end-of-file blocks all share
the sane format with an identification byte used to
mark the block type. This format is:

(1) A leader byte - 55 (hex).

(2) A synchronisation byte - 3C (hex).

(3) A block type byte where 01 neans data block, FF

nmeans end-of-file block and 00 neans nanefile
bl ock.

(4 Ablock length byte - 00-FF (hex).
(5) 0-255 bytes of data.

(6) A checksumbyte which is the sumof all the data
+ bl ock type + block Iength.

(7) Atrailer byte - 55 (hex).

An end-of-file block has no associated data bytes and a
nanefile block has 15 data bytes giving the name and
%y? of the file. These 15 bytes are organised as
ol | ows:

(1) An 8-byte program nane.
(2) A 1-byte file type where 00 indicates a BASIC

file, 01 indicates a data file and 02 a nachine
| anguage file.
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(3) An ASCII flag byte which indicates if the file is
recorded as ASCI|I characters or as binary digits.

(4) A gap flag byte set to 01 when the tape is wit-
ten as a contiguous stream of blocks and to FF
when there are gaps between bl ocks. Wen witing
data to the tape, the associated processing tine
usual ly neans that output is not continuous and
that the tape is switched off and on between
bl ocks. The gaps are the result of this swtch-

i ng.

(5) Two bytes for the start address of a nachine
| anguage program

(6) Two bytes for the load address of a nachine
| anguage program

The length of the |eader on the tape is held as a BASIC
system variable in locations 90:91 and it is possible
for the user to nodify this length to increase the
length of the tape | eader. By poking a value of 1 to
address 90, the leader is made 3 times Ilonger and
poking a value of 2 gives a leader 5 times |onger than
nor mal . The advantage of this is that it gives the
cassette recorder's automatic volume control nore time
to stabilise thus reducing the probability of cassette
I/O errors.

After a programor data file has been recorded, you
can verify the tape by using the SKIPF conmand. Thi s
reads the tape in exactly the same way as CLOAD/ CLOADM
and reports any errors. It does not, of course, |oad
the contents of the tape.

We do not reconmend that you wite your own routines
for cassette input and output. Rat her, it 1is much
better to use the built-in system routines which have
been inplenented as part of the Extended Color BASIC
system This provides routines to turn the cassette on
and off, to read and wite blocks of data to the
cassette, to read and wite single bytes to the
cassette and to read a single bit fromthe cassette.

A specification for each of these routines in the
form of a header comment is provided bel ow

CASON - turn on cassette nptor

Regi ster inputs - NONE

Regi sters destroyed - X, A CC

Turns on notor and delays until notor cones up to
speed. Delay value is a 16-bit value at |ocation 95
with initial value = $DA5C representing 0.5 seconds

WRTLDR - Turn on tape for witing

* %k ok kX X X X X X
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ko ok ok ok Sk ok ok kK ok % ok %k k K ok ok ok * F

%k ok ok ok ok %k K ok K ok ok K ok ok ok ok kK ok F Sk ¥ X kX * ok *

Regi ster inputs - I\D\E

Regi sters destroyed X, CC

Thi's routines disables IRQ and FIRQ interrupt I|ines
to avoid interruption of recording then calls CASON
It then outputs a bit sync |eader. The nunber of
bytes in the leader is a 16-bit value at address 90.
It has default val ue $0080.

CSRDON - turn on tape for reading

Regi ster inputs NONE
Regi sters destroyed ALL
This routine disables FIRQ

and IRQE_ calls CASCN and uses the bit sync
infornati on to synchronise the tape input.

CASCFF - turn off cassette

Regi ster inputs - NONE
Regi sters destroyed A CC
Re-enables IRQ and FIRQ and turns off cassette notor

CBAUT - wite byte to cassette

Register inputs A - byte to be witten
Regi sters destroyed Y, B, CC

CBIN - read byte from tape

Regi ster inputs - NONE
Regi ster output A - byte read from tape
Regi sters destroyed A B, CC

BITIN - read a bit from cassette

Regi ster inputs NONE
Regi ster outputs - bit read is carry bit, CC C
Regi sters destroyed B, CC

BLKQUT - Qutput data bl ock

Regi ster inputs NONE
Regi sters destroyed ALL

LDR must be called before this routine to get
the tape up to speed and to wite out tape |eader.
I nput parameters are passed in RAM | ocations
$7C - block ty Pe
$7D - nunber of data bytes

7E.7F - address in mepory of start  of block _
nterrupts renain disabled on exit fromthis routine

BLKIN - read a block from tape
Regi ster inputs NONE
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Regi ster outputs CC Z O if I/O error

CC. z 1 if no I/O error
Regi sters destroyed ALL except U and Y
CSRDON nust be called before this routine to get
the tape up to speed and turn on bit sync.
I nput and output parameters are in RAM | ocations
$7E: 7F - 16-bit start address of block to be read
$7C - block type read from tape
$7D - Nunber of bytes read from tape
$81 - Error indicator. No errors=0, Checksum error=l
Menmory error = 2
On exit, interrupts remain disabled

* 0% 3k Ok Ok kX X X X X X

The entry points to these routines are held in a direct
junp table starting at address 8000 and/or in an
indirect junp table located at address A000. The table
bel ow shows which routine is |located at which address.

Rout i ne Direct junmp address Indirect junp address
CASON 8015 -

CASOFF 8018 -

VWRTLDR 801B A00C

CBOUT 801E -

CSRDON 8021 A004

CBI N 8024 -

BI TIN 8027 -

BLKI N - A006

BLKOUT - A008

We can illustrate the use of the output routines wth

the follow ng program which wites a data block to the
cassette.

CASOFF  EQU $8018
WRTLDR  EQU $801B
DBADR EQU $7E
BLKTYP EQU $7C
DBLEN EQU $7D
BLKOUT  EQU $A008

LDX #BLOCK ; Set up address of

STX DBADR ; data block

LDA #3$01 ; File type = DATA

STA BLKTYP

LDA #255 ; Nunber of bytes

STA DBLEN ; 1s set up

JSR WRTLDR ; Prior to witing tape
JSR ( BLKQOUT) ; Wite block

JSR CASOFF ; Switch off tape

An input program which reads blocks from the tape and
di splays their contents on the screen is shown bel ow.
Assume that the equates in the above program have been
made.
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CSRDON EQU $8021
BLKERR EQU $81
BLKI N EQU $A006

LDX #%$400 ; Screen RAM
STX DBADR ; as block copy area
NXTFI L JSR CRDON ; Turn on tape for reading
NXTBLK  JSR (BLKI N) ; Read a bl ock
BNE BI NERR ; Abort on error
LDA #$FF ; Check for end of file
CMPA BLKTYP
BNE NXTBLK ; Not eof, get next block
BRA NXTFI L ; Otherwi se, re-sync and get
* next file
Bl NERR JSR CASOFF
RTS

These routines have shown how blocks of data can be
read from and witten to a cassette and the CASON and
CASOFF routines are generally wused in this context.
However, there may be circunstances where you wish to
avoid using these routines as they both manipulate the
interrupt mask bits in the condition code register.

The relay used to control the cassette notor is

connected to the CA2 control line output of PIA1L and
you can switch the cassette nmotor on and off by setting
and clearing this bit. To switch on, the bit should be

set Hl; to switch off, the bit should be cleared to LO
This can be acconplished with the following BASIC
st at enment .

POKE &HFF21, ( PEEK(&HFF21) OR 8) ' Switch on
POKE &HFF21, ( PEEK( &HFF21) AND &HF7) 'Switch off

8.4.5 Joystick control

For gane  pl ayi ng, where continuous novenent is
required, typing different keys is not really the nost
conveni ent way of specifying that novement . The

Dragon's designers have provided an input port which
can be used to connect joysticks to the system These
joysticks can be mved in the X-Y plane to control
novenent and have a button input for firing. Each
joystick has two potentioneters associated wth it
whose output voltage is related to the X and Y
coordinates of the stick. These voltages can be
detected and their variations related to the novenent
of a synbol on the screen.

The easiest way to read joystick values is to make
use of Extended Color BASIC S JOYSTK conmmand. Thi s
conmand is a BASIC function which takes as a paraneter
the axis nunmber of a joystick and returns a nuneric
value in the range 0-63 which represents the position
of that axis. The actual axes specified by JOYSTK are:

(1) JOYSTK(O) reads right joystick, X-axis (horizon-
tal)
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(2) JOYSTK(1) reads right joystick, Y-axis (vertical)

(3) JOIY)STK(Z) reads left joystick, X-axis (horizon-
ta

(4) JOYSTK(3) reads left joystick, Y-axis (vertical)

The arrangenent of the axes potentioneters is such that
they return values relating to the screen graphics
coordi nate convention of the top left corner being O,O0.
Therefore, reading the right joystick at the extrene
top left of its travel will result in JOYSTK(0) = 0 and
JOYSTK(1) = 0 and, at the extreme bottom right, the
readings will each be 63. In fact, these values nay
vary slightly because of slight differences in the
potentiometers built into the joysticks.

A feature of the JOYSTK function is that new
joystick readings are only taken when JOYSTK(O is
used. This means that JOYSTK(O nust be used before
ot her JOYSTK commands even if JOYSTK(2) and JOYSTK(3)
are the only values used in the program

The reason for this becones clear when we consider
how the JOYSTK function is inplenented. It actually
calls a systemroutine called JOYIN which reads all the
joystick values and this routine is only activated when
JOYSTK(O) is used. Wen other JOYSTK paraneters are
used, the value returned is siga(ly that which was read
by the previous activation of JOYIN

JOYIN can be wused by the assenbly | angua?e
progranmer. It nmay be accessed through the direct 170
Jjunp table at Ilocation 8012 or through the indirect
junp table via location AO0OA Its specification for
the assenbly |anguage programmer is as foll ows:

JOYIN - read joystick val ues

Regi ster inputs NONE

Regi sters destroyed ALL

JOYIN returns a value in the range 0-63 for each
of the joystick potentioneters.

These values are returned in RAM

| ocations as follows

$15A - X-coordinate of right joystick

$15B - Y-coordinate of right joystick

$15C - X-coordinate of left joystick

$15D - Y-coordinate of left ]oystick

* Ok ok kK ok ok K ok ¥ F

The buttons on each joystick are arranged so that, when
they are pressed, they ground an input |ine. These
button outputs are connected to PAD (right button) and
PA1 (left button) of POPDRA. The follow ng BASIC code
denonstrates how button pushes nay be detected.

10 FO
20 F1

PEEK( &HFFO0) AND 1 ' Read PAO button state
PEEK( &HFFO0) AND 2 ' Read PAl button state
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30 IF FO = 0 THEN PRINT "FI RE1"
40 IF F1 = 0 THEN PR NT " FI RE2"
50 GOT1O 10

As these button outputs are shared with the first two
rows of the keyboard matrix, the standard keyboard
scanning routine  rmnust make sure that spuri ous
characters are not gener at ed due to t he
msinterpretation of button closures as key closures.
Unfortunately, the only reliable way to do this is to
di sabl e the keyboard conpletely so, even if you wite
your own keyboard scanner, you should not try to use
the keyboard and joysticks at the same tinme.

If you use joysticks, we advise you to use the JOYIN
routine but for those readers who wish to wite their
own joystick routines, we now describe, very briefly,
how an analogue voltage input from the joystick 1Is
converted to a value between 0 and 63.

Each of the four joystick potentiometers produces a
vol tage between 0OV and 5V depending on the position of
the joystick. The technique used to convert this to a
digital value involves inputting a known value to the
DAC (described above) and then conparing the DAC out put
wth t he pot ent i onet er val ue. | f t hey are
approximately the same, the DAC input is taken as the
digital representation of the potentioneter output
voltage. If the values are not the sanme, the DAC input
value is varied until the val ues match.

This sinple analogue to digital conversion system
actually has three conponents. These are the DAC, an
anal ogue nultiplexor which can select one of the
otentioneter, and a voltage conparator to conpare the

C and nultiplexor outputs. The conparator output is
connected to PA7 of POPDRA. If the output from the
mul ti pl exor exceeds the DAC output, the conparator
output is H and if the DAC output is greater, the
conparator output is LO

In performBg the conversion, a value at the hal fway
oint in the C range, nanely 32, is witten to the
C and the resulting output volta?e conpared with the

mul tiplexor output. 1f the DAC voltage is higher than
the multiplexor output, a new DAC input value which is
half the old value is tried. If the DAC output is
lower than the multiplexor output, a new DAC value
which is half as nmuch again as the current value is
attenpted. This process continues until a DAC output
whi c? is approximately equal to the nultipl exor output
results.

This technique is called binary search and is often
used when values have to be conpared. It is an
efficient searching technique which has applications in
many different kinds of program The table bel ow
sumrari ses the approximations resulting from this
bi nary search.
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Range DAC DAC Joystick Conparator New range
Value Voltage Voltage POPDRA- PA7

0- 63 32 2.53 3.5 1 32-63
32-63 48 3.69 3.5 0 32-48
32-48 40 3.11 3.5 1 40- 48

40- 48 44 3.40 3.5 1 44- 48
44-48 46 3.54 3.5 0 44- 46

44- 46 45 3. 47 3.5 1 45- 45
The four joystick input lines are connected to the

anal ogue nultiplexor in exactly the same way as the
mul ti pl exor connection used for the sound source. The
sane PIA lines are used for this connection so the
sound sel ection routine described above nmay be used for
joystick selection. The association of A bit val ues
and joystick source is as foll ows:

Joystick select
Pl AO- CB2 Pl AO- CA2
0

0 Right - X-axis
0 1 Right - Y-axis
1 0 Left - X-axis
1 1 Left - Y-axis

8.4.6 The cartridge expansion port

The final section in this chapter is devoted to a very
brief description of the cartridge/expansion port
fitted to the Dragon. This port is intended for a
plug-in cartridge containing based software but the
40-pin connector does provide access to nmost of the
MB809' s bus signals. This neans that other devices can
be interfaced to the Dragon via this expansion port.
It is beyond the scope of this section to discuss such
interfacing and the interested reader is referred to
(IJ_ne of the books on this topic listed in the reading
I st.

The mnimuminformation required to nake interfacing
possible is a description of the signals available at
the expansion port connector. These are sunmmarised in
the table below Some of the signal nanes are suffixed
with an asterisk, indicating that these are 'active
low signals, nmeaning that they must go LO (0 volts)
for action.

Pin No. Use Description
1 +12V +12V Power supply connection
2 +12V As above
3 HALT* Connected to HALT input of M809
4 NM * Non- maskabl e interrupt input to
M6809
5 RESET* Mai n reset/power-up signal
6 E Mai n M6809 cl ock
7 Q Quadrature clock,

| eads E by 90 degrees



8 CART Interrupt input for cartridge
det ecti on
9 +5V +5V power supply connection
10-17 DO- D7 Pins 10-17 are connected to the
M6809' s data |ines
18 R W M6809 Read/Wite signal
19-31 AO0- A12 Pins 19-31 and 37-39 are connected
to the M6809's address lines
32 CTS* Cartridge select signal
33 G\D Si gnal ground
34 GN\D Si gnal ground
35 SND Sound i nput
36 p2* Pl A2 address sel ect
37-39 Al13- A15 Top three address lines
40 DSD* Device selection disable interrupt
The signals supplied by the expansion port fall into

one of four categories:

(1) Power supply

(2) M6809 bus signals

(3) Device select signals
(4) Cartridge 1/0 signals

The Dragon power supply provides +5V and +12V and these
can be used to power the cartridge conponents.
However, you nmust be careful when using these as there
is not a great deal of spare power avail able.

The M6809 bus signals (DO-D7, AO0-Al5, R W, RESET*,
NM *, HALT*, E and Q are fully described in Appendix 1
and the device select signals are described in Appendix

2. The function of the other signals is sunmmarised
bel ow.
(1) CTS*

The expansion port occupies the address space
between CO00 and FEFF inclusive. This line is
pul led LO by the SAM address decode |ogic whenev-
er an address in this range is specified.

(2) p2*
There is provision in the address decode |ogic
for a third device select signal sinmlar to the
ones that select PIAO and PIA1l. pP2* goes LO
whenever an address is specified in the range
FF40- FF5F.

(3) DSD*
VWen this signal is pulled LO by suitable car-
tridge circuitry, it disables the Dragon's inter-
nal device select |ogic. This has the effect of
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(5)
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switching off those devices which are nornally
selected and, as a result, their address space
may be used by the cartridge hardware. hi s
avoids contention problens which can arise when
two or nore devices are activated and try to
pl ace data on the data bus at the sane tinmne.

CART

This signal is tied to the CBL interrupt input
pin of PIAL. This can be used for an auto-start
facility where a clock line (normally Q is con-
nected to this line to produce the appropriate
edge for PIAl's interrupt logic. This is the nor-
mal arrangerment for games cartridges.

S\D

This signal is connected to the sound multi pl exor
and allows the cartridge to provide the sound
sour ce.



Chapter 9
Dragon hints and tips

In a conplex system such as the Dragon there are,
i nevitably, many details which cannot be neatly
packaged under a particul ar heading. These details are
often of inportance to the programmer who w shes to
exploit the capabilities of his machine so, in this
chapter, we present a pot-pourri of Dragon infornation
whi ch we hope nmay be useful to you. V& cannot explain
everything in great detail as this would require a book
in itself but we do provide enough information to get
you started with your own experinents.

In this chapter we describe what happens when you
switch on your machi ne, how BASIC prograns and data are
stored, how to pass paraneters to assenbly code
prograns and how to add new comrands to BASIC. W also
provide tables of BASIC systemvariabl es, sone of which
my be altered to tailor the system to your own
speci fication.

9.1 PONER- UP/ RESET ACTI ONS

Wien you switch on your machine a RESET interrupt
occurs and this causes a transfer to an initialisation
routine in ROM at address B3B4. The first thing that
this routine does is to configure the SAM chip as,
until this is done, RAM cannot be used. Then the Pl As
are configured to their default settings which, in
turn, sets up the VDG and I/0O devices. The hardware
initialisation routine may also be accessed via the
direct junp table and a junp to this routine is stored
at location 8000. The routine expects the return
address to be in register Y as RAMis not avail abl e,

Ohce the hardware is initialised, a software
initialisation stage is entered which first sets up a
tenporary stack for subroutine calling. The next step
is to find out whether this is a 'cold-start' or a
‘warmstart' reset and this is deternmined by the
contents of the reset flag at address 71 and the
secondary reset vector at addresses 72:73. If the
reset flag is $55 and the secondary reset vector points
to a NOP instruction, a warmstart sequence is
initiated otherwi se a cold-start takes place.

~ The software initialisation routine nmay be accessed
via the junp table (8003) and has neither input nor
out put paraneters.

224
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9.1.1 Cold-start initialisation

When first switched on, the machine's random access
nmenory contains random bit patterns as the contents of
RAM are lost when the power is switched off.
Therefore, the first action of the cold-start routine
is toclear RAMto zeros so that systemvariables, etc.
have a default value of zero.

The next step is to clear the text screen and this
is followed by a RAMsizing operation which detects the
top of the useable RAM on the nachi ne. The size of RAM
can be determned by altering consecutive menory
locations in turn until an unalterable l|ocation is
detected. This is the start of ROM so the last RAM
address is the address which imediately precedes this.

The final step in the software initialisation is to
set up BASICS system variables and these are
initialised by copying their values fromtables in ROM

When software initialisation is conplete, the reset
service routine |ooks for the occurrence of a disk
controller cartridge bg/ checking if the characters 'IX
occupy addresses (C000: C001. If a controller is
present, the disk controller is initialised by junping
to an initialisation routine at address C002.

If there is no disk controller, IRQ and FIRQ
interrupts are enabled by clearing the appropriate bits
in the condition code register. This allows an auto-
starting ROM cartridge to interrupt on H RQ thereby
transferring control to the cartridge software. |If no
ROM cartridge is present, the secondary reset vector is
set to point at the warmstart routine and the reset
flag set to $55.

Finally, the BASIC system is initiated and the
systemis ready for use.

9.1.2 Wrmstart initialisation

The warmstart initialisation routine is invoked on a
manual reset after the initial powering up of the
machi ne. The code in this routine is used to re-
initialise those variables needed to restart an
existing program to clear the text screen and to re-
enabl e the A and processor interrupts. The user's
BASIC program is left intact. However, if a BASIC
program or an injudicious PCOKE has corrupted sone vital
system vari ables, then the only course of action left
to the user is to initiate a cold-start initialisation
by switching the machine off and on.

The followi ng BASIC statenents show how to perform a
warmstart from BASI C

10 EXEC &HB3B4 'Execute the reset routine
20 PR NT "VE WON T GET HERE AS STAXK | S RESET"

Wien run, the above programw |l exit and display the
'K pronpt but the programwll renain intact and can
be listed, run, etc. However, if the statenent PCKE
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&H71,0 is added as line 5 this will force a cold-start
and the full sign-on message will appear.

9.2 BASI C PROGRAM STORAGE

VWhen you type in a BASIC program the system saves it
in menory and operates on this saved program when you
type a RUN conmand. The format of a saved BASIC
statenent is:

<l i nk><line nunber><stat enent >EQL

The <link> field is a 16-bit field and holds the
address of the following Iine. The <line number) field
is also 16 bits wide and holds the statement's nunber
as an unsigned 16-bit integer. This is followed by the
text of the line and the end of the line is nmarked by
EQL which is a null byte. The end of a program is
indicated as two zero bytes.

The BASIC program below is a dunp program which
scans a stored BASIC program and prints the stored form
of that program |In its present form it actually
prints the stored form of itself but it may readily be
nodified to print out the internal form of another
BASI C program

10 ' DUW PROGRAM

15 'Peeks a word (16 bits)

20 DEF FNW A) =PEEK( A) * 256+PEEK( A+1)

30 DIM ZZ(2), XX(2,1), ZZ%(2), XX$(2, 1)

40 DM XY(1, 2, 3)

50 ' DEFINI NG VARI ABLES BEFORE USE

60 FOR |=0TQ2

70 ZZ(1)=I:2ZZ$(1)=STR$(1)

80 FCOR J=0TO1

90 XX(1,J)=C: XX$(1,J)=STR$(C)

100 XY(J,1,0)=C

110 C=C+1

120 NEXTJ, |

130 PS=0 'Program Start

140 PE=0 ' Program End

150 VS=0 'Variables Start

160 VE=0 'Vari ables End

170 AS=0 'Array Start

180 AE=0 'Array End

190 DA=0 'Dunp Address

200 NA=0 'Next Address

210 Dv=0 ' Device numnber

220 DBYTE=0: AN$="": SBYTE=0

230 R=0: H3=0: H2=0: H1=0: HO=0

240 PA=&H19

250 PS=FNW PA) '19:1A contain PS address
260 VS=FNW PA+2) '1B:1C contain VS address
270 AS=FNW PA+4) '1D 1E contain AS address
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PEEVS-1 'Variables are after program
VE=AS-1 'Arrays are after variables
AE=FNW PA+6) -1 ' 1F. 20 hol ds free space address

310 G.S

320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670

| NPUT" QUTPUT TO PRI NTER'; AN

|F AN$ = "Y' THEN Dv=-2 ELSE DV=0

PR NT#DV, " PROGRAM START ADDRESS = ";: DBYTE=PS
GOSUB  1000: PRI NT#DV

PRI NT#DV, " PROGRAM END ADDRESS = ";: DBYTE=PE
@QOSUB 1000: PRI NT#DV

PRI NT#DV, " VAR ABLE START ADDRESS = ";: DBYTE=VS
@QOSUB 1000: PRI NT#DV

PR NT#DV, " VAR ABLE END ADDRESS = ";: DBYTESVE
@OSUB 1000: PR NT#DV

PRI NT#DV, " ARRAY START ADDRESS = ";: DBYTE=AS
GOSUB 1000: PR NT#DV

PRI NT#DV, " ARRAY END ADDRESS = ";: DBYTE=AE
GOSUB  1000: PR NT#DV

INPUT "DO YOU WSH A PROGRAM DUMP" ; AN

| F ANS<>"Y" THEN GOTO 630

PRI NT#DV, " PROGRAM DUVP"

DA=PS

NA=FNW( DA)

| F (NA=0) CR (DA=PE) THEN GOTO 620

PR NT#DV: PRI NT#DV

DBYTE=DA: GOSUB 1000 ' PR NT CURRENT ADDRESS
PR NT#DV

DBYTE=NA: GOSUB 1000 ' PR NT NEXT ADDRESS
DA=DA+2

DBYTE=FNWDA) : GOSUB 1000 ' PRINT LI NE NUMBER
DA=DA+2

SBYTE=PEEK(DA): GCSUB 2000 ' PR NT LI NE CONTENTS
DA=DA+1

| F DA<>NA THEN GOTO 590 ELSE GOTO 500

PR NT#DV

INPUT "DO YOU WANT A VAR ABLE DUMP'; ANS

IF ANS <> "Y" THEN GOTO 690

PRI NT#DV: PRI NT#DV: PRI NT#DV, " VAR ABLE DUVP"
FCR DA = VS TO VE

SBYTE=PEEK( DA) : GOSUB 2000

680 NEXT DA

690
700
710
720
730
740

PRI NT#DV

[NPUT "DO YOU WANT AN ARRAY DUWP"; AN$

| F ANB< >"Y' THEN QOTO 760

PRI NT#DV: PRI NT#DV: PRI NT#DV, " ARRAY DUMP"
FCR DA = AS TO AE

SBYTE=PEEK( DA) : G08UB 2000

750 NEXT DA

760
770

PRI NT#DV: PRI NT#DV, " DUMP FI Nl SHED'
STCP

1000 'PRINT 2 BYTES AS 4 HEX CHARS
1010 R=DBYTE
1020 H3=l NTE R/ 4096) : R=DBYTE- H3* 4096

1030 H2=I NT

R/ 256): R=R-H2*256
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1040 H1=I NT(R/ 16): HO=R- H1*16

1045  HV$=HEX$( H3) +HEXS$( H2) +HEX$( HL) +HEX$( HO)
1050 PRI NT#DV, USING "% 9%; H$

1060 RETURN

2000 'PRNT 1 BYTE AS 2 HEX CHARS

2010 Hl=I NT( SBYTE/ 16) : HO=SBYTE- H1* 16

2020 PRI NT#DV, US| NG' %% ; HEX$( HL) +HEX$( HO) ;
2030 RETURN

If you run this Program you will see that the BASIC
program is actually stored in a sem-conpressed form
with reserved words (DM | NPUT, PRI NT, etc.)
represented as a single byte or token. This token
always has its top bit set to distinguish it from
normal ASC | characters which all lie in the range O-
127. You can see this if you nodify the above program
by printing each byte as an ASA| character rather than
as a pair of hexadecimal digits. The follow ng
subroutine nmay be used to do this:

2000 ' Print 1 byte as a character
2010 PRI NT CHR$( SBYTE);
2020 RETURN

If you now run the dunp program with this anendment,
you will see nost of the text as it was oridginally
typed into the machine. However, all reserved words
wll have disappeared and will have been replaced by
Sem graphi ¢ characters.

~There are two reasons for storing the program in
this sem -conpressed way:

(1) ace is saved. Rather than reserved words Iike
I taking up 5 bytes, only a single byte is
required to represent that command.

(2) Program execution speed is increased. The reason
for this is that the token representing the
reserved word is used as an index into a junp
table of routines to carry out the action speci-

fied in the comand. Therefore, the token
representing INPUT is a form of indirect address
to the | routine.

Al tokens representing reserved words have values
between 128 and 255 because the top bit of the token is
al ways set. Unfortunately, Extended Color BASIC has
nore than 127 reserved words, by the tine you take the
nanes of all system routines into account, so an
alternative technique is used to encode function nanes.

This involves use a 2-byte code for the function
nane where the first byte is always FF. A byte whose
value is FF neans that the following byte is the token
for a routine and, obviously, the value FF is not
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itself used as a reserved word token. The table bel ow
shows sone exanples of reserved word tokens as single
and as doubl e bytes.

Reserved word Token

$8C

FCR $80

= $CB
STR$ $FFBE
PEEK $FF8C

The addresses of the routines, called action routines,
which are used to execute the reserved words are held
in a table called the dispatch table. This is indexed
by the reserved word token. A conplete list of
reserved words, associ at ed t okens and di spat ch
addresses is provided in Appendix 7. (Qoviously, there
nust be separate dispatch tables for the nornal
reserved words and the function reserved words so that
i ndices do not clash with each ot her.

Reserved words are converted to tokens by the BASIC
system's input routine which tries to match each input
character sequence against a reserved word list which
is a table of reserved words. The token associated with
each reserved word is taken to be its position in the
reserved word table plus 80 (hex) to set the top bit.
Thus the 17th reserved word has token value 91 (hex) ,
the 37th has value A5 (hex), etc. If a nmatch is found,
the word is replaced by its token. The same table is
used by the LIST routine which converts tokens into
reserved words so that the programnay be |isted.

The BASIC program statenent storage area isS
immedi ately followed in nenory by storage areas devoted
to sinple variables and array variables. Sinple
variables are either numeric or string variables and
only the first two characters of the variable nane are
used to identify the variable. Al others are ignored.
The variable area is made up of the variable nane as a
pair of ASCI characters followed by a 5-byte
representation of the nunber or string. These
representations are described in section 9.3.

Al names are represented as two characters so
single character nanmes are nade U|?| of the single
character plus a zero byte. Notice that this does not
nmean that A may be confused with A0 as the ASOI
character '0' does not have byte value 0. String tyBe
variables are distinguished from nuneric variables by
setting the top bit of the last character in the
vari abl e nare.

Array variables are held in a separate storage area
and array nanes are distinguished from sinple variable
nanmes by suffixing a '(' to the nane. In the array
storage area, each array is stored as a structure:
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<array name><array descriptor><array val ues>

The array descriptor provides information about the
size and nunber of dinensions of the array. It is
structured as follows:

(1) Length of array in RAM- 2 bytes.
(2) The nunber of array dinensions - 1 byte.

(3) For each dinmension, a list (2 bytes each) of the
nunber of elenents in that di mension.

The array values are held as normal string type or
nuneric type val ues.

The BASIC systemuses a nunber of variables to keep
track of the program variable and array storage areas.
These are:

Addr ess Use

$19: 1A Hol ds address of start of BASIC program
$1B: 1C Hol ds address of start of sinple variables
$1D 1E Hol ds address of start of array variabl es
$1F: 20 Hol ds address of start of unused nenory

9.3 BASI C S | NFCRVATI ON REPRESENTATI ON

Wien devising any high-level programmng |[|anguage
system the system designer nust make sone ver

fundamental decisions regarding the way in whic

nuneric and character variables are represented in his
s?/stem BASIC is very flexible in this respect,
allowing variable length character strings and all ow ng
nunbers to be either real nunbers (nunbers with a
fractional part) or integers.

If you want to interface assenbly |anguage with
BASIC it is wuseful, although not essential, to have
some idea of how the BASIC system represents
i nformation. Such  knowl edge also helps you to
understand some of the lintations of BASIC and why
some applications are particularly slow to execute. In
this section, therefore, we describe how nunbers and
string variables are represented in BASIC

9.3.1 Nunmber representation
The original designers  of BASIC made a very
inportant (and, in our view, a correct) decision that
no distinction should be made between real nunbers and
integers. A BASIC nureric variable nay be either a
real nunber or an integer and there is no need for the
programmer to indicate, in advance, the type of the
var i abl es which he uses.

In this respect, BASIC differs fromal nost all other
programmi ng |anguages which treat integers and real
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nunbers differently. The reason for this is that
operations on integers are easier to inplenment and much
nore efficient than operations on real nunbers. If no

distinction is nade between them the system nust
assume that any nunber nay have a fractional part. As
a result, integers in BASIC are represented as real
nunbers with a fractional part equal to zero.

This explains why applications which involve a lot
of integer arithmetic are relatively slow in BASIC
The integer arithmetic involved is actually carried out
using real nunber operations and it is not possible to
take advantage of the M809's fast integer arithnetic
facilities. This is one reason why assenbly |anguage
prograns which only use integers are so nuch faster
than correspondi ng BASI C prograns.

The representation of real nunbers in a conputer is
made up of two parts. These parts are called the
manti ssa, which is the nunber to be represented held as
an integer representing a fraction between 0 and 1, and
the exponent, which is also an integer, representing
the power to which that fraction is raised in order to
formthe correct real nunber.

This is really quite a famliar system If the
exponent represents the nunbers of powers of 10 to
which a fraction is to be raised, the table bel ow gives
some exanples of how real nunbers night be represented
usi ng exponent/manti ssa notation.

Real Number Exponent Mant i ssa

5. 55555 1 . 555555
. 0032 -2 .32

3456789 7 . 3456789

234. 456 3 . 234456

V& have explained this representation in terns of
powers of 10 because that is the nunber base w th which
we are nost famliar. In the BASIC system however, the
exponent represents the power of 2 to which the
exponent is raised. Therefore, in BASIC, the value of a
nunber is conputed by rmultiplyi n% the fraction by 2
raised to the power specified in the exponent.

Real nunber in BASIC are represented using 5 bytes.
These bytes are used as foll ows:

Byte O (leftnost byte) Exponent
Bytes 1-4 Mant i ssa

The leftnost bit of the mantissa, that is bit 7 of byte
1, represents the sign of the mantissa. If it is O
this neans a positive mantissa, if it is 1 this neans
that the nmantissa is negative. The mantissa itself is
not held as a twd's conplenment nunber but is
represented as a positive integer. A nantissa of zero
nmeans that the nunber represented is zero. In this
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case, the exponent rﬁ)art is ignored by the BASIC system

The exponent is held as a positive nunber between 0
and 255 which seens to inply that negative exponents
cannot be represented. However, to get the actual value
represented by the exponent, 128 nust be subtracted
fromit. Therefore, an exponent of zero means that the
nunber represented is raised to the power -128, a
exponent of 128 means that the nunber is raised to the
power O and an exponent of 255 neans that the nunber is
raised to the power 127.

G@ven this representational system the snallest
nunber which the BASIC programmer may use is 10.14 to
the power -38 and the largest number is 10.14 to the
power 38. In many cases, however, the actual nunber
represented is an integer between -32768 and 32767. |If
this is the case, the system function |INIOW can be
called by the assenbly |anguage Pro%ramrer. Thi s
function returns the integer value of the BASI C nunber
in accunul ator D

INTONV is designed to convert a real nunber to an
i nt eger. If the nunber to be converted lies outside
the range of 16-bit integers, |INIO\NW causes an overfl ow
error and control autonatically reverts to the BASIC
system Simlarly, if a string rather than a nunber is
passed as a paraneter to INTONV, a type msnatch error
Is signalled and control reverts to I C.

The routine INTONV uses a so-called floating-point
accumulator in menory locations 4F-54. The floating-
poi nt accurulator (FAC) gets its name because real
nunbers represented in exponent/mantissa notation are
sonetinmes called floating-point nunbers. It is a 6-byte
area organi sed as foll ows:

Byte O Exponent of real nunber
Bytes 1-4  Mantissa val ue
Byte 5 Manti ssa sign

The sign of the mantissa is factored out of the real
nunber representation and held as a separate byte on
its own. The reason for this is that it hel ps speed up
internal floating-point conputations. As you woul d
expect, a byte value of zero nmeans that the mantissa is
positive and a byte value of FF neans that the mantissa
sign is negative.

There is no need for the programrer to wite code
which explicitly converts a BASIC nuneric variable to
FAC representation. Rather, there is an in-built
routine called MWFM which carries out such a
conversion. MOFM uses the system FAC in locations 4F
onwards and expects the address of a numeric variable
in the BASIC variable table or anywhere else in nenory
to be in register X

A conpl ementary function called GVABF is used to
convert an integer held in accumlator D to its
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floating-point representation in a 6-byte floating
oi nt accumul at or. A%ai n, the systemis FAC is assuned

this routine. The followng exanple shows an
assenbly code routine which uses INTCNV and G VABF to
add 1 to a BASIC nuneric variabl e.

*

Input register X - Address of FAC

*
*
% The value in FAC is increnented by 1 by this routine
* Registers destroyed D, CC

*

ADD1 JSR | NTO\V ; Convert to integer
ADDD #1 : Add 1 to D
JSR d VABF
RTS

9.3.2 String representation

The BASIC system maintains a string storage area where
the actual characters nmaking up a string are stored and
holds string variables as references into this area.
However, rather than store the string length along wth
the string characters, BASIC holds that Iength along
with the address, in the string storage area, of the
string characters. |In fact, each string is represented
by a 5-byte obg'ect called a string descriptor. This is
structured as ftollows:

Byte 0 (leftmost byte) String length

Byte 1 Housekeepi ng byte
Bytes 2-3 String address
Byte 4 Housekeepi ng byte

The parts which we are interested in are bytes 0, 2 and
3. Bytes 1 and 4 are used by the BASI C systemto hold
information which allows it to perform garbage
collection in the string storage area as discussed In
Chapter 6. The techniques used for garbage collection
are not inportant here and bytes 1 and 4 should not be
changed by the assenbly |anguage programrer.

The programmer may wite assenbly code routines to
mani pul ate string descriptors and call these routines
with a USR call. However , the nodification of
descriptors is a dangerous business as it is possible
to corrupt other system information which could result
in inexplicable systemfailure. As the descriptor holds
t he strln% length, the onlty reaII%/ safe operation is to
shorten the string by nodifying the length byte. 1 no
account should you try to lengthen the string or change
the actual string characters addressed by bytes 2 and 3
of the descriptor. The only safe operation on the
address field of the string descriptor is to change it
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to point at sone character rather than the first string
character. You nust, naturally, also change the string
length byte if you nodify the address field.

9.3.3 BASIC vari abl es

The reader wll have noticed that both nunbers and
strings in BASIC are represented as 5-byte objects.
This neans that the construction of a variable table
for the BASIC interpreter to use is straightforward.
This table has two conponents:

(1) The vari abl e nare
(2) The variabl e 'val ue'

W assunme here that the value of a string is actually
the value of its descriptor.

The built-in BASIC function VARPTR returns a nuneric
value which is an index to the systems variable table.
An exanple, in BASIC, of this is:

10 A$ = "HERE IS A STR NG'
20 PR NT VARPTR(AS$)

This code would cause the location in the variable
table of the string A5 to be printed. Note that the
value returned by VARPTR is a 5-byte BASIC nureric
variable which always represents an integer. The
assenbly |anguage programrer nmust therefore convert
this nunber using INTOWV before he can use it in his

pr ogr am
W conclude this section with a table listing the
conver si on routines, their addr esses and their
functi ons.
Name Addr ess Functi on

VALTYP $06 This variable holds the type of a
paraneter to a routine initiated by
a USR call and also the type of the
result returned to BASIC

I NTCNV  $8B2D Thi s routine converts a BASIC
nuneric variable to an integer. It
expects the X register to point at a
floating-point accunulator hol ding
the nunber to be converted and
returns its result in register D

G VABF  $8C37 This routine conplements |NIC\NV

i
t hat it converts an integer i
accunmulator D to a BASIC nuneri
value. G VABF also sets VALTYP t
zero.

n
n
Cc
0
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MOVFM $DO3BF This routine nmoves a 5-byte BASIC
f1 oati ng- poi nt nunber into the
f1 oati ng- poi nt accurul at or. The

nunber to be converted is addressed
in register X

9.4  PASSI NG PARAMETERS FROM BASI C TO MACH NE OCDE

V& have already shown, in Chapter 6, how the EXEC and
USR calls may be wused to interface machine code
routines with BASIC prograns. The parameter passing
technique described there involved poking paraneter
values into known nenory addresses and peeking the
results from other addresses. In this section we
describe how knowedge of BASICS internal data
representation allows parameters to be passed to
nmachi ne code routines via USR calls.

To help with its 'housekeeping', the BASI C system
keeps track of the type of parameter being passed to a
USR function in a nenory location called VALTYP. | f
the argunment is a nunber, VALTYP is set to zero. A
non-zero value assigned to VALTYP neans that the
argument to the function is a string. T)goe
msmatch errors, resulting in the message '?TM E ,
are caused by the contents of VALTYP and the actual
operand being inconpatible. For exanple, if VALTYP is
zero and a string is used as an operand, a type
m smat ch occurs.

O entry to a USR function (renenber this is defined
by the assenbly code prograrmer{/, the A accunul at or
register reflects the contents of VALTYP. If Ais zero,
the paraneter is nuneric, if A is non-zero, the
paraneter is a string.

According to the BASIC manual, the paraneters to a
USR call nay be either a nunber or a string. However,
experinmentation with this will show that the use of a

call wth a string argumant results in a tyeg
msmatch error message 'TM ERRCR  being printed.
describe bel ow how to pass nuneric paraneters to a USR
call and also how to program around the system bug
whi ch causes an error when string paraneters are used.

9.4.1 Numeric paraneters
As a USR call is a BASIC function it may only take a
single paraneter. Wen this parameter is a nunber, the
USR call sets up the X register to point at the FAC
hol ding the nunber and sets A to zero, indicating that
the type of the paraneter is nuneric. Usuallal, the
first thing that the assenbly |anguage routine does is
convert this nunber to an integer using | NTC\V.
Conputation may then proceed.

Because the USR call is considered to be a BASIC
functi on, it nust return a result to the calling
program If the USR call is to initiate a subroutine
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rather than a function, where the value returned is
irrelevant, the convention adopted is for the assenbly
| anguage routine initiated by the USR call to return
its 1input paraneter as a result. This is easily
acconplished by returning to BASIC using a RIS or
equi valent instruction with the X register pointing at
the FAC containing the result. As long as the
subroutine does not change the X register, the result
will be the same as the input paraneter.

However, if the USR call initiates a proper
function, it is possible to return a result which is
not the same as the routine's input. The result is
conputed as an integer and the routine A VABF is called
to convert the contents of accumulator D and l|oad the
floating-point accurmulator. G VABF also sets the type
indicator VALTYP to zero to reflect the fact that a
nuneric variable is being returned to the BASI C system

Any integer values may be returned in this way even
when a string is the input parameter to the USR call.
For exanpl e, consider the routine bel ow which accepts a
single character string as an input paraneter and
returns, as its result, the ASAIl code of that input
character. The X register, on input, points to the
string descriptor so indirect addressing is used to
fetch the actual string character.

USRASC LDB (2, X) : Fetch first character of strin
CLRA ; Zero nost significant byte of
i]q?l; d VABF : Return ASC | code in FAC

9.4.2 String paraneters

Al though the BASIC system signals a type msmatch error
when a string is passed to a USRcall, it is perfectly
legal to pass a string as a paraneter. The error
occurs when the result is returned rather than when the
paranmeter is passed via the USR call.

Wien a string is used as a paraneter to a USR call,
the X register is set up to point at the b5-byte
descriptor for the string and VALTYP is set non-zero.
The string descriptor fornmat is as described in section
9.1.2 and the assenbly |anguage routine may nanipul ate
the string as required.

The problens arise when an attenpt is nade to return
to the BASIC s?/stem BASI C expects a nuneric result
fromthe USR call so, if a string result is returned, a
type msnatch error is signalled. The assenbly
| anguage routine nust sonehow fool the BASIC system
into thinking that a nuneric rather than a string
result has Dbeen returned if the error is to be
ci rcunvent ed.

There are two ways of doing this. The BASIC system
carries out the type checking by calling a routine to
check that VALTYP is zero. |If the assenbly |anguage
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programver explicitly clears VALTYP before returning to
the BASIC system the return wll execute nornally
because the checking routine will see that VALTYP is
zero. However, this does nean that the result wll be
treated as nuneric and cannot, therefore, be assigned
to a string variabl e.

To return a string variable properly, the user nust
cut out the call to the type checking routine by
di scarding the normal return address on the stack. This
can be done by executing a LEAS 2,S instruction to pop
it off the stack before a normal RTS instruction. By
discarding the return address, you avoid a return to
the point where the checking routine is called. The
return which is actually executed is a return to the
statenent inmediately after the call to the this
routine.

The way to return strings from a USR function is
best illustrated by exanple. The exanple chosen is a
nodi fication of the US routine presented in the
previous section. The routine shown below accepts a
string as its paraneter and returns the same string
with the first character increnented.

USRINC LDB (2,X Fetch first character of string
| NCB increnment it

STB (2, X) and store it back
LEAS 2, S D scard return address
RTS

If this routine is assenbled using the standard DREAM
settings, then the follow ng BASI C program can be used
to test it.

10 DEF USRO = 20001 'Default code address
20 A$ = "123"
30 PRI NT USROO( A$)

40 STCP
Wien this programis run "223" will be printed by line
30. If the programis then listed, statement 20 will
be converted to A$ = "223" showing that the string

descriptor associated with A$ points to the BASIC
programtext area. Because string descriptors nay point
into the text area, you nust be very careful when
nodi fying strings as such changes can corrupt the
surroundi ng BASI C text.

To avoid string descriptors pointing into the BASIC
text area, it is possible to force space for the string
to be allocated in the string storage area. e
techni que makes use of the fact that string catenation
results in the string descriptor referring to the
string storage area so catenating the enpty string to
anot her string ensures that the string descriptor does
not point to the text area. |In the above exanple, this
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i nvol ves changing statement 20 to A$ - "123" + "".

An alternative technique may be used when it is not
i nportant what characters are passed as an input string
as the string will be built up by the USR function and
then returned. The nost convenient nethod of creatin
a suitable string descriptor is to use BASICS STR
function. For exanple:

A$ = USROO( STRI NGH(" ", 255))

This creates a descriptor to a string nade up of 255
bl anks. If you know the length of the string to be
ret urned, Kou can obviously set it up as required. |If,
however, the length is unpredictable, you should create
a descriptor for the ongest possible string (255
characters) then nodify the length byte to reflect the
actual string length. This way, you can be sure that
sufficient space is always available for the actual
string characters.

A useful side-effect of wusing a string as a
paraneter in a function call is that the Y register is
set up to point at the first character of the string.
There is therefore no need to extract the address from
the string descriptor. As a result, the indirect
reference, (2,X), to the first character of the strin
in USRASC and USRINC can be replaced by a nornal
i ndexed reference using Y.

This side-effect also applies to VARPTRed strings so
there is no need to convert the nuneric value to an
integer with INTONV to get the string descriptor.
Therefore, the code sequence:

JSR INTO\W ; Convert to 16-bit val ue
TFR D X ; and transfer to index register
LDB (2, X ; and reference character indirectly

may be replaced with the single statenent LDB ,Y.
9.5 EXTENDI NG THE DRAGON S CAPABI LI TI ES

e way of extending the Dragon's capabilities is, of
course, to call your own assenbly |anguage subroutines
from BASI C and we have described how to do this in the
above section. However, it is also possible to augnent
the BASIC system with new commands which carry out
functions which are not provided in Extended ol or
BASI C.

To add new commands to BASIC, you nust add new
reserved words to the language and this involves
extending the reserved word table described in section
9.2. Information concerning the reserved word tables is
contained in an area of RAM called a comrand
interpretation vector or 'stub'. This information is
structured as follows:
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Byt e Use
0 Number of normal reserved words
Address of normal reserved word |ist
Address of normal reserved word dispatch table
Nunber of function reserved words
Address of function reserved word |ist
Address of function reserved word dispatch table

0 O W
o~ AN

A nunber of such command interpretation vector tables
may be used provided that they are contiguous in RAM
and that the last used table is followed by a zero
b?/te. Extended Color BASIC uses two such tables
al though the second table is sinply a dummy stub with a
zero in its first byte indicating that it 1is a
termnator. The first stub occupies RAM space from
addresses 120-129 inclusive with each entry set up as
shown in the table bel ow

RAM byt e Contents

120 4E
121:122 8033
123: 124 8154

125 22
126: 127 81CA
128: 129 8250

To add new commands, the user nust define a new stub
followng the normal BASIC command interpretation
vector table and this nust be followed by a term nator.
The format of user-supglied stubs differs slightly from
the standard BASIC stub in that bytes 3 and 4 and bytes
8 and 9 should contain the addresses of new dispatch
routines for the added commands rather than the
addresses of dispatch tables.

W illustrate the process of extending BASIC by
showing how two new commands may be added. These
commands are a HELP command which prints sone user-
supplied '"help' information and an PUT command whi ch
is exactly the sane as PR NT. To add these new
commands requires that the following steps should be
carried out.

(L) Set up a new reserved word tabl e.
(2) Set up a new reserved word dispatch routine.

(3) Define a new stub with references to this new
tabl e and associated routine.

The first step, setting up the reserved word table, is
strai ght f orward. This table is made wup of the
characters in the word with the last character having
its top bit set to indicate 'end-of-word .
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NEWRDS FCC [/ HEL/

FCB $D0 ; "P with top bit set
FCC / QUTPU
FCB $D4 ; 'T with top bit set

The new reserved word dispatch routine perfornms simlar
tasks to BASIC S reserved word dispatch routine. These
tasks include checking the validity of the new token
val ue, calculating the appropriate index into the new
di spatch table and setting up the base address of the
new di spatch table. Once this has been done, the new
di spatch routine can re-enter BASIC ROM at t he
appropriate point to deal with the new command.

The tokens associated with each reserved word are
conmputed by the system by counting the nunmber of
reserved words scanned, including new reserved words if
present. As the last normal BASIC reserved word has a
token value of CD, the values for HELP and OUTPUT are
CE and CF respectively. W use equates to define the
first new token value and number of tokens and set up a
table of dispatch addresses for the new commands.

NEWI OK EQU $CE ; First new token val ue
TOKENS EQU 2 ; Number of new tokens
NEWTBL FDB HELP ; Address of HELP command

FDB $903D OQUTPUT = PRI NT

The new reserved word dispatch routine makes use of
this informati on when determ ning which action routine

to call. A text input routine called CHRGET is used by
the system to scan the BASIC text and passes the token
value to this routine in register A A suitable

di spatch routine for these new conmands is:

* NEWDSP - New dispatch routine

* Register input A - token val ue
*
* This routine checks token validity and invokes the
* appropriate action routines
*
NEWDSP CMPA #NEWIOK ; Check that
BLO NEWERR ; token given
CVMPA  #NEWIOK+TOKENS ; is within range
BHS NEWERR

: One of the new commands at this point

SUBA #NEWIOK ; Convert to table index
LEAX NEWBL, PCR ; and set up table base
JwWP ROMCND ; before jumping to BASIC

NEVEERR JMP SYNERR error junp into BASIC

The HELP routine is very sinple and al so makes use of a
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ROM routine to perform sonme of its duties:

HELP  LEAX HELPME-1, PCR ; Point to byte before
JWMP QUTSTR ; string for ROM s QUTSTR

Notice that the above routines have no explicit RTS
instructions as the terminate by junping to ROMCMD,

OUTSTR, etc. Returns from these routines therefore
return to the program which called the new dispatch
routine. These routines also use a nunber of equates
which are defined as foll ows:

QUTSTR  EQU $90E5 ; String output routine

SYNERR EQU $89B4 ; BASIC syntax error routine
ROVCMD  EQU $84ED ; BASI C di spatch point

The HELP nessage is held in an area of store nanmed
HELPME and is output by a standard output routine
called OQUTSTR. This routine takes as its paranmeter the
address of the byte before the string and expects the
string to be termnated with a zero byte.

HELPME FCB $0D
FCC /DON' T ASK ME |I'M ONLY A MACHI NE/
FCB 0

After defining the dispatch routine, a new stub must be
set up. Unfortunately, the address of the zero byte
required to mark the end of stubs clashes with the
first byte of USR vectors (134). However, this has
been allowed for in Extended Color BASIC as the USR
vector is referenced indirectly through the direct page
location B0:Bl and the USR vector area may be noved
el sewhere and these locations filled in with its new
address.

The following routine sets up a new stub and
rel ocates the USR vectors.

* NEWSET - set up new stub for reserved words

* Register input NONE
: Regi sters destroyed A X Y, CC

NEWSET LDX #STUB1 ; First of all copy
LDY #STUuB2 ; old second stub
NXTBYT LDA | X+ ; bytes into
STA |, Y+ ; third stub
CVMPX #STUB2
BLO NXTBYT
LDA #TOKENS ;. Nunmber of reserved words
STA STUB1 set up new stub

New reserved word |i st
set up

New di spatch routine
set up

LEAX NEWRDS, PCR
STX STUB1+1
LEAX NEWDSP, PCR
STX STUB1+3
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* No new functions so second part of stub unchanged
*

LEAX NEWUSR, PCR ;. Relocate the USR
STX USRPTR . vectors
LDY #FCERR ;and initialise
LDA #10

NXTVEC STY |, X++ : them to FC ERROR
DECA ; continue until all
BNE NXTVEC ; done
RTS

This routine assumes that the following equates and
decl arati ons have been nade:

STUB1 EQU $12A ; Address of second stub

USRPTR EQU $BO ; USR vectors

FCERR EQU $8B8D ; FCERR entry point

NEWUSR RMB 20 ; relocated USR vectors. Mist be
* set up before defining any USR
* addr esses

9.5.1 RAM hooks

The BASIC system designers allow new conmands to be
added to BASIC so that extra commands needed to support
a disk version of BASIC may be included. However, sone
of the existing commnds such as OPEN and CLOSE also
need to be enhanced for disk BASIC and so addresses
have been set up in RAM which allow extra facilities to

be added to action routines. These addresses normally
contain an RTS instruction so that a reference to them
fromwithin an action routine does nothing. The RAM

addresses are called 'hooks' and the RTS instruction
may be replaced by a junp to sonme other routine which
enhances the capabilities of the action routine.

There are a total of 25 RAM hooks available at

| ocations 15E to 1A8 inclusive. A brief description of
each is given in the follow ng table.

Addr ess Called from Potential use
15E B829 Open device or file
161 B7EC Check 1/0O device numnber
164 B596 Return device paraneters
167 B54B Char acter output
16A B50B Character input
16D B624 Check device is open for input
170 B63D Check device is open for output
173 B65D Close all devices and files
176 B664 Close a single device or file
179 84DE About to deal with first

character of new statenent

17C 8792 Disk file item scanner
17F B77C Pol | for BREAK and special keys
182 B5C7 Read a line of input

185 B6FE Fi ni sh | oading ASCI| program
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188 B801 End of file (EOF) function
18B 8954 Eval uate an expression

18E 8344 User error trap

191 8347 System error routine trap

194 85A5 RUN st at enent

197+ 8C80 String copy check

197~ 8424 CLEAR st at ement

19A 849F Fetch next statenent

19D 86D7 LET string copy check

1A0* BAG0O CLS st atenent

1A0* 9EEB RENUM st at ement

1A0* AAF7 PUT/ GET st at enment

1A0* 850F Functi on assi gnnent

1A3 8F67 Compress BASIC line for storage
1A6 8F08 Expand BASIC line for listing

Starred addresses in the above table nean that several
hooks share the same address. The only way to
determ ne which is used is to check the return address!

In order to use sone of these RAM hooks, you need an
in-depth knowl edge of the BASIC interpreter and,
therefore, these hooks are not useful to the ordinary
programrer. However, sone of the hooks are very useful
indeed and can be used to enhance the standard system
facilities. We shall illustrate this by showi ng how
the character output hook ($167) can be used to copy
all character output to the printer and how the new
statement hook ($19A) can be used to force a conplete
keyboard scan.

Qur first exanmple involves setting up the character
output hook wth the address of the printer output
routine.

LPTOUT EQU $800F ; Printer output address

HKCHRO EQU $167 Character output hook

HKUPCO LDX #LPTOUT Set up printer output address
STX HKCHRO+1 hook up to character output

LDA #$7E JMP opcode val ue
STA HKCHRO into hook
RTS

This exanple may be set up using BASIC pokes as it
simply involves replacing the three bytes of character
output hook with a JMP $800F. However, you nust be
very careful when setting up hooks from BASIC as the
hook may be called between each POKE statenent. Thi s
means that you must first set up the address in bytes 1
and 2 of the hook and, as the last step, replace the
RTS instruction with a JMP instruction. The follow ng
BASI C statements set up the character output hook.

PCKE &H168, &H80: POKE &H169, &HOF: POKE &H167, &H7E

It is not easy to find out which registers roust be
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preserved when a hook is called so you must save all
registers, including CC, used in the hook routine. W
didn't do this in the exanple above as this routine is
also called by the normal character output routine when
a PRINT #2 is used. W therefore assuned that the line
printer routine preserves the registers itself.

In our second RAM hook exanple we show how the new
statement RAM hook can be used to reset the row state
byte ($151) to a value which forces a conplete keyboard
scan. The following code is made up of necessary
equates, the routine used to reset the row state byte
and a routine to set up the RAM hook.

HKNWST EQU $19A ; New statenent RAM hook
KBROWS EQU $151 ; Keyboard row state byte
*

* RSROANS - reset row state byte

*

*

Regi ster inputs NONE

RSROWS PSHS A, CC ; Save registers
LDA #$7F : This value forces a scan
STA KBROWS ; of the keyboard
PULS A, CC, PC . Restore and return

*

% HKUPNS - set up RAM hook
HKUPNS LEAX RSROWS, PCR ; Address of hook routine
STX HKNWST+1 ; reset row state routine
LDA #$7E ; JMP opcode
STA HKNWST ; into hook
RTS
Setting up this hook means that all key depressions
will be recognised, even those on the same row. A

simlar technique can be used to disable the BREAK key
thus stopping the user interrupting a program and to
provi de auto-repeat facilities on some or all keys.
Both of these additions involve nodifying RSROAS above
so that the appropriate colum bytes are nodifi ed.

The BREAK key <can be disabled by adding the
followi ng code to the above program

BRKCOL EQU $154 ; Break row byte

BRKCLR EQU $BF ; To clear BREAK' S bit
LDA BRKCOL ; Pick up BREAK col um
ANDA #BRKCLR ; Force BREAK bit to O
STA BRKCOL ; and store it back

9.6 BASI C SYSTEM VARI ABLES

In this final section we list the reserved nmenory
| ocations used by the BASIC system and describe, very
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briefly, what these locations are used for. As these
are RAM |ocations, you may nodi fy them using PCKE but
you nust be very careful if you do so. If you nake a
mstake or set up an invalid value, you nmay hang the
syst em This means that you can do nothing except
switch the nmachine off and on again to reset it and all
your work currently in RAMw Il be |ost.

Ve start with a list of variables held in the first
256 bytes of nenory and accessed via direct addressing
with the direct page register set to 00.

Addr ess Use
00 BREAK nessage flag. |f negative print BREAK
01 String delimting character
02 Anot her delimting character
03 General count byte
04 Count of IFs seen while |ooking for ELSE
05 DM flag
06 VALTYP - O=nuneric, |=string
07 Gar bage collection flag
08 Subscript allowed flag
09 | NPUT/ READ f1 ag
0A Arithmetic use
0B: 0C String pointer - first free tenporary
0D: OE String pointer - last used tenporary

OF-18 Tenporary results
19: 1A Pointer to start of BASIC text

1B: 1C Pointer to start of sinple variables
1D: 1E Pointer to start of array variables
1F: 20 End of storage in use

21: 22 Stack base address

23: 24 String space base address

25: 26 Tenporary pointer to new string
27:28 Address of top of RAM used by BASIC
29: 2A Last BASIC |ine nunber

2B: 2C [ nput |ine nunber

2D: 2E ad text pointer

2F: 30 Anot her text pointer

31: 32 DATA |ine nunber

33: 34 Poi nter for DATA

35: 36 Poi nter for | NPUT

37-4E Eval uation vari abl es

4F Fl oati ng point accumul ator, FAC exponent
50- 53 FAC mantissa

54 Sign of FAC

55 Tenporary sign of FAC
56- 5B String descriptor tenporaries

5C Fl oati ng point argunment, ARG exponent
5D- 60 ARG manti ssa

61 Sign of ARG
62-67 M scel | aneous use

68: 69 Current |ine nunber
6A- 6E Devi ce paraneters used in PRINT
6F Devi ce nunber, 0O-console, -|-cassette
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-2-printer
70 End of file flag
71 Restart flag ($55 warm other cold)

72:73 Warm start vector (points to NOP)
74:75 Top of RAM minus 1
76: 77 Unused

78 Cassette file status (0-closed, 1-input,
2-out put)

79 Nunber of characters in CASBUF
7A: 7B Cassette buffer pointer

7C Bl ock type (O=header, 1=data

FF=end of file)

7D Bl ock Iength
TE: 7F Address of cassette buffer

80 Bl ock checksum

81 Checksum error flag

82 Pul se width counter

83 Sync bits counter

84 Bit phase flag

85 Last sine wave val ue

86 Used in SET, RESET, and PO NT

87 Singl e character keyboard buffer
88: 89 Current cursor address
8A: 8B 16-bit zero

8C Sound frequency

8D Sound ti mer

8F Cursor blink rate counter.

Initial value = 32
90: 91 Count of nunmber of |eader bytes
Initial value 0080

92 M ni mum cycle width of 1200Hz
Initial value = 12
93 M ni num pul se width at 1200Hz
Initial value = 0A
94 Maxi mum pul se wi dth at 1200Hz
Initial value = 12
95: 96 Cassette notor delay val ue

97:98 Keyboard debounce delay val ue
Initial value = 045E

99 Line printer commma field width
Initial value = 10
9A Line printer last comma field
Initial value = 74
9B Line printer width
Initial value = 84
9C Line printer head position
9D: 9E EXEC vector
9F: AO INC $A7 ; CHRGET input routine
Al: A2 BNE $A5
A3: A4 I NC $A6

A5- A7 LDA >0
A8- AA JMP $BB26
AB- AE Used by RND
AF Program trace flag, O-trace off
non 0, trace on
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BO: B1 Pointer to USR vector base
B2 For eground col our
B3 Background col our
B4 Active col our
B5 Active col our
B6 Gr aphi cs node
B7: B8 Top of current graphics screen
B9 Nunber of bytes in graphics row
BA: BB Base address of current graphics screen
BC Page number of graphics screen
BD: BE Current X position
BF: CO Current Y position
C1- DD Used by graphics
DE MJSI C oct ave
DF MJSI C hi gh vol unme
EO MUSI C | ow vol ure
El MJUSI C note val ue
E2 MJSI C t enpo
E3: E4 MUSI C duration count
E5 MJSI C dotted note flag

E6- FF Unused in Dragon 32

BASIC also uses a nunber of system variables between
addresses 100 and 3FF. Their use is summarised in the
tabl e bel ow

Addr ess Use
100-102 SW3 secondary vector
103-105 SW?2 secondary vector
106- 108 SW secondary vector
109-10B NM secondary vector
10G 10E I RQ secondary vector
10F- 111 FI RQ secondary vector
112: 113  TI MER val ue

114 Unused
115-119 Random nunber seeds
11A-11F  Unused

120 Stub O - nunber of reserved words
121: 122 address of reserved word table
123: 124 address of dispatch table
125 nunber of functions
126: 127 address of function table
128: 129 address of function dispatch table

12A-133 Stub 1
134-147 USR address table
148 Auto line feed fla
149 A pha lock flag O=Iower case
FF=upper case
14A- 150 Line printer EQL term nati on sequence
151-159  Keyboard matrix state table

15A R ght joystick X-val ue
15B ? Joystick, Y-value
15C Left | oyst i ck, X-val ue
15D Left joystick, Y-value

15E- 1A8 RAM hooks



248

1A9-1D0 String buffer area
1D1 Cassette filenane |ength
1D2- 1D9 Cassette filenanme buffer
1DA- 208 Cassette file data buffer
1DA-1E1  Cassette filename (in buffer)

1E2 Cassette file type, O=program
1=dat a, 2=nmchi ne code

1E3 Cassette ASC | flag, O=binary
FF=ASA | file

1E4 Cassette gap flag, O=continuous
FF=gaps

1E5: 1E6 Executi on address of nachine code file

1E7: 1E8 Load address for ungapped nachi ne code
file

209-2DC  BASIC line input buffer preanble

2DD-308 BASIC line input buffer

3D9-3EA  Buffer space

3EB-3FF  Unused in Dragon 32
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There are also many other nagazines devoted to
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Levent hal , L.A 1981. '6809 Assenbly Language
Programm ng'. New York : Gsborne/ MG awH ||

249



250

Zaks, R & Labiak, W 1982. 'Programmng the 6809 .
Sybex
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Appendix 1
MCG6809E data sheet

Suppl i ed courtesy of Mtorola Sem conductors.

The information here has been carefully checked and is
believed to be entirely reliable. However , no
responsibility is assumed for inaccuracies. Mtorola
reserves the right to nake changes to any products
herein to inprove reliability, unction or design.
Mtorola does not assune any liability arising out of
t he aBpIication or use of any product or circuit
described herein. No licence is conveyed under patent
rights in any form Wien this document contains
information on a new product, specifications herein are
subject to change wi thout notice.
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MAXIMUM RATINGS

This device contains citcuitry 1o protect the

Rating Symbol Value Unit inputs ‘against damage due 10 high stanc
Supply Voltage vee 03to +70 v voltages or electnc fields, however, it 18 ad
Input Voltage v -03tw0 +70 v vised: that noimal precautions be wken 10
. m avord of any voltage higher than
Oparating 1emperature Range TptwoTy mawmum rated voltages to this high im-
MCESOSE . MCBBADOE. MCBEHOSE Ta Qw « 70 " pedance cicun
MEBBROGEC, MCBBADSEC, MUBRHOSEC - 40 10 +B5 A ot 1s enhanced if unus-
Storage Temperature Range Tsig 55 10 + 150 “C ed inpuls are ted 1o an appropnate logic
voltage level le.g., sther Vigg or Vool
THERMAL CHARACTERISTICS
Characteristic Symt Value Unit
Thermal Resaiance
Cerarmic %0
Ceraip (AT &0 *CIW
Plastic 100

POWER CONSIDERATIONS

The average chip-junction temperature, T, in °C can be obtained from
Ty=Ta+(Ppefjal (1
Whiere
Ta=Ambient Temperature, °C
# A= Package Thermal Resistance, Junction-to-Ambient, “C/W
Po=mPINT+ PPOAT
PINTmICC x VCC, Watts — Chip Internal Power
PpORT =™ Port Power Dissipation. Watts — User Determined

For most apphcations PPORT € PINT and can be neglected PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads

An approximate relationship between Py and Ty (f PPORT is neglected) is

Po=K =T }+273°C) 2
Solving equanons 1 and 2 for K gives:
K=Ppe(Ta+273°C) + 8 aePp? 13

Where K 15 a constant pertaining 10 the parhicular part. K can be deterrmined from eguation 3 by measunng PD Lt equilibrum)
tor a known Ta. Using this value of K the values of Pp and T can be obtained by solving equations (1) and (2) neratively for any
value of Ta

DC ELECTRICAL CHARACTERISTICS (Ve =50V +5% Vgs=0Vdc Ta= T 10 T unless othenwis rioted)
Characteristic Symbol Min Typ Max Unit
Loge, Q. Viw Vgg + 20 Vee
Input High Voltage DE:RTT ViHA vss + 40| - vee v
El ViHC Vee-07 | - vee+03
input Low Voltage Logec. Q. AESET ViL Vgs - 03| - | Vgs + 08 v
i ViLe Vg5-03 Vsg+04
Input Leakage Cutrent Logc. O RESET - - 25
- hin Bh
Wi = 010525V, Voo = max) E = = 100
de. Cutpat High Voltage
Lpag = - 206 A, Voo = minl DO0-07 Vg5 + 24
Uioad = - 146 wA, Voo = minl ADATS, RTR VoRr Vs + 24| - - ¥
Wigad = - 100 a4 Voo = minl BA, BS, LIC. AVMA, BUSY Vgg + 24| - -
de Output Low Voltage - - +
Ui pad = 20 mA, Ve = min) You Vss + 05 v
friternal Power Dissipation |Meaasured at T4 = Ty n Steady State Operationi PINT - - 10
Capacitance* Cin
Win =0 Ta = 26°C. 1 = 1.0 MHz2) DO-07, Logre Inputs, (0. RESET - 10 15 £
E = 0 50 iy
AD A5 R/, BA. BS
LIC. AvMA. Busy | Cout ) 0 18 i
Frequency of Operation SCHR0RE 01 - 10
{E and Q Inputs) MCBHADSE ' o1 - 15 MHz
MOBBROSE 01 - 20
Hi- 2 101 Statel input Current Do-o7 I - 20 L' A
Wy = 041024V, Vg = maxl ARAIE RN T - 100 &

* Capacitances ate penodically tested rather than 100% tested
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BUS TIMING CHARACTERISTICS Sue Notes 1 2 3 ang 41

Idant. . MCEBOSE | MCBBADSE | MCBBBOSE
Number Chacesaristcs Symbol AT Max | Win | Max | Min | Max| Y
1 Cycle Time e ey 10 w |oes| w | 0% m e
Fl Pulse Wiarh £ Low PWE 450 | 900 | 296 | 9R0 | 290 | R0 1
3 |Puise Wiatn E Hign PWEye | 450 | 900|780 | 9500 | 740 | 9500
4 Clock Rise ana Fall Time - . - = 20|
5 Pulse Wigth, O High 450 | 0 | 280 | a0 W0 | s
! Dwiay Tome, € 1o Q A = T o6 136
i fi D 7 i
78 |Delay Time. £ Migh to 0 Fa 8 | "
7C_ |Deday Tume, O eng ' ¢ va - o 200 130 7T
9 Address Hold Trrme = - Tam a1 | 20 0 oo
LA Address Delay Time trom E Low (BA B85 R W 200 140
17 Head Data Setup Tome - = — 1 60 AL
Ruad Data Hold Tune 1 [T
Drata Detay. Time trabe (1 - 000 M 1 an | -
Write Data Hola Time E WY ¥ ¥ i
bzl Usabio Access Time o A, N 441 i
¥ Control Disday Time o o 1T . o SN 1
Figuies & 8.9 12, yng 1
T5C Drwe to Vabd Loge Le t ] [E=T] 1 [T
1 Aelease MOS HBullers to High tmpegance (Fgure 13 . 2N B (-] 1
TSC o 7 Delgy Tume |F .;-.; 13 — ___ =i Ll --:l--l- i
Prooes Control Rse ang Foll T (Figure ';1 ) L | v 1 1

FIGURE 1 READ/WRITE DATA TO MEMORY OR PERIPHERALS TIMING DIAGRAM

RIW, Address B

#A BS

Head Data }_
Nor Mg e

== T
Wiite Data / g

HusY (
AVMA

- 0 - T
Not Vasd
NOTES

1 Voltage le shown gre Vi S04V Viyz2 4V umess oinprwese spethid
2 Measurement pomnts shown 3re DB ¥ ang
3 Hold tme | (@) | for BA and BS & not
4 Usable access teme s computed by 1
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FIGURE 2 — EXPANDED BLOCK DIAGRAM
Q
Al AYE
- - V(i
-x— Vg
L/ 18
7
-« - PC > 1
- u -
] I P A =
- > _HESLT
— NMI
— - 3 ;
¥ oz ===
mensgy [ TRA
- Control  lg-—— TR
- x > ] — I
| e &M A
: A - 1 W
== T5¢
> wl i{
. 5 le—— FELT
- L3¥ cC -
tro > BA
4 b | L s
\ ! e HUSY
ALL P Timing
=
internal Three Stoate Contro el

FIGURE 3 — BUS TIMING TEST LOAD

50V

MMDEIS0 S L =224

o Eguw
Tesi Punt

MDD 7000
or Equwv

C=30pF for BA, BS, LIC. AVMA, HUSY
130 pF tor DO D7 o
90 pF for ADATS, R/W

R« 11.7 k@2 for DO-D7 .
16 5 k@ for AD A5, RIW
24k for BA, BS, LIC. AVMA, BUSY

b

PROGRAMMING MODEL

As shown n Figured, the MCRBOSE adds thres registers to
the set avalable in the MCEB0O  The added registors noiude
a direct page register, the user stack pointer, and a second
index register

ACCUMULATORS (A, B, DI

The A and B registers are general purpose accumulatons
which are used for anthmetc calculations and mamipulation
of data

Certain instructions concalenate the A and B registers 1o
torm a single 16-bit accumulator. This is reterred 10 as the D
register, and s formed with the A register as the most signifs
cant byte

DIRECT PAGE REGISTER (DP)

The direct page register of the MCBBO9E serves to enhance
the direct addressing mode The content of this register
appears at the higher address outputs (AS-A15) dunng direct
addressing instruction execution  This allows the direct
mode (o be used at any place in memory, under program
control. To ensure MBBOO compatitulity, all bits of this
register are cleared dunng processor reset
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FIGURE 4 — PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15 0
X Incex Regrster
Y ~ inges Regiter
e L e Y P)intie Rigites
U - Usér Stack Ponter nin Heghies
5 — Hargware Stack Ponner
PC Program Couriter
A 1[ B Accumuinors
% 4
[¥]
' - 0
oP [ Drect Page Regster

DODODEnG

Compnon Coge Regasier

INDEX REGISTERS iX. ¥)

The index registers are used in indexed mode of dddress
ing. The 16-bit address in thes refjister Takes part i the cal
culation of effoctve goadresses  This address may be used 1o
point to data diredtly or may ba moditiid by an optional con
staht or register offset. Dunng some indexed modes, 1he
contents Bf the index registar ae incromentéd and decre
manted 10 point 10 1he niext tem of tapular type data. All four
ponter registers (X, Y, UL 51 may be used as index registers

STACK POINTER (U, S)

The hardware Stack pointer (S) is used autgmatically by
the processor duting subtoutine calls and intertupts. The
user stack pointer 1L 6 cantrollod exclusivaly by the pro
grammer. This allows arguments 1o be passed to and froem
subroutines with ease The U register s freguently used asa
stack marker. Both stack pointers have the same ndexed
mode addressing capabilities as the X and Y rogsters. but
also support Push and Pull mstructions. This allows the
MEGBOSE 10 be used ethiciently as a stack processor. greatly
enhanaing its ability to support hgher level languages and
modular programming

NOTE
Thie stack pontirs of the MCBEOSE point 1o the 1op ot
the stack i contrast 1o the MCBBOO stack pomtor
which pointed o the next free Iocation on stack

PROGRAM COUNTER

The program couniter & used by the processor to point to
the address pf the next instruction 10 be executed by the pro
cessor Relative addressing 1s provided allowing the program
counter 1o be used hke an index register i1 Some sduations

CONDITION CODE REGISTER
The condition code register defines the state of the pro
cessor at any gven time See Figure 4

FIGURE 5 CONDITION CODE REGISTER FORMAT

Canry
Owertiow
Zew
Negative
RO Mask
Halt Carty
FIRQ Mask
Entire Flag

CONDITION CODE REGISTER
DESCRIPTION

BITOIC)

Bit 0 is the carry Hlag angd 1§ Usually the carry from the
binary ALU C 15 also used 1o represent a “'borrow’ from
subtract ke nstructions (CNAP, NEG. SUB, SBC) and is the
complement of the carry from the tisary ALU

BIT 1(v)

Bit 1 15 the overtiow llag and is set 10 a one by an operation
which causes a signed twos complement anthmenc over-
tiow. This averflow 15 detected n an operaton in which the
carry from thie M5B in the AlLLl does not match the carry
from the MSB-1

BIT2iz)
Bit 2 is the zero llag and s set 10 4 one f the result of the
previous operalion was identically rero
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BIT 3 (N

Bit 3 is the negatne tlag, which contains exactly the vilue
of the MSB of the resuit of the preceding opetahion Thus, &
negatve twos complement result will leave N set 1o a one

BIT 4 (N

Bit 415 the TRO mask bit. The processar will not recagnize
nterrupts from the TRG line 1t this 1t 15 set to a one NI
FIRQ, TRQ. RESET, and SWI all set | to a one SWIZ and
SWI3 do not atfect |

BIT S (H)

Bit 515 the halt.carry bit, and 15 used 1o indheale a carry
from bit 3 n the ALU as a result of an 8 it addition oniy
(ADC or ADDI Thus bit 1s used by the DAA instruction to
perform a BCD decomal add adiust operation The state of
this tlag s undelined n all subtract like instructions

BIT 6 (F}

Bit 6 s the FIRQ mask b The processar will not
recognize interrupts from the TIRG hne f This bit s a one
W1, FIRQ, SWI. and RESET all set F to a one. TRQ, SWI2,
and SWI3 do not attect F

BIT 7 (E}

Bt 7 15 the entire fiag, and whern et 1o a ong ingdicatiss that
the complete machine state lall the reqisters) was Stacked,
as opposed 1o the subset state (PC and CC1 The E tit of the
stacked CC 15 used on a return from interrupt (RTI to deter
mine the extent of the unstacking Therefore. the current £
lett in the conditon code register represents past action

PIN DESCRIPTIONS

POWER (Vss. Veg!
Two pins are used 10 supply power to the part Vgs 15
ground o Dvolts, while Ve s +50 W +5%

ADDRESS BUS (AQ-A15)

Sixteen pins are used 1o oulpu! address intormation trom
the MPU onto the address bus. When the processor does
not reguire the bus tor a data vansfer, o will output address
FFFF1g. R/W =1, and BS =0, this 15 a “dummy access’ or
VMA cycle All address bus dnvers are made  high
impedance when output bus avalable (BA) s high or when
TS 15 asserted. Each pin will dnve one Schottky TTL load or
four LSTTL loads and 90 pF

DATA BUS (DO-D7)

These mght pins provide commurication with the system
bidirectional data bus  Fach pin will drive one Schottky TTL
ioad or four LSTTL ipads and 130 pF

READ/WRITE (R/W)

This signal indicates the direction of data transfer on the
data bus. A low indicates that the MPL s wniting data onto
the tata bus B/W is made high impedance when BA is high
or when TSC s asserted

RESET
A low level on this Schmitt-trigger input for greater than
one bus cycle will reset the MPU, as shown in Figure 6 The

reset vectors are fetched from locations FRFE 1 and FFFF 15
I Table 1) when interrupt acknowledge is trug, (BA®AS = 1)
Duning initial power on, the reset e Shouid be held low unnl
the clock input signals are tully operational

Because the MCEB09E AESET pin has a Schmin tnigger in
put with a threshold voltage higher than that of standard
peripherais, a simple A/ C netwark may be used 10 reset the
entire system. This tugher threshold voltage ensures that all
peripherals are out of the reset state before the processor
HALT

A low level on this input pin will cause the MPU 1o stop
runming at the end of the present nstruction and remain
halted indetinitely without loss of data When halted, the BA
output 15 driven high inthcating the buses are high im
pedance BS is also high which indicates the processor s in
the halt state. While halted, the MPU will not respond to ex
tornal real-time requests (FIRQ, THQ) although NMI of
REEET will be latched for later response During the halt
state. (O and E should contiriue to run harmally A haited
state (BA*BS =1) can be achieved by puling HALT low
while AESET 15 stil low See Figure 7

BUS AVAILABLE. BUS STATUS (BA, BS)

The bus avalable output 15 an indication of an internal
control signal which makes the MOS buses of the MPU high
impedance When BA goes low, a dead cycle will elapse
betare the MPU acquires the bus BA will not be asserted
when TSC s active, thus allowing dead cycle consistency

The bus status putput signal, when decoded with BA,
represents the MPU state (valid with leading edge of Q)

M s MPU State Definition
BA 8s
0 1] Normat Runming!
a 1| Interrugt or Feset Ackninadedge
! 0 | Swhe Acknowiedge
1 Halt Acknowledge

Interrupt Acknowledge 1s indicated during both cycles of a
hardware vector fetch (RESET, NMI F:Igﬂﬁ RQ, swi
SWI2, SWI31 This signal, pius decoding of the lower four
address hnes. can provide the user with an indication of
which mterrupt level s being serviced and allow vectonng by
device See Table 1

TABLE 1 — MEMORY MAP FOR INTERRUPT VECTORS

rostuencdie Fntmrupe N ector
WS 5 | Description
FFFE FFFF RESET
FFFC FFFD WM
FFFA FEER SwWi
FEFR FFFR RO
FFFG FFET e
FFFa FFih SWiz
FFF2 =] SWiE
FFFQ FEF1 Reserved
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Sync Acknowledge 15 indicated while the MPL @ wisting
for externnl SYNCHIGMIZATON O an mlercpt nes

Halt Acknowledge 5 indicated when the MUGHIGE s 0 4
hait condion

NON MASKABLE INTERRUPT (NM1)*

A pegative: Iransiuon. on s impul requests that i nun
maskable interupl sequence be generatad A non mask able
nterrupt cannol be inhibited by the program &nd also has 3
highar prionty than TIRG, 80, or software interrapts . Dur
ng tecogniton of an NMI, the entire madhing stati s saved
on the hardware stack After reset, an RN will not be TE O
nged antd the hest program load of the hardware Stack
pointet (S1 Thee putsi width of TN low st b at st one
E eyele It the TN input does not mest the mnimam set o
with tespect to O, the nterrupt will not be wecogges antil
thet next oycle See Figuee 8

FAST INTERRUPT REQUEST IFIRA)

A Tow Tevel on thes anpat o sl imitiate a tast interrgpt se
quence, provided s mask e FLin the CC s ciear This se
Quence Nas pronty over the standard migriapt reguest (R
and i fast in thesense that it stacks only the contents of the
condinon code register and the program counter The miter
rupt sesace toutiee should clear thie source of the mierrupt
betore doing an BT See Fugane 9

INTERRUPT REQUEST (IRQ)"

A dow tevel mput on s o will mitite an mtarupt e
quest sequence proswded the mask Bit (1 the ©C 5 olear
Since AL stacks the efie macting stite, 11 provides
slower Tesponse 10 Interrupts than FIRG TAG also has a
iy prigtity than FiRg Again, the interrupt sevvice routine
should clear the source of the iIntetnupt betars doing an /T
See Fygure 8

CLOCK INPUTS E, O

f and O are the clock signals required by the MCBBOSE Q
must lead E. that s, a transition on O must be lollowed by a
simalar transation on E aftér o mimimam dedoy Addresses wall
e vahd from the MPU. tan atier the falling edge of E, and
data will be latched from the bus by the falling edge of &
Wikt the @ mput s fully TTL compatible, the F input directiy
drves intirnal MOS rcuitry and, thus, teguires 3 high level
above normal TTL levels  Thes approach minimiges clock
sk inherent with an ntefnal butter Reter 1o BUS TIMING
CHARACTERISTICS tor £ ang O and 1o Figure 10 which
shows a simple clock genésptor for the MOEBDSE

BUSY

BUSY will be tigh tor the read and modily cycles ot 4
read-modiywnie instruction and duning the access of the
first byte of a4 double byte opitation (g . LDX. 5TD.
ADDD) BUSY s also tigh dunng the fisst byte ot any n
direct or other victor letch (e ¢ . jump extended, SWI in
direct, &1 |

I a multiprocissor systerm. BUSY inthcates thi need 1o

deter thi reartiteation of the next hus cycle 10 nsure the m
teguty of the atiove operabons  This dilterenge provdes the
indwisitile memory access meuired for a test and set’
prrmitve, useog any. one of several read modiby wite insine
tions

BUSY does not become active dunng PSH or PUL opera
tigns A typecal read modity write nstraction TASLI & shown
n Fagure 1T Tamitig information i green in Figure 12 BUSY
& vahid ¢ dtter the tsnig sdge ol Q

AVMA

AVMA i the addvanced VMA yignal anid indicates that the
RAPLL il e the bius o the tollowing bius Cyche The pradic
Tdie fdture oY the AVMA wgnal allows ethicmnt shigosd bls
multiprocessor systirms  AVAMA s low whisn the MPL s n
withier & HALT ar SYNC stiste AVMA & valid 1g/p it ter the
resinug e of ()

Lic

LIC dast mstruction ceche s hgh dunng the st cyole of
sty nsltuenion, and its ransition brom high 1o o Wil nd
cates that thie fest biyte of an ogeoe woill e latched ot the eng
ot the present bus cyole LIC will be blgh when the MPU &
halted ot the end of an instruchon e not o CWAL or
AESET) in sync state o wiule stacking during interipts
LIC is walid topy attor the rising edge of O

TsC

TSC ithree state contiol will cause MOS adiress; data
andd ROW buttars 1o assume a fhugh impedance state The
control signalh (BA, 8BS, BUSY, AVMA, and LICH will not go
1o thr Bigh enpeddance state TSC s mtended 1o allow a
sarghe buds 10 be stred with other Bus masters (processons
of DMA controbars)

While E i low. TSC contioli the addness bulters and AW
ehrectly  Thie data bus budters q;jnm] AW G AliOn e o
A fhgh impedance state unnl Q rges at which ime ot TS s
true they wall feaunn g high imgedance state I8 TSC s
Held beyond the nsing Bdge of £, then it will be intémally
fiptehed, keppanig the Bus drvers o igh enfiedinde state
for the remiundet of the bus cycle See Fagure 13

MPU OPERATION

Dhinng normal aparation, the MPU te1ches an instruchon
hom memory @il then eascules the reguested funchon
This sequence begins atter RESET and s repeated moetinite
Iy unbess allered by 9 specal INStruction of hardware ocour
rence Sobtware instructions that altér normal MPL aperg
nan are SWI, SWIZ2. SWIZ, CWAL AT and SYNC An
tmtrupt Or HALT it can alsp alter the dormal erecution
ot instructions Fagure 14 6 the Howcohar for the MCERISE

“HFA, FIND, and O reaquests are samipled o th Lalling sdge of O One oot & reduned for Synchionzation betgre M intergplts are 1weng
mizpd Thi pending ntesteptish will ot be sericed unnl comglenion of 1he curmat mstrdcton unliss 4 SYNG or CWAL congition s preseny 1

and dby not remain o until comglehon of the cument mstruchion thiry tay pot te m-uﬁ,m Hownver

o Litched ana e

only reman low fof one cycle. No iniropts e recognieed of Iatched tetween the failing wige o AT At thee teang eedges af B it 1
acknowledyn See AFSET sequmnce in the ML fipwehart i Figure 14 g% e
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FIGURE 10 — CLOCK GEMNERATOR
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FIGURE 11 — READ-MODIFY-WRITE INSTRUCTION EXAMPLE [ASL EXTENDED INDIRECT)

ey Memory
Locanon Contenls Comenis Descriphon

PC —- 30200 ASL Indexed Opoode

ﬂ
$64
s $9F Extended Ingirect Posiby e
463
$00
\../-‘-—__-__‘-\"

0202 Indirect Ackdress Hr-Byte
40203 Indrect Address Lo-Byle
i

MNext Mam Instruction

$6300 $E3 Ellecuve Address Hi-Byte

62301 06 Ellecuve Address Lo-Byte

SEADG 35 Target Dala
]
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ADDRESSING MODES

The basic instruchions of any computer are greatly en
hanced by the presence of powerful addressing modes The
MCE809E has the most complete sel of addressing modes
avalable on any microcomputer today  For example, the
MCBB0SE has 9 basic instructions, however, It tecognizes
1464 different vanations of nstruchions and addressing
modes The addressing modes suppart modern program
ming techmqgues The fallowing addressing modes are avadl
able on the MOBBO9E

Inherent (includes Accumulator)

Immediate

Extended

Extended Ingirgct

Dwrect

Register

Indexed

Zero-Offset
Constant Ottset
Accumulator Offset
Autg Increment/ Decrement
Indexed Indirect
Relative
Shon/ Long Relative Branching
Program Counter Relative Addressing

INHERENT (INCLUDES ACCUMULATORI

In this addressing mode, the opcode of the instruction
contains all the address information necessary  Examples of
mhetent addresming are  ABX, DAA, SWI. ASRA, and
CLAB

IMMEDIATE ADDRESSING

In immediate addressing, the ettective address of the data
15 the location immedately following the opcode e, the
data to be used in the mstruction immediately folowing the
ppcode of the instructhion) The MCBBD9E uses both B- and
16-bit immediate values depending on the size ol argument
specihed by the opcode Examples of instructions with im
mediate addressing are

LDA #2520
LDX  #SFO00
LDY  #CAT

NOTE
# signifes immediate addressing, $ sigmhes hexadec
mal value 1o the MCBB09 assembier

EXTENDED ADDRESSING

In extended addressing, the contents ol the two bytes
immediately tollowing the opcode fully specity the 16:-bit
effective address used by the instruction Note that the
address g d by an anded instruction defines an
absolute address and s not position independent Examples
of extended adiressing include

LDA CAT
STx MOUSE
LDD  $2000

EXTENDED INDIRECT

As a special case ol indexed addressing (dhscussed
below!, one level of indrection may be added to extended
addressing . In extended induect, the two bytes following the
postbyte of an indexed Instruction contain the address of the
data

LDA  [CAT]

LDX  |SFFFE]

STu  |DOG)
DIRECT ADDRESSING

Direct addressing 15 similar to extended addressing except
that only one byte of address follows the opcode This byte
specifies the lower aight bits of the address 10 be used The
upper eight bits of the address are supplied by the dwect
page register. Since only one byte of address 1S required in
direct addressing, this mode requires less memory and éxe
cutes tastér than extended addressing Of course, only 256
locations fone pagel can be accessed withoul redefining the
contents of the DP register  Since the DP regrster 1s set 1o
$00 on reset, direct addressing on the MCBB09E s upward
compatibie with direct addressing on the MBBIO indirection
s not allowed in direct addressing. Some examples of dect
addressing are:

LODA  whee DP =500
LDB  where DP =510
LDD  <CAT

NOTE
< 5 an assemnbler drective which forces direct
addressing

REGISTER ADDRESSING

Some opcodes are foliowed by a byte that defines a
reqistér o1 set of registers 1o be used by the instruction This
s called a postbyte Some examples of register addressing
are

TFR X. ¥ Transters X into ¥ &
EXG A B Exchanges A with B
PSHS A B, X, Y Push Y, X, Band A onto S
stack
PULU X.Y.D Pull D, X, and ¥ from U
stack
INDEXED ADDRESSING

In all indexed addressing, one of the ponter registers (X,
Y. U. S. and someumes PC) is used in a calculation of the of
tective address of the operand 10 be used by the instruction
Five basic types of indexing are available and are discussed
below The postbiyte of an indexed instruction specihes the
basic type and vanation of the addressing mode, as weill as
the pointer register 10 be used. Figure 15 lists the legal tor
mats for the postbyte Table 2 gives the assembiler farm and
the number of cycles ang bytes added 10 the basic values for
indexed addressing for each vanation
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FIGURE 15 — INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

!

Post Byte Ragite Bt incmad
7165 270 Mode
O|RIA|ld] d|d]d]d]|EA= R+ 5Bu0Otset
1|R]ARJOjO]D]|O]| O A
1/ R{RAR{«jO]JO]O] 1 R+
1| RIRAI D] DID] O -R
1 R il | 0 0 1 1 - R
1 A 3] | ] 1 0 1] EA = A +0 Ofiset
1 R| AR [ 0 1 0 1 | EA = A « ACCB Otfsa
1 R| AR i 4] 1 1 0 |EA = R + ACCA OHser
1R A] ] v]o]o] o] A= .A +BBut Offset
1 ] R [ 1 0 o 1 | EA = R +16 Bit Oftast
1 R L] [ 1 0 1 1 EA = A + D Oftset
1| x| =] 1] 1] 1[0 0]EA =_.PC +8 Bn Offser |
1 ] % ' 1 1 0| 1 [EA = PC +16 B1 Otfset
1 3] R i 1 1 1 1 EA = | Addgress]

- —
1 —'Lhdarmng Mode Field
Indwect Field
ISign B when b/ = 0
Rege Field AR
0= x
= = Don't Care N=y
d=0tfse B 0=y
0=Not Indirect 11=35
"1 = indirect

_ TABLE 2 — INDEXED ADDRESSING MODE

ZERO-OFFSET INDEXED In this mode. the seiected
pownter reqister contans the elfective address of the data 1o
be used by the instruction. This 1s the fastest indexing mode

Examples are
LoD 0, X
LoA S8

CONSTANT OFFSET INDEXED - In this moade, twos
complement offset and the contents of one ol the pointer
registers are added to lorm the effeclive address of the
operand. The pointer register’s imnal content is unchanged
by the addition

Three sizes of offset aré available

Sbit |- 16 to + 15
Bon =128 10 + 120
16-bit | - 32768 1o + 327671

The twos complement 5-bit offset s included in the post
byte and, therefore, 15 most efficient in use of bytes and
cycles The twos complement 8-but offset s contaned in a
single byte following the postbyle The twos complement
16-bit offset is in the two bytes loliowing the posthyte. In
most Cases the programmiér need not be concerned with the
size of this otfset since the assembler will select the optmal
swze automancally

Examples of constant-offset indexing are

LDA 23X

LOX -2.8
LOY 300X
LDU  CATY

Non Indirect Indirect
Type Forms Assembler Postbyte +|+ | Assembler Posthyte + |+
Form Opcode i 1 Form Opcode ~|4
Constant Otfset From A No Offset ] 1RRO0N00 | o]0 LAl AR alo
{78 Complement Ottsets! & Bt Oftset n, A QRANNNNN 110 detaults 1o 8 bit
8- But Offsat n A TRRO1000 111 In, Rl TRAT1000 411
16 Bit Oftset n A 1RAO1001 | a2 In, Al 1HA001 | 7|2
Accumuiator Ottset From R A Register Difser AR 1RAC0Y10 1]0 1A, Rl 1RRIDN0 410
128 Complement Oftsets) B Regster Otfset 8. R TRAOONGY 1lo IB, Rl 1RR1I01I01 | 4|0
D Register Offset DR TRANI01 40 1D, Rl TRR11011 710
Auta Increment/ Decrement B | increment By 1 R TRAOOOOO | 2(0 not allowsd
Increment By 2 A+ s 1ARo001 | 3]0 [ [R++7 | tAmi0001 | 60
Decrement By 1 -R 1RROOCID 2|10 not allowed
Decrement By 2 ~=R 1RAO0011 3lo [,==R] 1RR10011 glo
Constant Offset From PC 8- Bit Oftset n, PCR 1ux01100 111 [n, PCR] Tk 11100 401
i2s Complement Oftsets) 16-Bit Otfset n, PCR 1xx01101 512 [n, PCRI Tax 11101 Bl2
Extended Indirect 16-Bit Address = = -] = Inl 10011111 5|2
R=XY.Uor$S RA:
x = Don't Cate =X
D=y
1W0=U
N=5

+
~and “ indcate the number of addinonal cycles and bytes respectivily for the particular indexing vatiahon
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ACCUMULATOR-OFFSET INDEXED — This mode
similar 1o constant offset indexed except that the 1wos com-
plement value in one of the accumulators (A, B or D) and
the contents of one of the ponter registers are added 10 form
the effective address of the operand  The contents of both
the accumulator and the pointer register are unchanged by
the addition The postbyte specifies which accumulator 10
use as an ofiset and no additional bytes ate required The ad-
vantage of an accumulator otfset is that the value of the oft
set can be calculated by a program at run-time

Some examples ane

LDA B Y
Lbx DY
LEAX B, X

AUTO INCREMENT/DECREMENT INDEXED In the
auto mcrement addressing mode, the pointer reqister con
1ains the address of the operand. Then. atter the pointer
reguster 15 used, il 15 meremented by one or two This ad-
dressing mode 15 usetul i stepping through tables, moving
data, or creating software stacks. In auto decrement, the
pointer registen s decremented poor 1o use as the address of
the data, The use of auto decrement 15 similar to that of auto
increment, but the tables, etc . are scanned frotn the high to
low addresses. The size of the increment/ decremant can be
either ane or 1wo to allow 101 tables of ether 8- or 16-bit data
10 be accessed and is selectable by the programmer  The
pre-decrament, post-increment nature of these modes
allows them to be used to create additional soltware stacks
that behave identically 10 the U and S stacks

50100  LDA [%10,Xx] EA 15 now SFO0

SFOI0 R $F150 s now the
SFO11 550 new EA
SF180  SAA

After Exeution
A =SAA lactual data loaded)
X = $FO00

Al modes of indexed indirect are mcluded except those
which are meaningless le g . auto increment/ decremint by
1 indirect)  Some examples of indesed indirect are

LDA (x|

LDD 10,5

LDA [B.Y]

LOD X+ 4|
RELATIVE ADDRESSING

The byte(s) following the branch opcode is lare) tsated as
a signed otfsel which may be added 1o the program counter
It the branch condition s true, then the calculated address
\PC + signed offset) 1s loaded into the program counter
Program execution continues at the new location as ind
cated by the PC. short lone byle ofiset) and long Itwo bytes
oftset) relatve addressing modes are avadable. All of
memory can be reached in long relative addressing as an ef
fective address interpreted modulo 216 Some examples of

Spme examples ol the aulo incr W/ i lative addressing are
addressing modes are
DA X+ BEQ CAT Isharth
STD Y+ + BGT DOG Ishort)
DB .-Y CAT LBE? R:T . tiong!
DX .--§ DOG :BG RABBI llong)
Care should be taken in perforrming operations on 16-bi 0
pointer registers (X, Y, U, S} where the same register s used .
1o calculate the effectivie address RAT NOP

Consider the following instruction
STX 0,X + + (X initialized to 0
The desired result 1s 1o store a zero in locations $0000 and
0001, then increment X to point 1o $0002  In reality. the fol:
lowing ocours
0-=temp calculate the EA, temp 15 a holding regrster
X+2—=X perform auto increment

X—={temp) do store operation

INDEXED INDIRECT
All of the indexing modes, with the exception of auto n-
crement/ decrement by one or a + 5 bil offset, may have an
additional level of indirection specified. In indirect address-
ing, the effective address 15 contaned al the location
specified by the contens of the index register plus any off:
set In the example below, the A accumulator is loaded in-
directly using an effective address caloulated from the index
register and an offset
Belore Execution
A= XX (don't carel
X = $F000

RABBIT NOP

PROGRAM COUNTER RELATIVE
The PC can be used as the pointer register with 8- or 16 bit
sigred ofise1s. As in relative addressing, the offset is added
10 the current PC 1o create the elfective address The effec
tive address IS then used as the address of the operand or
data. Program counter relative addressing is used for writing
position independent programs. Tables refated to a particular
routing will maintain the same relationship atter the routine 1s
moved, if referenced relative to the program counter
Examples are
LDA CAT, PCR
LEAX TABLE, PCR
Since program counter relative s a type of indexing, an
dditional level of ind is available
LDA  [CAT, PCRI
LDU  |DOG, PCRI
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INSTRUCTION SET

The instruction set of the MCBB0IE s similar to that of the
MCE800 and 15 upward compatible at the source code hevel
The number of opcodes has been reduced from 72 10 59, but
because of the expanded archutecture and additional ad.
dressing modes, the number of available opcodes (with dif
ferent addressing modes) has nsen from 197 1o 1464

Some of the new instructions are descnibed i detail
below

PSHU/PSHS

The push instruchons have the capability of pushing onto
either the hardware stack (S) or user stack (L) any single
register or set of registers with a single instruction

PULU/PULS

The pull instruchions have the same capability of the push
instruction, in reverse order The byte immediately lollowing
the push or pull opcode determines which register or
regisiers are 1o be pushed or pulled  The actual push/ pull se
quence is fued, sach it delines a umgue registen 10 push or
pull, as shown below

Push/ Pull Postbyts Stacking Order

Pull Order
) [ (0 b
_ cen e
A A
B
en or
X Hi
¥ Xlo
s5/U ¥ Hi
Pe Y Lo
UisS Hy
u's to
PC H
PC Lo
f

Pusn Ondes

Increasing
Memaory

'

TFR/EXG

Within the MCBB09E, any register may be transterred 10 or
exchanged with another of ke size, 1e, B:bit 10 B-bit or
16-bit to 16bin Bits 4.7 of postbyte detne the Source

Transter/ Exchange Postbyte

EOEETTE

Rogister Fuld
0000« D 1A BI 1000 = A
0001 = X 1001=8
0010= ¥ 1010= CCR
oMi=u 1011 = DPA
010 = S
0101 = PC
NOTE
All other combunations are undefined and INVALID
LEAX/LEAY/LEAU/LEAS

The LEA lipad eftective address) works by calculating the
ettective address used iy an indexed mstruction and stores
that address value, rather than the data at that address, in a
pointer register. This makes all the features of the internal
addressing hardware avalable to the programmer Some ot
the imphcations of this instruction are dlustrated in Table 3

The LEA nstruction also allows the user 1o access data
and tables in a position independent manner For example

LEAX MSGI, PCR
LBSR  PDATA (Print message soutingl
-
-
MSG!  FCC ‘MESSAGE

This sample program prnts, "MESSAGE' By writing
MSG1, PCR, the assembler computes the dstance betwesn
the present address and MSGI1 This result is placed as a
constant into the LEAX instruction which will be indexed
from the PC value at the ime of execution. No matter where
the code is located when i1is executed, the computed offset
from the PC will put the absolute address of MSG1 into the X
pointer register This code s 1otally position independent

The LEA instructions are very powerful and use an internal
holding register (temp)  Care must be exercised when using
the LEA instructons waith the auto morement and auto
decrement addressing modes due to the sequence ol internal
operations The LEA internal sequence 1s outlined as follows

LEAa b+ tany of the 16-ti ponter registers X Y,
L. or § may be substituted tor aand b )

1 b-=tlemp {calculate the FA)

2 bel==p imodity b, postincrement!

3 temp—-a lload a)

LEAa .- b

1 b-t1—=temp lcalculate EA with predecrement)

register, while bits 03 represent the destination register

These are denoted as follows
I tion
LEAX 10, X
LEAX 500, X
LEAY A Y
LEAY D.¥
LEAU =10, U
LEAS - 10,5
LEAS 10,5
LEAX B S

X +
X +
Y+
Y+
U=
S -
S+
5«

2 b-1-=p imodily b, predecrement|
3 wemp-—-a (load al
TABLE 3 — LEA EXAMPLES
C
0 —=X Adds 5Bt Constant 10 10 X
500 —= X Adds 16-Bit Constant 500 10 X
A ==Y Adds 8-8it A Accumulator 1o Y
D ==Y Adds 16-B1t D Accumulator 10 Y
w -—=u Substracts 10 from U
L[ Used to Reserve Area on Stack
10 —=§ Used 1o "Clean Up' Stack
5 ==X Transters As Well As Adds
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Auto ncrement-by-two and auto decrement-by - two instruc:
tons work similarly Note that LEAX X+ does nol change
X, however LEAX, = X does decrement X LEAX 1.X should
be used to ncrement X by one

MUL

Multiphes the unsigned binary numbers in the A and B ac-
curmulator and places the unsigned resull into the 16-bit D
accumulator  This unsigned multiply also allows multiple:
precison multiphcations.

LONG AND SHORT RELATIVE BRANCHES

The MCBBOSE has the capability of program counter
relative branching throughout the entité memory map. In
this mode. if the branch 1S 1o be taken, the 8. or 16-bu signed
offset is added to the value of the program counter to be
used as the effective address This allows the program to
branch anywhere in the 64K memory map Position indepen-
dent code can be easily generated through the use of relative
tranching. Both short (8 ti) and long (16 bit) branches are
availabie

SYNC

Atter encountenng a sync instruction, the MPU enters a
sync stale, stops processing mstructions. and waits for an
interrupt. If the pending interrupt is non-maskable (M or
maskable (FTRQ, TAQ) with its mask tt (F or 1) clear, the pro-
cessor will clear the sync State and perform the normal inter
rupt stacking and service routine. Since FIRQG and TAQ are
not edge-tnggered, a low level with a mimimum duration of
three bus cycles & required 10 assure that the interrupt will
be taken [f the pending interrupt is maskable (FTARG, [AQ)
wph its mask it [F or |l set, the processor will clear the sync
state and continueé processing by executing the next in-lng
nstruchon  Figure 16 depicls sync timing.

SOFTWARE INTERRUPTS

A software interrdpt 15 an instruction which will cause an
interrupt and its associated vector tetch. These software in
terrupts are usetul w1 operating system calls, software
debugging, trace operations. memory mapping, and soft
ware devolgpment systems. Three levels of SWI are available
on this MCBBOSE and are prioritized in the following otder
SWI, SWi2, swia

16-BIT OPERATION

Thie MCGBOBE has thee capability of processing 16 bit data
These instructions include loads, stores, compares, adds,
subtracts, transfers, éxchanges. pushes, and pulls

CYCLE-BY-CYCLE OPERATION

The address bus cycle-by-cycle performance chart (Figure
16 iiustrates the memory access sequence corresponding
to each possible instruction and addressing mode in the
MCBBOSE Each wnstruchon begins with an opcode fetch
While that opcode is being internally decoded, the next pro
gram byte s always fetched  IMost instructions will use the
next byte, 50 this technigue considerably speeds through-
put | Next, the cperation of each opcode will follow the
fiowchart VRIA 15 an indication of FFFFy5 on the address
bus, R/W=1and BS=0 The following examples illustiate
the use of the chart

Example 1: LBSR (Branch Taken)
Belare Execution SF = FODO

-
-
58000 LBSA CAT
-
-
-
SADDO CAT .

CYCLE-BY-CYCLE FLOW

Cycie 7 | Address | Data | R/W |Description

1 BOOD 17 1 |Opcode Fetch

2 8001 0 T |Ottser High Byte

3 BOO2 a1} 1 |Otiset Low Byte

4 FFFF . 1 |VMA Cytie

5 FFFF . 1 |VHIA Cycle

6 ADOD » 1 |Computed Hranch Address

7 FEFE *, I \VWEA Cycle

8 EFFF 80 0 |Stack High Order Byte of
Return Address

9 EFFE o3 0 |Stack Low Order Byte of
Return Address

Example 2: DEC (Fxtended

$8000 DEC $ADO0
$A000 FCB $80

CYCLE-BY-CYCLE FLOW

Cycle # | Address | Data | R/W [Descripti

[ BOOO 74 1 |Opcode Fetch

2 8001 AD 1 |Operana Address, High Byte
3 Bz o0 1 |Operand Adudress, Low Byt
4 FRFF . 1 [VRE Cyole

5 4000 80 1 |Read the Dats

6 FFFF L 1 [VHIE Cycle

7 FFFF 7F 0 {Stare the Decrementad Data

* The data bus has the data at that partcular addiess

INSTRUCTION SET TABLES

The instructions of the MCBB09E have been broken down
into five different categories They are as follows

8-bit operation (Table 4)

16-bit operation | Table b

Index register/ stack pointer instrucuons | able 6)

Relative branches (long or short) (Table 71

Miscetlaneous instructions | Table 8

Hexadecomal values for the instructions are given in
Table 9

PROGRAMMING AID

Figure 1B contains a compilation of data that will assist
you in programming the MCBB09E
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FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE {Sheet 1 of 51
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FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 2 of 5)
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FIGURE 17 — CYCLE-BY-CYLE PERFORMANCE (Sheet 3 of 5
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FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 4 of 5}
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FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE {Sheet & ot 5)

Etle inge Ak
Far ADLAB A [1=1] S0 8T, A% £SR TSl a0 ChED
LA E ncapt ADDA, 1M £ e LS, S 5Tk CLA. Ck v fareon | CMPS CPUL
L YT L N 7Y Al [T Ikl Crapa ChY_
Bitasa e Eucepl
CHPA/B, LD et
EIWAIE,
LDa
hRE.
SELA-B,
GAA B

Fiyrim eyt

Fadutes Mg
e

18 Eacops
et

Connana Oflse1 hgm B
it et

4 Bil (Hrsen
B B Oflel
16 Bt il

Accumubaice Olfame om A
ETTTNNITE )
B Ragrates Qs
[ Aegrsces Db

B Incarenr Baciemens 4

cramear by F
Incremgnr b 2
Cwmciemgnn by |
Dtimgnn oy 7

Canslan {Msas Iram PL
hl e
5 Bl Cinsy
Thieel
Luercigr
WA

" The i FRQaler 15 ncremunien IH0wIng the SOMAED BEGRST

ENEcte At 1141

+ Egar Byle Hgn Posl Bure Law

Irekee Fageerat
Ingtn Aicyrangs

I Fogerler + Pt Baie
Incies Aagrshes

Inges Rugases = & Regisen
Indes Aggeiar + B Aggeatm
1n0Es Aegeier + D Rngromd
1niden R

I Argeied

Inden fegases 1

e fegun -

Erogram Couses « Otisel Buie

Plogeem Counier « PRl Hen Beig OFsen Lo Byie

Dnewt Page Regene Bgonss Low

s Hign

a1

BageEds Lo




277

TABLE_‘ - B-BIT ACCUM_ULATOILAND MEM_OﬂY INS_TR;UC‘I’PNE

R 7 T——
isi
ADCA, ADCB Add memory to accumulator with carry
ADDA, ADDB Add memory 10 accumulator
ANDA ANDS And memaory with accumulator

ASL. ASLA, ASLB

Arthmetic shift ol accumuiator or memary fatt

ASH, ASRA, ASHB

Anthmetic shilt of accumuiator or memary nght

BITA, BITB Bit test memory with accurmuiator
CLR. CLRA, CLRB Clear accumulator or memoty locaton
CMPA CMPB Compare memary ftom accumulator

COM, COMA, COMB

Comp! accumulator of y locaton

DAA

Decmal adust A accumulator

DEC, DECA, DECB

Decrement acCcumulator or memary location

Exciusive or memory with accumutator

EORA, EORB
EXG RT, R2

Fuchange A1 woth RZ (A1, A2 = A, B, CC, DP1

INC. INCA, INCB

Incrgment accumulator o mamaory locanon

LDA. LDB

Load accumulaor from memaory

[[SL, LSLA, LSL8

Logecal shitt leht accumulator o memaory locaton

LSR, LSRA, LSR8

Logeeal shitt nght accumulator or mamary location

MUL

Unsigned muttiply (A = 8 = [

NEG, NEGA, NEGR

Negate accumulator or memory

ORA, CRB

Or memary with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memaory left

ROR, RORA, RORB

Rolate sccumuiator of memory nght

Subtract memory from accumulator with botrow

Store accumulator o memory

SUBA, SUBB Subtract memaory from accumulator
TST. TSTA, TSTB Test accumulator or memory location
TFR R1, A2 Transter A1 1p H2 (R, R2 = A B, CC. DF

NOTE: A, B, CC or DP may be pushed 1o (puled from| siher stack with PSHS, PSHU (PULS.
PULU) nstructions

TABLE 5 — 16-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonicis) Oparation
ADDD Add memory 1o D accumulator
CMPD Compate memory trom [ accumulator
EXG D, R Exchange D with X, ¥, S U or PC
LDD Load D accumulator from memory
EEX Sign Extend B accumulaton into A accumulator
lsTD Store D sccumulator 10 memoty
SUBD Sublract memory from D actumulator
TFRD, R Transter Do X. ¥. 5. U ot PC
TFR A, D Teagnsler X, ¥. 85 Uor PC oD

NOTE D may be pushed ipulied! 10 enher stack with PSHS, PSHU IPULS
PULUI instructians

TABLE 6 — INDEX REGISTER/STACK POINTER INSTRUCTIONS

Instruction Description
CMPS. CMPU Compare memory from stack pamter
CMPX. CMPY Compare memory from indes 1egister
EXG R1. A2 Exchange D, X. Y. S. W or PCwan D, X, ¥ 5 U or P(
LEAS LEAU Load etfective address into s1ack pointer
LEAX LEAY Loan etfective adaness into s regaten
LDS. LDU Load stack ponter from memory
LDX, LDbY Load ndex regster from memory
PSHS Push A. B. CC. DP. D. X, Y. U, ar PC onlo hardware stack
PSHU Push A B. CC_ DP. D, x_ Y. S ot PC onto user stack
PULS Pul A B_CC. DP D X ¥ U or PC fiom nardware stace
PULU Pull A B, CC. DP_D, X ¥, Sor PC from hardware stack
575, STu Stove stack ponter 1o memaory
57Tx: STy Store ndex 18gister 1o memory
TFH A1, R? Transter D. X ¥ S U PCtoD. X, ¥. 5. U or PC
ABX Add B accumulaior 10 X lunsggned)
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TABLE 7 — BRANCH INSTRUCTIONS

SIMPLE BRANCHES
_3567 F{Q Banch o equal
HNE. | BNE Branch o not egual
BMI, LBMI Branch i minus
BPL. LBPL Branch o plus
BCS, LBCS Branch o carry set
BCC, LBCC Branch f carry Clear
BVS. LBVS Brancn o overtiow ser
BVC, LBVC Branch f avertiow clear
SIGNED BRANCHES
BGT LBGT Branch o greater (signed)
BVS. LBVS Branch f invabd 2's complement resuit
BGE LBGE Branch if greater than or equat (sgned)
BEQ. LBEQ Branch if egual
BNE. LBNE Branch i not equal
HLE, LBLE Branch if less than or equal (signed)
BVC. LBVC Branch o vahd 2's complement resull
BLT, LBLT Hranch o less than isgredi
UNSIGNED BRANCHES
BHI LB Branch i rugher lunsigned)
BCC, LECC Branch o rugher or samie lunhgned)
BHS, LBHS Branch o higher ar same Tunsgned!
BEQ. LBEC Branch  equal
BNE. LBNE Branch f not egual
BLS LBLS Branch o lower or same lunsigosd
BCS. LBCS Branch o Wwwer (unsgneal
BLO LBLO Brarch | lower lunsgneg!
OTHER BRANCHES
BSA. LBSA Branch to subrounng
ARA LBRA Branch always
BAN_ LBRN [ Brancn never - B
TABLE 8 - MISCELLANEOUS INSTRUCTIONS
Instruction Description
ANDCC AND condion code register
CWaAIL AND condition code regstar, then wat for interrupt
NOP No operation
ORCC OR condition code regster
MNP Jump
JSR Jump 10 subrouting
ATi Return from interrupt
ATS Aeturn from subrouting
SWI SWiIZ 5wi3 Software interrupt (absolute ndirect|
SYNC Synchromze with intertup! line
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TABLE 9 - HEXADECIMAL VALUES OF MACHINE CODES

OP | Mnem Mode | - ’ OP | Mrem Maode | - ] OP | Mnem Mode |-

o NEG Dt | 6 2 30 LEAX Indpsed | 4+ 2+ a0 NEG Indexed | 6+ 24
o | e 4 31 | LEAY 4+ |2+ ] &1 | »

02 ¥ n LEAS 4 24 62 .

o3 COM fi e LEAL Indexed |4+ | 2+ Lx COM fi+ | 2+
04 LSH 6 2 k% PSHS Immets | 6+ 2 [ LSR B+ e
05 » k-3 PULS Immes) | &+ 2 (i) .

06 ROR [ 2 k PSHL I | 6 2 6 AOH B+

ot ASH 6 2 37 PULL Immiag | 5+ 2 67 ASH 64

o8 AS|, LSL [ 2 3 Ly =] ASL. LSL e

0.2 ROL 6 2 B RIS Inhgrent | & 1 L] ROL fi+

oa | DEC & 2 3a | asx 3 1 6A | DEC 64 24
on | . s | R 618 1 68 | » J

0c INC 6 2 ic Cwail =02 6C INC 6+

oD I5Y 6 2 an | MuL Inherent | 11 1 60 157 6+

OF JMP ¥ 3 2 3k . [ IMP L 1+

OF CLH Duect | 6 7 3F SWI tnhetent | 19 1 6F CLR Incherwed | 6+

0 | Page 2 40 NEGA ani | 2 1 K| NEG Extended] 7 3
1 Page 3 41 - 1 B y

12 NOP nherent | 2 1 42 - ¥, -

13 SYN( Inketent | =4 | 1 43 | coma I 2 ' 13 COM 1 3
1w | a4 LSRA y. 1 14 | LSk 1
15 | * a5 | - % | e

6 LBHA Heslative | & K| a6 RORA 2 1 16 ROA ] 3
17 LBSH Retative | 9 3 A7 ASRA 2 i 7 ASR 3
8 . a4 ASLA, LSLA 2 1 8 ASL. LSI 3
19 DAA 2 1 49 AQLA 2 1 5 ROL 4 3
1A QHCC 3 2 44 | DECA 1 A | DEC i
H - 48 - B .

1€ | ANDCC Immied | 3 2 4C | INCA 2 JC | INC 3
1D SEX Tnbwrent | 2 1 4D TSTA l 2 (4] ST 3
1E EXG immed | 8 2 4F . B IMP 4 3
1 TFR imemed | B 2 4F CLRA Intereny ¥ CLR £ i 3
20 BRA Relatve | 3 2 52 NEGB It | 80 2
21 BAN 4\ 3 2 51 - 8! 2
2 BHI 3 2 52 he a2 2 2
23 | BLS 3 2 53 | COMB 2 a3 3 i
24 BHS, BCC 3 2 - LSHB 4 1 £ 2 Z
5 BLO, BCS k| 2 L] o % 2 2
26 ANE i 2 56 RORB : 1 B6 2
27 BEG 3 2 57 ASHB 2 a7

M AvC i 2 e ASLB, LSLB 2 ! 88 EORA 4 2
» BYS 3 2 5 | ROLB 2 ! 89 ADCA 2 .
24 | BRL 3 2 5A | DECB 1 A | ORA 2
28 aMI a 2 58 » HB ADDA Y F; 2
ac BGE 3 d 5C INCH 2 1 BC CMPX 4 3
2D BLT 3 2 5D TS18 2 1 80 B5R ! ¥,
2t BGT 3 2 HE . BE LDx ] 3
2F BLE Helate | 3 ) BF CLAA irterene | 2 1 HF .

LEGEND

~Numbet of MPU cyches (less possible push pull or indesed- mode cycles)
# Number of program biytes
* Denotes unused opcode




280

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES (CONTINUED)

[0F Meom | Mose [ =17 | or[ Mnem wose [ + Tor urem T woae J- T
90 SUBA le-t: 4 2 co | suse immed |2 2
91 CMPA 4 Fi c1 | cwmee 2 2 Page 2 and 3 Machine
a2 SBCA 4 12 c2 | sBcs 2 2 Codes
8 SuBD 6 |2 €3 | ADDD 41 3
a4 ANDA 4 .‘{ c4 | ANDB 2 2 1021 | LBAN Redative | 5 4
9 BITa 4 ? s | BB immed |2 2 1022 | LBHI A |we] s
86 LDA 4 2 6 | Lo8 immed |2 2 1023 | LBLS i | 4
?7 STA 4 f cr | 1024 | LBHS, LBCC 56| 4
98  EORA 4 2 ce# | EORB 2 2 1025 { LBCS, LBLO 56/ [ 4
o] ADCA 4 z co | Apce 2 2 1026 | LENE BlE | 4
94 ORA 4 2 ca | ORB 2 2 1027 | LBEQ 56| a4
98, ADDA 12 8 | ApDB 2| 2z | 1o |ieve 561 | 4
9 CMPX *_f - CC | LOD 3 K| 1028 [ LBVS Hien | 4
90 USR x-- L ol * 1024 | LBPL ifi ] 4
af LDX Y B 7 CE LDU immed |3 1028 | LBM) 4
" s :
oF  STX Daect | & 2 ck | 102C | LBGE 4
; T . 1020 LBLT 4
AD SUBA Ineaed |4+ | 2+ Do suBs Dupcr. 14 a 102¢ I.BE»‘ 4
Al CMPA 4+ | 24 m | cmea A |4 2 i 2
! o2 ! ‘ssce i . 102 | LBLE 5 4
A2 SRCA 4+ 2+ * . r 103F | swiz Inherent | 20 g
A3 SUBD Ge | 2+ B3 | ADDD 6 2 5 B ! s
a & D4 ANDE 4 9 10683 | CMPD immed |5 4
A4 ANDA 4+ | 24 - 108C | CMPY | 5 4
A% RITA ar | 24 05 | BITR 4 : t i
S . = 108€ | LDY Imimea |4 4
AB  LDA ae'] 24 D6 | LbB 4 i 2l
2 1083 | CMPD Derect 7 1
A7 STA 4 | 24 D7y S18 # 2 109¢ | caapy / 3
AR EORA 4+ 2+ D8 | ECRB » 2 100 | LDY [ 3
AR ADCA g+ | 24 pe | Apce 4 : : . .
% . 109F | STY Direct |6 L}
AA DRA 4+ 2 DA | ORB 4 2 il eiers . =
. oe | appe 3 2 1043 | CMPD ndexed | 7+ i
AR AaDDA 4+ | 2+ Y ; 10AC]| CMPY 7 3
AC  CMPX B | 2+ De | LoD 5 2 | ¢
C C i . 3 2 10AE | LDY B+ 3
AD  JSR 7+ | 2+ Do | sTD 5 2 v 2
Je b 1DAF|STY ndexean (6« 3
e Lp% a5 | 24 DE | LDU Yy |s 2 ; 3
D < of | s1 Duect |5 1083 [ CMPD Extenaea|8 4
AF  STX ingexed |54 | 24 U b I - 108C | CMPY B |a
5 ED SuUBB Indexea |4+ 2+ T0HE | LDY 7 4
BO SUBA Extended| & 3 Et CMPB 44 2 108F | 5TY Ewtenced| 7 4
H.[ :.Mf'A 5 3 E2 SBCHE 4+ 24 10CE [ LDS Immed |4 4
B2  SHCA b 3 E3 | anpD 6+ 2« [ w0e|LDS Duect |6 }
B3  SuBD ! 3 E4 ANDB 4+ 2+ 10DF | 15 Duescy |6 1
B4 ANDA 5 3 5 | mire 4+ 2+ B ke |LDS Ingixed |6+ | 3o
85 BITA 5132 £6 | LDB 4+ 2+ } 10EF |5TS ndeved (64 | 3
B6 LDaA :J 3 E7 5TH | asl 2+ 10FE |LDS Extendeal 7 4
B7 STA 5 | 3 e | zome I lad] 2+ | 1orelsts Extended|7 | 4
B8 mn_.: 5 3 E9 | ADCB 4+ 2+ f naF | swia nhorert |20 | 2
89 ADCA ] 3 EA | ORR a+ Z+ 1183 | cvpy 5 4
HA  ORA 5 -_i 8 | apps 4+ 2+ f nec|cmes 5 4
B8 ADDA 5 3 EC | LDD S+ 2+ | na3 | cvey 7 i
BC  CMPX 7 3 e0 | sTD 5+ 2+ [ nsc |cmes 1
BD SR 8 3 EE | LDU 6+ 2+ ] naalomru . « |3
BE  LDX B 3 EF | stu Indewed |5+ 2+ | 1ac|omes a|7e | 3
BE  STX Extengad| 6 3 S s
o | sues Extanged| & 3 .1:53 l_‘.h:m.. f. er .]HU 8 4
£ CAMPR 5 3 HBC | CMPS wtetded |8 4
F2 SBCH 5 3
F3 ADDD ! 3
Fa | ANDB ] i
5 BITE -] 3
F6 | LDB 5 3
F7 ST8 L] i
NOTE Al unused ppcodes are both unoelhned fd EORB 5 3
e 5 | s el :
FB ADDB Extended| & 3
FC LDD Extended| & 3
FD | STD 61 3
FE LDu & 3
FF STu Extended| & 3
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FIGURE 18 — PROGRAMMING AID

r Addressing Modes
Inmadiae Lhirext Indexag Extancded | inherent B3 200
IPgTructpn Farms [ Qp | ~ r| oo ] - 2] Op] - s Tonl - fop| - T Detcription MORGE
ABE 3| 1| e x—n wosgnea elaloa]e
LArln AQCA By 2 2 W4 | 2 oaslas) el BE] 5] 3 A+ C—a AR RN
ADCH {9 ]2 2l D4 | 2| E9jas] 2+ F3]| 5| 3 B+M+ -8B ile)aft]
ACD A0S BB | 2 2 9B 4| 2| AB|a~] 2| BB] 5] 3 A M—h IR AN
apDBE |ca|z| 2|oe)a| 2| em|a]2-]ee| 5] 3 BrmM_B el el
ALD0D C3| 3] 2| D3 |6 2| E3|h+|2+] F3 7 a DestdMeI=D +hafr]a]t
AND EDa (B4 | 2| 2| @ |2 2] sa|d-jz2<]8al 5] 3 AAM=A DR
LNOE cd |2 AR FE ST EEN BN LT I B4 =L +[1{1]o]e
ARCCC [ LT |3 ) 2 CLA M= 7
ASL ASLA awl 2l s - sy
ASL [ I I T R IR A I M 6y oy Bla|af1]
] BERL ai| 2] & ] A1) =]
A5 B I I T R T T I T T bl 7 oy © Blejrpeg
st BiTa 8o | x| 2| 90 |4 | 2| ARl BE] 9] B Tes: & 1M A A0 sfrda]o]e
BITH Ch || 2fvs]a| #| fafa]2e]Fa] vy B Tasi B (M A 8 L EER LN N e
CLH CLAS arl 7 v [o=a DB EE
CLRG SEy 7 Vjo=-g sloli{nlo
CLR OF Fo | | ®F|B-]ea ] 7] 3 D 1A slofvioto
AP cwea a2l el o Ja ] 2] arfa]z-Te ] Cemtiprare M fionrs £ ARDEE
CMPE Lz 2ol a | i) etfac]2zFr|n]x Cemgare M Igpn B it e]
CMPO Wl S|l ay [ s |3 R oA Cormgrare B+ 1 frgm D NN
) @ LX) B3
CHFS W s | af wls|arnfipacfin]a]| 4 Corepae: W M1 Ipm § sfrfaype)
ac 1 AL =1
CrPL L =T A R W - A O A I R O - I Corngrarr WA 3 brom 1) #fafe]1]
83 93 63 B3
e Tmipel 3|96 | zypecieloatac] | s Compate WM L b K whylolols
CHAf~ AL 1 &0 1w |7 | oy - M| B a Comibate MR < T gy *lrpeptta
BL kY AL B
O COMA A3 I NNREE
COME 93| z| 1 |E-8 B HEE
oM 03 |6 ] 2] 63f6-]2-] b /|3 T — M NMENEE
Cwal 3C =20 2 CC A M = CO Wt e 7
D, 9l 2 1 | Decrmal Al ir & s(ifc]|0]t
DEC DECA da 2 A 1-A LA R LA
TECHE fal 21 s1g-1-8 LR SR
DES LT N Bl T R O (O I | BT M 1t
ECH EORA gafe| 2| @ 2| 2 ABJac]7v[BB] 5| 3 A=A NBNGG
ECHE ce 2| pa 4| 2| EBfjac]2|fB[ 5] 3 B4~ sla]elals
EXG R k2 e s 2 n1- Azt e e]a]"
ING INC A acltl 2 1w t—i w1 [aft] "
INCB sC] 2 1B+ 1-B 11|+
s oc |6} 2flecyeel2fic] /] 3 W =t olifafe
M of |3 2| Befas]2-|re] a] 2 fad e “|wfefo|w
JSH AR R AR E Jurnp 13 Subrounne MEIRIEA
LD LD& pe [ 2| 2| % fpa| 2| ab|drf2oBE] 6| 3 (YT NEEREE
1DB Th| 2] 2y 06| a2 EB|4-]2+|FG| 5| 3 Mg | 1ft]o) .
LoD ce [ 3] 3| o5 2 EC|(S+p2+|FC| B k| Mk 1=0 +[1]1]0]*
105 1w lal al wls ] 3] ®W[E-[3+] 0] 7{ 2 M 1=5 [ |1{0]+
CE DE EE FE
LOu cE[3| 3| DE|% | 2| €&)5-|2e|FE; 6| 3 M-y il e]als
Lox S |3 3| 9 5| 2| AE|S+) 2+ BE| & | 3 MM 1= w10
Lo W4 | 4] w6 | 3] WiGs]| I« 13| 7| 4 M e 1= ol fa]-
BE ! € AE BE
LEA LEAS A4 2+ galosg BEIEIEIR)
LEAL || i+ galoy a|e|e]|e]
LEAX W{as| 7 Eady olalit] o]
LEAY e 2. Esdy eief1] el
LEGEND M Complement of M 1 Testand set of true, cleared otherwese
QF  Operahon Code iHesadecmal) - Transfer Inne - Not Attecied
= Mumber ot MPL) Cycles H  Hall-carry dfram i 31 CC Condimon Code Ragisier
#  MNumber of Program Bytes N MNegauve taign it Concatenalion
+  Arnthmeng Plus 2 Zeeo resull v Logical of
- Anthmene Minus ¥ Owerllow, 2's complement A Logical and
. Muliply C Carry lrom ALY ¥ Logical Excluswe o
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FIGURE 18 — PROGRAMMING AID (CONTINUED)

Addressing Modes =
! Immediate Direct Indaxed! Extended Inherent sl3f2i1l0
Instruction|  Forms = 7| Op] -] 7| Op] -] 71 Op] -] 7| O] -] 7] Description HIN|Z]V]C
LSL LSLA @|l 2|1 a e O N R R
L5L8 sal 21 1 BI”-—{ | I [I}-U sttt
LSL 8| 6| 2| e8]|6+|2e] m] ]| s MW oy bo Ol S C T
ISR LSHA a2l & —=== - elo]tlelt
isA8 sf 2| 0| 8o HLIITITII |=[ofi]e )t
LSA o4l 6| Z] ealGelae] 23] 7] 2 by b Jelofplels
MuL 0] 1] 1A B=~D s NODDE
NEG NEGA 0 ] =R BRlaqe s
NEGE Wl 2| 1|Ber-8 aleislr]s
NEG wl6| 2| e|b«j2-] 0] 7] 3 Metem o altlelefa
NOP 12] 2 ] 1 [mo Operiationns slafe(s|s
OR ORa BAL Z | 2]9al a] 2] aafaf2.]BA| 5| 3 AVM=A el |t .
ohE cal 2 2l Dal 4| 2| EAjas] 2] FAl Y i BYM=B elt |1 -

QACC a] 3 |2 CC W IMM = CC
PEH psHs | a4ls.d] 2 Piah Aigraters o0 S Stae ofele]ale
PSHU (6.4 2 Pt Rugstens oo L Stk slejujeie
FUL PULS BH|5+2) 2 Pl Fagsters B 5 Suce sl fala]e
PULL vis-4 2 Pt Prugatirs fows | olo]a]ale
KR AOLA " Bl 7a Croorr et et
HOLE sl 2] BI —{_}--III ofsle]t]s
RO w|6]| 2| 60]6fa-] m| ] 3 R sl o]
ROA AORA AR 1111 1 1 lefe]=]t
RORB N wl| 2] glLﬁl}’{IﬂIH]‘ ot ]rle]s
ROR 06| 6| 2| 6Bi6=|2+) M| / i L T =li]e]=]r
RTI 38 16 15 7[Rt §roes interngs 7
HTS Wl s 1 P Saite . R
SBC SBCA | 82| 7 [2| M [ 8| 2| A7|as| 2+ B2 5] 3 A M £=A Bt ||t [t
SHCR c2| 7 | 2| o2) & | 2| €24+ 2-|F2]n] 2 B M C=8 CIEREREN Y
(SEX D] 2 | 1 [Sago Enrerid Bt A MR 0
5 ETA wlal zlArlasl =185l o | AWt s[t(Ti01e]
578 prl| & ) ET (3| 2+]| B7 -] L BeeM LA N E! -
sS1D DDl & | 2| ED|5+) 2| +D|'B] 3 =AM witly .
518 wle| 3| 0|6 3] w0 ] SN ol |t .

DF EF i !
STU DF| 5| 2] B |ae]24] %% |8 ] 2 =M Ml sl lilale
STX 9| 6| 2| ar|se]2e]Be| 6] 3 XM e ) bl Rl i ol
STY wie]| 3| o w| 7] 4 ol W e slufriofs
aF aF |64 34| 8F
SUB SUaA |®0| 2 |2|® s |z a0|a-[2-[BO[E] 3 A m= alv T [s
supd  |co| 2 |2|oo|a|z|eojasfas|FO]|5] 2 B M-8 Bloje|s s
supp (B3|l A4 |3|eafe|2]At]6elae|Ba] ] 3 0- MM 1D o3 fafa e
SWI swib | 18] 1 |Sotrware gt | oo s le|e
L | 200 & [Sottware interrupt 2 wle lo oo
3
Sy 11 ] 20| 1 [Sotiware intereup 3 o (o o ola
3
SYNC il i 1T 1T 13 [=4] 1 [Swnchionze 1o intwrupt . |e .
TFR At R2 | 1F| B |2 R1~=R2% .l .
TST TSTA A0 2 |1 [Tent A o .
1578 Sp| 2] [Tem B * |3 .
5T gD|6 | 2 |6D|6+j2+| D) 7| 3 Test M |1 .
NOTES

1 This column gvesa base cycle and byte count To obtam 1013l count, add the values obraned trom e INDEXED ADDHESSING MODE 1abie.
Table 2

2 R and A2 may be any pair of B tit or any par of 16 it registers
The B bit registers are A, B, CC, DP
The 16 bit regstecs are X, Y. U, 5. D, PC
EA 15 the effective address
The PSH and PUL instruchons requite 5 cycles plus 1 cycke lor each byte pushed o pulled
516} means; 5 cycies o branch not taken, 6 cycles f taken (Branch instructions!
SWi sets | and F bits SWI2 and SWI3 do not atfect | and F
Condiions Codes set as a direct result of the instruction
Vaue of halt-carry tlag s undefined
Specsl Case — Carry set it b7 s SET

W0 B W
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FIGURE 18 — PROGRAMMING AID [CONTINUED)

Branch Instructions
Addrassing Adrming
. Mode | Mode
nnr' si3i2l1l0 3 2
instruction | Forms | OP | - 5] Dieacrpts HiNIZIV]C Foerrw |OP | -] [winlzivic]
BE BLC 2413 | 7 [Banch C=0 NHRRE s aLs 2|3 [ 2 [aranch Lowes elelala]e
LBoC 10| 56| & |Long Branch agnan o Same
FLl £-0 LBLS 10 {5i] & [Lomg Branch Lows o le|efele
BCS BLS &3] 2[fmmenCon el . ] o Same
LBCS | 1D 15 & |Long Baren . [y B 0] 3 [ 7 [Bacnetes s lel s
£l L=} LELT 10 | 58| 4 |Long Bt Zoo [o]|e]e|a]e
BEQ BEG ) 3| 7 |Geren gt e it
LREQ M| 5G] 8 |Long Beatcn e s|e|a D0 A 28 3 | 7 [Branch M lalslats
- ? {4 Z=0 B LB 0] 5iEi] & org Bramcr Mens [o|s|e|e]s
BGE BGE | 3 | 7 |GencheTeo alalalals a8
LBGE 10 | 561 & |Long Branchzden |w|e|e|efe L BNE &) 3| 7 |BaxnT-0 .. .
]| 1 - LBNE |10 |l | 3 |Lang Braren ols G
BGT BGT 2| 3 | Z |BuncnaZwe wlewfale Le0
LBGT M5 | 4 (Long BrarcnsZeo [ o|elefefe EEll APl 7 |Brareh Pl e, = iy g
pis LiFL 9 & |Lorg Branch Pus wie|wfeie
AH B 22| 3 | 2 |Branch Hgraer slalnfafe | F
LaMI 10 p6it] @ |Long Bravich Heghed | o (sl el (28 [BRa 20[ 3] 2 |Bedect Avaays slalelels
2 LAAA W] 5 | 3 |iong Bearch Avmans o [o]n]e e
[ HHY M| 3] 7 [Branch Fugres slalalel E HAN T3 | 7 [Brarch Never NHOY
o Same LHRN ti| & | & Jong Branch Never |e e s (e
LBHS 10 ] 51| @ |Long Banch thghes |l afe| el e o ||
= e L o Same [ a5k BO| 7 | 2 |Branch 1o Sueouuenfe (o] | %] e
BiE BLE 2|3 | 7 [Brarchs Tevs wlwjwinle LBSR t1] 9 | 3 Jiorg Brarch his 1 =
LBLE W0 56| 4 |Long BranchsZmo (e|e|e|ele Subrouting
fe=— 1 e BVEC WL @13 |7 [Bashve0 ol .
BLO BLo 2| 3 | 2 |Banch owe sfafejele LBvC 10 15| & fLong Brasch - alw .
LD 10 S| 4 |Long Brancn Lower [ e|e(=| e @ M V=0
L ETES BV |29 3 |2 [Barer Vel aagco
LBVS 10 {5t6 | & |iong Brance ool
L a1 - = vt 1] |

SIMPLE BRANCHES

or - i
BRA 20 3 2
LBRA 16 & 3
HBAN 2 3 2
LBAN glir3} & 4
BSH 8D 7 2
LBSH 1”7 : 3

SIGNED CONDITIONAL BRANCHES (Notes 1.4)
Tost True OP  False oP

r=m BGT 2 BLE 2F
rzm BGE 2C BLT 0
r=m BEQ 27 BNE %
rsm BLE F BGT 2E
rem BLT 0 BGE i
NOTES
1 Al conditional branches have both short and long vanathons.
2 Al short branches are 2 bytes and requre 3 cycies
3
4
5 5i6) means: 5 cycles of branch not taken, 6 cycles i 1aken

SIMPLE CONDITIONAL BRANCHES (Notes 1-4)

Test True oP False oP
N=1 BMI 28 BeL 24
Z=1 BEQ i BNE p. .}
V=1 BvS b} BYC 8
C=1 BCS .l BCC 24

UNSIGNED CONDITIONAL BRANCHES (Notes 1-4)

Test True oP False oF
r>m BHI 2 BLS 23
r=m BHS 24 BLO 5
rem BEQ g HBNE %
rsm BLS 3 BHI 7]
<m BLO 5 BHS 24

All conditignal long branches are tormed by prelang the short branch opcode with $10 and using a 16:bit destination offset
All condihonal long branches requre 4 bytes and B cycles i the branch s taken or § cycles if the branch s not taken
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INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

Indexed
Post Byte Regster Bit Ad g
7]6]5]4(3]2]1]0 Mode
OIRIE s la]s]s]s EA H o+ 5B Citsey
BERERERERE D H o«
PJRIA]V |G OJO]Y A+ &
1jajrjojojajrjo )
IDCGDEDRE A
ElRjARL |G ]O]0 EA = R + 0ODHsel
t|prlajijo]r o]t JEA = R + ACCB Otfsst
tjafrlijo]rft]o Jea = R + ACCA Offset
T{RIARIY]O|R]O EA = R+ B -BaOfhsgt
TIRIAR[T [T IO[O[T [EA = _ R + 16 BiaOfiset
PR {tjofrpt EA B + 0 Oftset
Tlalefjr 11 ]O]0 JEA= . PC + 8Bt Oliser
Plaa iy i o] JEA =  PC + 16 B Offsat
BB E EA = | Address|
i1 |
“Ntl

Addressing Mode Feid

Indrect Fukd

1Sign it when by = 0

Regster Feld AR

o= x
=Y
10 =u
X = Don't Care N=35

Pomter Regrster

Program Counter

Acgumulators

DuresCt Page Bogater

CC - Condition Code

| ]— Carry Bonow
Overliow

Zeto

Nlﬂ}a\h{k
e RO Imterupt Mass

Half Carry

Fast Interrupt Mask

Entie State on Stack

INDEXED ADDRESSING MODES
Nondirect Indirect
Assembler | Post-Byte | + | + | Assembiler [Post Byte| + |+

Type Forms Form Opcode | ~|2| Form Opcode |- | #
Corsam Oitsa From B No Offset H VRADOIO0 Y B0 1. Al YRR | 3o

5 Bit Oftser n R URAnnnnn| 1]0 cetaulls to B tar

B 8t Ottser n R TRROIOG] 1] n. By prRAENIGOD | 4]

16 Bt Dttset n R TRRAUIOOT ] 4 ]2 L 7id
Accumulator Otfser From B A - Regster Oftsor A H TRAOONIG] 1]0 alo

B Regeter Ottser B R TRROCIOY | 1|0 1 [

%] DR THROWL 4]0 4 [y
Auto Increment Decrement R increment By 1 e VRROOODG | 20

Increment By 2 B o« + | 1RADOO ilo

Decrement By 1 H TRAO0O10 et o)

Decrement By 2 A FVRROOOTT | 3] 4] i
Constant Ottset Fram PC 8Bt Oftse r POR PIXXOUIOG Yl ) e PCRY Baxtrtoo ] sl

16 Bt Offsast n PCR raxonton sl | e perl hasinon | 81
E stenided Indrect 16 80 Adidres n 1o 51y

R=X Y U or 5 RR - X 1

x = Don't Cane M=y 4
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Pushs Pull Post Byte 6809 Stacking Order
l [ ] I I I I ]J Pull Orger
L—ccn |
A cC
B A
DPR B
x (813 6809 Vectomns
¥ X H FFFE Restart
s/ X Lo :E:i ;‘“"
PC wi
::“ FFFE 1RO
Transter. Exchange Post Byte ' e FiFe ARG
izalarr= — U/S Hi FFE4 SW12
L Soutce ] Il]"?""‘i""". J UsS Lo FFF2 SWI13
PC W FFFD Reserved
Register Fueid PC Lo
0000 =D 1A-B) 010 =pC 4
00071 = x 1000= A Push Drdes
0010= ¥ 1001 =8 }
ot =U 1010=CCR ncreasing Memory
0Wo=5 1011 = DPA

ORDERING INFORMATION

Package Temperature
Type Frequency Range Order Number
Caramic 10 Mz 0*C 1o 70°C MCEBIEL

L Suftix 10 MHz - 40%C 10 B5°C MCBB0SECL
15 MHz 0°C 10 70°C MCEBADIEL
15 MHz - 40°C 10 B5°C | MCBBAMECL

20MH2 0°C to 70°C MCEBBUSEL
20 MHz 40°C 10 B&"C MCBEBOSECL
Plastc 1.0 MHz 0°C to 70°C MCHBO0SE P

P Sutti 10 MHz ~40°C to 85°C MCBR0ECP
15 MH:z 0°C 10 70°C MCBEADSEP
15 MHz - 40°C 10 85°C | MCBBADIECP
2.0 MHz 0*C 10 70"°C MCGEB0SEP
20 MHz 40°C 10 B5°C | MCBABOSECP

Cerdp 10 MH; 0*C 10 70*C MCBBISES
5 Sufhx 10 MHz 407C 10 86°C MCBBOSECS
15 MHz 0°C1o 70°C MCEBBADIES

15 MMz 40)°C 1w B5°C MCBBADSECS
2.0 MHz 0°C 1o 70°C MCEABODES
2.0 MH2 - 40°C 10 85°C | MCBBBORECS

BETTER PROGRAM

BETTER program processing & avalable on all types hsted
Add sitfc letters to part number

Level 1 add 5" Level 2 add "D Level 3 add “D5
Level 1 “S§” =10 Temp Cycles— | =25 10 150"Ch
Hi Temp testing at Ta max
Level 2 "D =168 Hour Burnan mt 126°C
Level 3 DS = Comtwnation of Level 1 and 2




Appendix 2
SN74L.S783 data sheet

Suppl i ed courtesy of Mtorola Sem conductors.

The information here has been carefully checked and is
believed to be entirely reliable. However , no
responsibility is assumed for inaccuracies. Mtorola
reserves the right to nake changes to any products
herein to inprove reliability, unction or design.
Motorola does not assune any liability arising out of
the application or wuse of any product or circuit
described herein. No licence is conveyed under patent
rights in any form Wien this docurent contains
information on a new product, specifications herein are
subject to change w thout notice.
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—
|
. | SN74LS783
Semiconductors [ MC6883
1 Advance Information |
I —— SYNCHRONOUS
SYNCHRONOUS ADDRESS MULTIPLEXER MSER?E:EER
The SN74LS783/MCE883 brings together the MCEBO9E
(MPU), the MC6847 (Calor Video Display Generator) and dy- |
namic RAM to form a highly effective, compact and cost ef |
fective computer and display system LOW POWER SCHOTTKY
e MCBBO9E, MCBB00, MCEB01E, MCE8000 and MCE847 (VDG)
| Compatible [
® Transparent MPU/VDG Refresh |
e RAM size — 4K, 8K, 16K, 32K or 64K Bytes (Dynamic or
Static) l
® Addressing Range — 96K Bytes | N SUFFIX
® Single Crystal Provides All Timing | PLASTIC PACKAGE
e Register Programmable | CASE 711
VDG Addressing Modes
VDG Offset (0 to 64K)
RAM Size
Page Switch
MPU Rate (Crystal 16 or 8) UEEIX
| MPLU Rate (Address Dependent or Independent) CEHA:IISC PACKAGE
1
® System 'Device Selects” Decoded ‘On Chip’ [ CASE 734 |
e Timing is Optimized for Standard Dynamic AAMs ; 1
e +50V Only Operation
e Easy Synchronization of Multiple SAM Systems PN AEENNIIEN
| | N T
* DMA Mode |
L —
SYSTEM BLOCK DIAGRAM ‘] 2
. 3
' a
B Oscyn A\sg_._l 36
6 [ Oscout 272 35 [RAST)
7 T VCik z6 34
8 ] DAD Z51 33
a lgiHs zay 32
10 ] WE zaE 31
1 ﬁc_ﬂ's 224 30
12 CJRASD zZ1[ 29
13030 203 28
14 TSE S0 27
- 15 15119 W s 26
: 16 [ AD S2{71 25
| 17 . A1 A7[ 24
=1 18 (| A2 A6 23
| 19 A3 As [ 22
]
o 20 T Gnd As 1 1
[ —_—
& new product Speciications and information herein £y ANC T84 ADI-595

|Replacing NP-118)
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_ MAXIMUM RATINGS (Ts 25 C unluss otherwise noted )

Rating o Symbol Value Unit
| PowerSupplyVoltage | Vgg |-0Bto <70 Vde
| input Voltage (ExceptOscin) | Vi | 05t10 | vde
Input Current (Except O§U|Di‘_ o Iy -30t0 +5.0 mA |
Qutput i’grtnpe = | m i | ;9__5&-_1.0 Vd:_ ]
Operating Ambient Temparature Rang_e__ | Ta | Ot0-70 | C |
Storage Temperature Range 1 Tsg - 6510 + 150 ‘C
Input Voltage Oscin IR Viosein 05toVeg| Vde |
Input Current Oscyn | hosejn 061w +50 mA |
RECOMMENDED OPERATING CONDITIONS
Rating Symbol Value Unit 1
Power Supply Voltage Vee 47510525 Vdc j
Operating Ambient Temperature Range TA Oto - 70 | C |

temperature ranges.|

DC CHARACTERISTICS (Unless otherwise noted specifications apply over recommended power suoply and

Characteristic Symbol ] Min [ Typ Max Units
Input Voltage — High Logic State ViH I 20 } — — v
Input Voltage — Low Logic State Vip ! —_ I - 08 v
Input Clamp Voltage Vik - ] - - 1.5 v
(Vge = Min. ljp = - 18 mA) All inputs Except Oscjp |
Input Currant — High Logic State at Max Input Voltage Iy wh
(Veg = Max, Vi = 56.25 V) VCIK Input - - 200
Voo = Max. Vip = 5.25 V) DAD Input - - 100
(Vge = Max, Vin = 5.25 V) Oscgyyy Input - - 250
Ve = Max, Vin = 7.0 V) All Other Inputs Except Oscin —_ - 100 l_
Input Current High Logic State IiH WA
(Vee = Max, Vin = 2.7 V) Al Inputs E VCIk, Oscin® — — 20
Input Current — Low Logic State TS méA
IVge = Max, Vin = 0.4 V) DAO Input = =~ ~132
(Veo = Max. Vin = 0.4 V) VCik input — - 30 - 60
IVee = Max, Vip = 0.4V, Oscjp - Gnd) Oscgy, Input = - -8 |
IVge = Max. Vi = 0.4 V) All Other Inputs Except Oscip — - -4
Output Voltage — High Logic State _ v
(Vge = Min, lgH = - 1.0 mA) RAS0, RAS1, CAS. WE VoHics 3.0 - -
Vee = Min, IgH = -0.2mAIE, Q VoH(E) |Vec - 0.75 — -
(Vee = Min, Igy = — 0.2 mA) All Other Outputs Vou 27 — —
Output Voltage — Low Logic State - v
Vge = Min, lgL = 8 0 mA) RASO, RAS1. CAS, WE Voiicy - - 05
{Vge = Min, IgL = 4.0 mAl E, Q Outputs VOL(E) — — 05
IVee = Min, lp = 0.8 mA) VClk Output Youiv) - - 0.6 l
(Vge = Min, IgL = 4.0 mA) All Other Outputs VoL — — 0.5 {
Power Supply Current Iee - 180 230 ma |
Output Short-Circuit Currant os an == 225 mA

*Including OscQy Iwhen Osciy 15 grounded)
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AC CHARACTERISTICS (4.75 V- V=526 V and 0= T4~ 70°C, unless otherwise noted|

synchronising process is P

PROPAGATION DELAY TIME insl

| The synch requires a

2. tWLIHS} wider than 6.0 =9 may yisld more than 8 sequential refresh addresses

FIGURE 1 — PROPAGATION DELAY TIMES
VERSUS LOAD CAPACITANCE

1

LOAD CAPACITANCE oF

Characteristic sW_r_l_hul Min ~ Typ | Max __l,.l_l_l_l_u-“
Propagation Delay Times ns
{See Circuit in Figure 8) Oscillator-In ®_ to Oscillator-Ouls | tdiOL-OH) — 30 -
Oscillatar-In & 10 Oscillator-Out. td(OH-OL) —_ 20 -
{CL = 195 pF) AD thru A5 to Z0, Z1, 22 thru 27 tdiA-2) - 28 -
(CL = 30 pF) AD thru A15, R'W lnji—m, s3 tdiA-S) | - | 8 = |
(CL = 95 pF) Oscillator-Out @ 10 AASD o 1d(0L-ROH) = 20
(€L -~ 95 pF) Oscillator-Out ™ to RASD t4(0L-ROL) - 8 -
iCy = 95 pF) Oscillator-Out % to RAST 4 t4(OL-RIH) -— 22 -
(€L = 95 pFl Osciliator-Out ®_to RAST & 'IOL-R1L) | — 20 -
[CL = 185 pF) Oscillator-Out W 1o CAS & td (OL-CH) - 20 -
(€L = 195 pF) Oscillator-Out % to CAS & 'd(OL-CL) - 20 —
(GL = 195 pF) Oscillator-Out @ to WE o 1d(OL-WH) = 22 -
iCL = 195 pF) Oscillator-Out * 10 WE 1d(OL-WLI — 40 -
(CL = 100 pF) Oscillator-Out L 10 E o 14| OL-EHI — | 55 —
€y, = 100 pF) Oscillator-Out Lo E t4(OL-EL) - 25 —
ICy = 100 pF) Oscillator-Out 1o Q A Td(0L-0H) - 55 =
{CL = 100 pF) Oscillator-Out L 10 0 4 td(0L-QL) - 25 -
{CL = 30 pF) Osciliator-Out o to VCik o td(OH-VH) . 50 =
ICL = 30 pF) Oscillator-Out 4 to VCIk & | Md{OH-VL) — 85 —
(€L = 195 pF) Dscillator-Qut & to Row Address td{OL-AR) - 36 -
(€L = 195 pF) Oscillator-Out % to Column Address t4(0L-AC) - 33 -
(CL = 156 pF) Oscillator-Out @ to DAO o Earliest(1) 14{OL-DH) - -186 —
CL = 15 pF - : - 1 ( - - —
cy 5 pF) Ou_ﬂlator Out "« to DAD & Latest! td(0L-DH) 15
(CL = 95 pF on RAS, C| = 195 pFon CAS) CAS ® 10 RAS 4 | 14iCL-RH) - 208 -
Setup Time for AO thru A15, RW Rate = <16 | 1gy(A) — 28 - ns
Rate = 8 - 28
Hold Time for AQ thru A15, RW Rate = - 16 thia) - 30 — ns
Rate = - 8 - 30 .
Width of HS Low 2 twLiHS) 20 5.0 6.0 s

Notes 1 Whan using the SAM with sn MCEB47, the nsing eoge ol DAD is confined within the range shown in the timing diagrams lunless the
of 37 cycles of Oscgy for completion
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PIN DESCRIPTION TABLE

Name No. Function
; Vee 40 Apply + S volts = 5%. SAM draws less than 230 mA,
B Gnd 20 | Return Ground for +5 volts.
Als 36 | Most Significant Bit.
Ald 37
A3 38 MPU address bits AQ-A15. These 16 signals come directly from the MPU and are used to
E A12 39 directly address up to B4K memory locations or to indirectly address up to 36K memary
= A1 1 locations. (See pages 17 and 18 for memory maps). Each input is approximately equivalent
e | AlD 2 to one iow power Schottky load.
L]
< | A8 3
- AB 4 [
- AT 24
AR 23 i
E| 2 | A5 22
3| A4 21
i 2 | A3 19
el = A2 18
Al 17
AD 16 | Least Significant Bit. |
RJW 16 MPU READ or WRITE. This signal comes directly from the MPU and 15 used to enable wniting | 1
1o the SAM control register, dynamic RAM {via WE), and to enable device select #0. |
Oscin Apply 14.31818* MHz crystal and 2 5-30 pF trimmer to ground. See page 12 ]
DAD Display Address DAO. The primary function of this pin is to input the least significant bit of a
16-bit video display address, The more significant 15-bits are outputs from an internal 15-bit ,
counter which is clocked by DAD. The secondary function of this pin is to indirectly input the |
] = logic lwul of the VQG “F8" tfield synchronization pulse| for vertical video address updating. |
S i HS 9 | Hori Synch ion. The primary function of this pin is to detect the falling edge of |
> 8 VDG “HS" pulse in order to initiate eight dynamic RAM refresh cycles. The secondary function |
is to reset up to 4 least significant bits of the internal video address counter. .
}_ VClk 7 VDG Clack. The primary function of this pin is to output a 3 578545 MHz square wave** to the |
VDG “CIk” pin. The secondary function resets the SAM when this VCik pin is pulled to logic |
"0 level, acting as an input. |
E——
Oscout 6 | Apply 1.5 ki) resistor to 14.31818* MHz crystal and 33 pF clplcutor to ground See page 12. |
S2 25 Most Significant Bit (Device Select Bits). The binary value of 52, 51, S0 selects one ol eight
gz s 26 “chunks” of MPU address space (numbers 0 through 7). Varying in length, these “chunks’ I
E _g provide efficient memory mapping for ROMs, RAMs, Input Output devices, and MPU Vectors. |
ad {Requires 74LS 138-type demultiplexer) I
S0 27 Least Significant Bit o |
w| E 14 E (Enable Clock) "E™” and "0 are 90" aut of phase and are both used as MPU clocks for the }
E k] MCEBOSE. For the MCB800 ana MCBBO1E, only “E” is used "E" is also used for many MCE800 |
.| g peripheral chips. 1
E | (@ 13 Q (Quadrature Clock). !
= i 35 | Most Significant Bit |
a 6t 34 First, the least significant address bits from the MPU or “VDG" are presented to 20-75 (4K |
8 = ZI5t 33 x 1 RAMs) ar 20-26 116K x 1 RAMs] or 20-Z7 (64K x 1 RAMs) Next, the most significant |
§ 5 Z4t 32 address bits from the MPU or “VDG" are presented to Z0-25 (4K x 1 RAMs) or 20-26 |
€ 5| 23t n (16K x 1 RAMs) or Z0 -27 (64K x 1 RAMs). Note that for 4K x 1 and 16K x 1 RAMs, 27 (Pin
< 22t cl1] 36) is not needed for address information. Therefare, Pin 35 |s used for a second row
| 21t 29 address select which is labeled (RAST).
i 20t 28 | Least Significant Bit i
RASI 35 | Row Address Strobe One. This pulse strobes the lgast significant 6,7 or B address bits into |
- dynamic RAMs in Bank #1 |
|= 2| Rasor 12 | Row Address Strobe Zero. This pulse strobes the least significant 6,7 or 8 address bits into |
Ig gl __ dynamic RAMs in Bank #0. |
| '~ Q| tast 1 Column Address Strobe. This pulse strobes the maost significant 6.7 or 8 address biis imo l
I | dynamic RAMs
! J WE? 10 Write Enable. When low, this pulse enables the MPU to write inta dynamic RAM, ]

*14 31818 MHz is 4 times 1 579545 MHz television color subcarrier Dther frequencies may be used (See page 12
*“*When VDG and SAM are not yet synchronized the “square wave” will stretch (see page 10)
1 Due to fast transitions, ternte beads in seres with these oulputs may be necessary to avoid hugh requency | - 50 MMz resonances
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FIGURE 4 — SAM BLOCK DIAGRAM
52 81 50 Voo Gnd
i O 1 Ii
5 B S FFCO - § FEDF E
Al
Retresh Hefrash
Decode Request Grant BWw
Q Refresh Counter Pl Refresh ——( BOSC 16 IER*
06 05 04 03 07 Q1 OO0 Clock
2 NN Lo qCII_- "
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a1 ] B S e B13 F4 o} Ve
~ 10K
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an [ Al A B11 ] F2 : Wiotow
NOGTimin
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aa ] A wlarg 810 £y Detector
A [ _) 1 A3 Address 83 1 7_]"' o Start
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as ] = AR (See page B for signal B8 eIV P
routing and liming) [
T
a7 [ > I (A 87 P1E~P1 2
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>| 83
. <3 Manual
E < sy n E [ i {externall
Reset
d - . --—D]—_:E] 1
.
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a3 ] =1A3 L [ -2 ] i el el
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Az [] »{ a2 82 n —— Mo
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A1 C Al Lo n i3 Reset
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SAM BLOCK DIAGRAM DESCRIPTION

MPU Addresses (A0 - A15):

These 16 signals come directly from the MPU and are used to directly address up to 64K memory locations
(K = 1024) or to indirectly address up 10 96K memory locations. by using a paging bit "'P" (see pages 17 and
18 for memory maps.) Each input is approximately equivalent 10 one low power Schottky load.

VDG Address Counter (BO - B15):

These 16 signals are derived from one input (DAD) which is the least significant bit of the VDG address. Most
of the counter is simply binary. However, 10 duplicate the various addressing modes of the MC6847 VDG,
ADDRESS MODIFIER logic is used. Selected by three VDG mode bits (V2. V1, and VO) from the SAM CONTROL
REGISTER, eight address maodifications are obtained as shown in Figure 5.

Also, notice that bits B2-B16 may be lpaded from bits FO-F6 from the CONTROL REGISTER. This allows the
starting address of the VDG display to be offset {in ;K increments) from $0000 to SFFFFT  B3-B15 are loaded
when a VERTICAL PRE-LOAD(VP) pulse is generated. VP goes active (high] when HS fram the VDG rises if DAD
is high (or a high impedance.) This condition should occur only while the TV electron beam is in vertical
blanking and is simply implemented by connecting FS and MS together on the MCEB4T. The VP pulse also
clears bits B1 - BE.

Finally, a HORIZONTAL RESET (HR} pulse may also affect the counter by clearing bits B1 - B3 or B1 - B4
when HS from the VDG is LOW (see Figure 5.) The HR pulse should occur only while the TV electran beam is
in horizontal blanking.

In summary, DAO clocks the VDG ADDRESS COUNTER: HR initializes the horizontal portion and VP initializes
the vertical portion of the VDG ADDRESS COUNTER.

REFresh Address Counter (CO - C6):

A seven bit binary counter with outputs labeled CO - C6 supplies bursts of eight* seguential addresses
triggered by & HS high to low transition. Thus, while the TV electron beam is in horizontal blanking, e.ght
sequential addresses are accessed, Likewise, the next eight addresses are accessed during the next horizontal
blanking period, etc. In this manner, all 128 addresses are refreshed in less than 1,1 milliseconds.

Address Multiplexer:

Occupying a large portion of the block diagram in Figure 4, is the address multiplexer which outputs bits
Z0-Z7 las addresses to dynamic RAM's.) Inputs to the address multiplexer include the VDG address (BO - B15)
the REFresh address (CO- C6) and the MPU address (AD - A15) or [AD - A14 plus one paging bit "P".) The paging
bit “P" is one bit in the SAM CONTROL REGISETER that is used in place of A15 when memory map TYpe #0 is
selected (via the SAM CONTROL REGISTER "“TY" bit.)

Figure 6 shows which inputs are routed to Z0 - 27 and when the routing occurs relative to one SAM machine
cycle. Notice that Z7 and RAS1 share the same pin. 27 is selected if "M1” in the SAM CONTROL REGISTER IS
HIGH {(Memary size = B4K.)

Address Decode:

At the top left of Figure 4, is the Address Decode block. Outputs 52, 51, and S0 form a three bit encoded
binary word{S). Thus S may be one of eight values (0 through 7] with each value representing a different range
of MPU addresses. {To enable peripheral ROM's or 1'0, decode the S2, S1, and SO bits into eight seperate
signals by using a 74L5138, 7415155 or 74L5156. Notice that 52, §1, and S0 are not gated with any timing
signals such as E or Q.)

Along with the A5 - A16 inputs is the MEMORY MAP T¥pe bit {TY.) This bit is soft-programmable (as are all
16 bits in the SAM CONTROL REGISTER,) and selects one of two memory maps. Memory map #01s intended
to be used in systems that are primarily ROM based. Whereas, memory map #1 is intended for a primarily
RAM based system with 64K contiguous RAM locations [minus 256 locations.) The various meanings of 52, 51,
S0 are tabulated in Figure 16 (page 18) and again on pages 17 and 18,

In addition to 52, §1, and S0 outputs is a decode of SFFCO through $SFFDF which, when gated with E and
R/W, results in the write strobe for the SAM CONTROL REGISTER.

SAM Control Register
As shown in Figure 4, the CONTROL REGISTER has 16 “outputs’™:

VDG Addressing Modes: V2. V1. Vo MPU Rate: R1. RO
VDG Address Offset: F6, F5, F4, F3, F2, F1, FO Memory Size (RAM) M1, MO
32K Page Switch. P Memory Map TYpe: TY

When the SAM is reset (see page 10,) all 16 bits are cleared. To set any one of these 16 bits, the MPU simply
writes to a unique** odd address (within SFFC1 through $FFDF.) To clear any one of these 16 bits, the MPU
*1f HS 15 held low longer than B ks then the number of sequential addresses in one refresh "BURST" s proporional 1o the time interval
during which HS is low
*= See pages 17 or 18 for specific addresses
1 In this document, the "$” symbol always preceeds hexidecimal characters
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simply writes to a unique** even address (within SFFCO through $FFDE.) Note that the data on the MPU data

bus is irrevelant.

Inputs to the control register include A4, A3, A2, A1 (which are used 1o sefect which one of 16 bits is to be

cleared or set}, AD (which determines the polarity ...

clear or set.) and R W, E and $SFFCO - SFFDF iwhich

restrict the method, timing and addresses for changing one of the 16 bits.) For more detailed descriptions of
the purposes of the 16 control bits, refer to related sections in the BLOCK DIAGRAM DESCRIPTION (pages 8
through 12) and the PROGRAMMING GUIDE (pages 14 through 18).

** See pages 17 or 18 lor specific addresses

FIGURE 5 — VDG ADDRESS MODIFIER

FIGURE 6 — SIGNAL ROUTING for ADDRESS MULTIPLEXER

Mode Division Vlrilhl_u Bits Cleared by FTTS (low] L
vz Vi1 Vo x Y
0 (1] g 1 12 B1-B4
0 0 1 3 1 B1-B3
1] 1 o 1 3 B1-84
| 1] 1 1 2 1 B1-B3 . ]
1 0 1] 1 2 B1-Bd
| 3 0 1 1 1 B81-B3
1 1 1] 1 1 B1-B4
1 1 1 1 1 None [DMA MODE)

Memory Size Signal Row/Column B Signals Routed 1o Z0-27 Timing
M1 MO | Source 27 26 25 24 23 22 21 20 | (Figure 2}
ax o o | MPU ROW . A6 | A5 | Aa | A3 | A2 | A1 | A0 | T7.TA
coL . L | An | aw ]| a8 | AB | A7 | A8 | TATF
VDG | ROW - s [ 85 |84 |83 |82 | B |BO | TFT2
coL = | v [en[ew|ss [es | 87 | B6 | 1277
REF ROW + Jc6 [es [ca [ea [e2 |1 |co | Tr1z |
coL e [ 1 L L L[t L L | Tem
L 1 -
16K o 1 MPU ROW . A6 | AS | A4 | A3 | A2 | A1 | AD | T7TA
coL . A13 | A12 | A1l | A10 | A3 | AB | A7 | TATF
VDG ROW . B6 | B5 | B4 | B3 | B2 | BI | BO | TFT2 |
coL . 813 | B12 | 811 | B0 | B3 | B8 | B7 | 7277
REF ROW - c6 | cs |ca |e3 [c2 |1 |co | TRT2
coL . L L L TN (T L L | 12T
64K (dynamic) MPU | ROW | a7 [as [ a5 [as [ a3 | az [ a1 | A0 | T77A
¥ ¥ cot P AIS ] Ata : a3 a2 [ an | aw | as | A8 | TATE
VDG ROW " 87 |86 | 85 | Ba |83 82 |8 |80 | ter2 |
coL "85 | 814 | 813 | 812 | 811 | B0 | B9 | B8 | T277 |
REF ROW L C6 | c5 |ca |c3 lc2 |61 |co | ThT2 _4|
coL | b L | L L] L L | L | 1212 |
| | I |
64K (static] MPU | ROW | A7 | As Ias a 1A [ Az [A1 Tao | v
L coL PAIGe e+ Ata | A13 | A12 | A11 | At0 | A9 'IE T9.TF
VDG ROW 87 B6 | B5 | B4 | 83 | B2 | 81 | B0 | TET1
. | cov "85 | Bia ®3a| w2 880! B |88 | M
.‘ Rer [ mow [ L Tce [cs [ca [c3 e (et e [ wm |
cot [ & L L L |t o L | T

Notes L mplies iogical LOW level

= AR

L

*Z7 tunctions as AAST and its jevel is adiress dependent For sxample. when using two banks of 16K x 1 RAMs. RASD s active for addresses

S0000 1o $IFFF ang RAS1 s active lor addresses $4000 1o $7FFF
***if Map TYpe = 0 then page bd P the output (otherwise A1S)
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Internal Reset

By lowering Ve below 0.6 volts for at least one millisecond, a complete SAM reset is initiated and is
completed within 500 nanoseconds after Vg rises above 4.25 volts.
NOTE: In some applications, (for example, multiple "VDG-RAM" systems controlied by a single MPU)
multiple SAM ICs can be synchronized as follows®
® Drive all SAM's from one external oscillatar.
® Stop external oscillator.
® Lower Vc below 0.6 volts for at least 1.0 millisecond.
® Raise Vg to 5.0 volts.
® Start external oscillator.
* Wait at least 500 nanoseconds.
Now, the “E'' clocks from all SAM’s should be in-phase.

External Reset

When the VClk pin on SAM is forced below 0.8 voits for at least eight cycles of “oscillator-out”, the SAM
becomes partially reset. That is, all bits in the SAM control register are cleared. However, signals such as RAS,
CAS, WE, E or Q are not stopped (as they are with an internal reset), since the SAM must maintain dynamic
RAM refresh even during this external reset period.

Figure 7 shows how VClk can be pulled low through diode D1 when node “A” is low.* When node “A” is
high. only the backbiased capacitance of diode D1 loads the 3.58 MHz on VCik. Diode D2 helps discharge C1
(Power-on-Reset capacitor) when power is turned off. Diode D3 allows the MPU reset time constant R2C2 to
be greater than the SAM reset time constant. Thereby, ensuring release of the SAM reset prior to attempting
to program the SAM control register.

FIGURE 7 — EXTERNAL RESET CIRCUITRY

<60V +50V

100kt 3 D2 Node "A"
<
D
Manual -{o _L 0.1 uF .% D1
7

System

c1
Reset
S\: :!ch-' I | 3.58 MH;
- - |
VECik Clk
S5AM vDhG
MCE883 MCE847 MCEBOSE

VDG Synchronization

In order for the VDG and MPU to share the same dynamic RAM (see page 13,) the VDG clock must be stopped
until the VDG data fetch and MPU data fetch are synchronized as shown in Figure 12. Once synchronized, the
VDG clock resumes its 3.579545 MHz rate and is not stopped again unless an extreme temperature change lor
SAM reset) occurs. When stopped, the VDG clock remains stopped for no more than 32 Osc, cycles (ap-
proximately 2 microseconds.)

In the block diagram in Figure 4, DAQ enters a block labeled VDG Timing Error Detector. If DAC rises between
time reference points®* 7 and 7¢. then Error is high and VClk is the result of dividing BOSC (Buffered Oscgyy
~ 14 MHz) by four. However, if DAO rises outside the time Window 74 to 7¢. then Error goes LOW and the VDG
stops. A START pulse at time reference point =g (center of Window) restarts the VDG . . . properly synchronized.

*Use a diode with sufficiently low forward voltage drop 1o meet Vip requirement at VCik

**See timing diagrams on page 5 and &
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Changing the MPU Rate (by changing SAM control register bits R0, R1).

Two bits in the SAM control register determine the period of both “E” and Q" MPU clocks. Three rate modes
are implemented as follows:
"RATE MODE A1 RO | o S
—éLOW o 0 The frequency of "E” (and "Q") l_s-i;ys‘_tal 16. This rate mode 15 automatically selected when |
the SAM is reset. Note that system Emrlg 15 least gritical in this “SLOW™ rate mode !

A.D. D1 The frequency of “E" (and "0} is either f crystal - 16 or fcrystal - B, depending on the address
(Address Dependent| the MPU is presenting

FAST 1 X The frequency of “E™ (and “Q") 15 f crystal - B This is accomplished by stealing the time that
is normally used for VOG/REFRESH, and using this time for the MPU. Note: Neither VOG display
nor dynamic RAM refresh are available in the "FAST" rate mode. (Both are available in SLOW

and AD rate modes)

When changing between any two of the three rate modes, the following procedures must be followed to
ensure that MPU timing specifications are met:

_RAEMOQE |
T S T L N SR TR
AD. ‘gy Sequence #1 not allowed except by |
FAST X (See Balow) Set R, hardware rtui__:
___L_ @ =Set RO, then CLEAR R1

May be ANY address from $0000 to $7FFF.
SEQUENCE #1: —e,
7D 00 00 TST #$0000 ... Synchronizes STA instruction 1o write during T2-TG (See Figure #8).*
21 00 BRN 00
B7 FF D6 STA #SFFDé& . . . Clears bit RO

*Note. “TST instruction affects MCBS809E condition cods register

Changing the MPU Rate (In Address Dependent Mode)

When the SAM control register bits “R1", and “R0"" are programmed to 0" and ""1", respectively, the
Address Dependent Rate Mode is selected. In this mode, the - 16 MPU rate is automatically used when
addressing within $0000 to $7FFF* or $SFF00 to SFF1F ranges. Otherwise the -~ 8 MPU rate is automatically
used. (Refer to Figure B for sample “"E" and Q" waveforms yielding - Bto - 16 and = 1610 = B rate
changes). This mode often nearly doubles the MPU throughput while still providing transparent VYOG and
dynamic, RAM refresh functions. For example, since much of the MPU’s time may be spent performing
internal MPU functions (address = $FFFFI**, accessing ROM (address = $8000 to SFEFF) or accessing |'O
(address — $FF20 — $FF5F). the faster f crystal ~ B MPU rate may be used much of the time.

Note The VDG operates normally when using the SLOW or A D rate modes However, in the FAST rate mode, the VDG is not allowed access 1o
the dynamic RAM

FIGURE 8 — RATE CHANGE E AND O WAVEFORMS

fast slow fast
A A
A N A

(____A
e LI L1 I I [ o S L T =

“slow" address detected here “fast” address detected here

*When using Memory Map 0. addresses SOD00 to $7FFF may sccess Dynamic RAM
**The MCEBLS outputs $FFFF on AD-AYE when no other vahd addresses are being presented
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Oscillator

In Figure 4, an amplifier between Oscj, and Oscyy provides the gain for oscillation (using a crystal as shown
in rigare 9.) Alternately, Pin 5 (Oscy,) may be grounded while Pin 6 (Oscgy) may be driven at low-power
Schottky fevels as shown in Figure 10. Aiso, see V4. V)L on page 2

e ‘leowT AC Specifications® S
Out 20V Max [ 1y | min Units |
o 0BV ————f— R L B
pliOsc) | Fﬂ_tggr. 22 ns |
- > | tpLiOsc) 2 | m _—[
r—loyciOsel—| [ teyerose) = | 70 62.4 s |
FIGURE 9 — CRYSTAL OSCILLATOR
& ¥ __‘if:e OPTIONAL DRITY Su“nndf‘ Wilies
Freq. [ |
MHz | cv* | R1* | uze |
1
25-30 | 33 15 |_
. 1431818 of m.___mg
A 2.5-30 33 1.5
\:\ 16.0000 |~ o kA 100K
N
= v
\
boN
|
Recommended Crystal Parameters 1 \\
14.31818 MHz** 16.0000 MHz** \ b 77 Nt 8
Rg 100 =+200 100+ 200 ! r
co 5.0 pF = 1.6 pF 6.0 pF = 1.0 pF \\ s
[ 0.0245 pF = 15% 0.0319 pF = 15% Mk L' ¢y Bs L&
L1 5.06 mH 31 mH &
o] 50K = 10K 40K = 10K (':\o
Calibration Tolerance 0.002% at 26°C

Temperature Tolerance, 0.001% 0°C to 70°C

FIGURE 10 — TTL CLOCK INPUT

SAM
MC 58-83

Oscipy
_-l_-
T R4

Oscgut
[

(R4 = 200 {2 Typ, 50 11 Min)
I o VI o

TALS00
(Used as an input)

*Optimum values depend an characteristics of tht crystal (X1}, For many luoln:nhunl VCIk must ba 3 579545 MHz = 50 Hz' Hence,

OscOyp must be made similarly “drift ¢ " by

**Specifically cut for MCB883 are Intar Crystal M

However, other crystals may be used

of X1, CV, CF, A1, AZ and R3)
@. Inc. Crystals (#167568 for 14 31818 MHz or #167569 for 16.0 MHz)
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THEORY OF OPERATION

Video or No Video

Although the MCBBB3 may be used as a dynam:. RAM controtier without # vigeo disp'av®, most apphcations
are likely to include a8 MCBB47 videc display generatn (VDG Thersfore this decumiert emphasizes MCEBB
with MCABA7 systems

Shared RAM (with interleaved DMA)

To minimize the number of HAM and interface chips. batr the MPU andg VDG share commaon dynamic RAM
Yet, the use of common BAM creates an apparent aifficulty That s the MPU and VDG must both access the
RAM withoul contention. This difficulty 1s overcome by taking advantage of the timing and architecture of
Motorola MPU's (MCB800, MCEBO1E. MCEBBOSE, MCEBDOD Specificaily, all MPU accesses of external memary
always occur in the Iatter halt of the machine cycle, as shown below

FIGURE 11 — MOTOROLA MPU TIMING

One Machine Cycie

{Approx. 1 MHz|

NS S A
MPU Address MPU Data  MPU Address MPU Data
Windaw Window

Similarly, the MC6847 (non-interiaced) VDG transfers a data byte in a half machine cycie (E or$2). Thus,
when properly positioned, VDG and MPU RAM accesses interleave without contention as shown balow:

FIGURE 12 — MOTOROLA MPU WITH VDG TIMING

VDG Data VDG Data
VDG A:fdrus Window VDG ﬂ‘ddra“ Window
Py TN e,
(Approx. 1 MHz) MPU Half
e -~ ST SR -‘r.-_)\.v.)'
MPU Address MPU Data MPU Address MPU Data
Window Window

This Interleaved Direct Memory Access (IDMA) is synchronized via the MC6883 by centering the VDG data
window half-way between MPU data windows.**

The result is a shared RAM system without MPU/ VDG RAM access contention, with both MPU and VDG
running uninterrupted at normal operating speed, each transparent to the other.

RAM Refresh

Dynamic RAM refresh is accomplished by accessing eight*** sequential addresses every 64*** microseconds
until 128 consecutive addresses have been accessed. To avoid RAM access contention between REFRESH and
MPU, each of the 128 refresh accesses occupies the “VDG half”’ of the interleaved DMA [IDMA). Furthermaore,
refresh accesses occur only during the television retrace period (at which time the VDG doesn’t need to access
RAMI).

In summary, the VDG, MPU and MCE883's Refresh Counter all transparently access the comman dynamic
RAM without contention or interruption.

Why IDMA?

Use of the interleaved direct memory access results in fast modification to variable portions of display RAM,
by the MPU, without any distracting fiashes on the screen (due to RAM access contention.) In addition, the
MPU is not slowed down nor stopped by the MC6883; thereby, assuring accurate software timing loops without
costly additional hardware timers. Furthermore, additional hardware and software 1o give "access permission”
to the MPU is eliminated since the MPU may access RAM at any time.

* Only 1 pin, (DAD) out of 40 pins is dedicated 1o the video display
** See VDG synchronization (page 10 for more detail
=% When not using 8 MCBRAT, HS may be wired low for continuous transparent refresh

—_——
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“Systems On Silicon"” Concept

Total Timing

For most applications, the SAM can supply complete system timing from its on-chip precision 1431818 MHz
oscillator, This includes buffered MPU clocks 'E and Q), VDG clock, color subcarrier 3,58 MHz), row address
select (RAS), column address select (CAS) and write enable (WE).

Total Address Decode

For most applications, the SAM plus a "1 of B decoder” chip completely decodes | O, ROM and RAM chip
selects without wasting memory address space and without neediessly chopping-up contiguous address space.
Chip selects are positioned in address space 1o allow three types of memory (RAM, local ROM and cartridge
ROM) independent room for growth. For example, RAM may grow from address $0000-up, cartridge ROM may
grow from address SFEFF-down and local ROM may grow from SFBFF-down. Alternately, if the application
requires minimum ROM and maximum contiguous RAM. a secand choice of two memory maps pisces RAM
from $0000 10 SFEFF. {See pages 17 and 18.)

In both memory maps all 1/0, MPU vectors, SAM control registers, and some reserved address spaces are
efficiently contained between addresses $SFFO0 and $FFFF.

How Much RAM?
Using nine SAM pins (Z0 ~ Z7 and RASO| the following combipations require no additional address logic.

FIGURE 13 — RAM CONFIGURATIONS

Address Chip Select
MmsB LSB
252423722120 ... . RAS0 {
25Z423222120 ... s TR Z?ls_ "7 =~ - Dne or two banks of 4K x 8 (like MCM4027's)
Z6ZSZAZIZIZIZO cooviovvmvinssirrrveicnre . AASD |
2625742322Z120 [ - 7 L3 I | ..z);\ T 7 = Dng or two banks of 16K x 8 (like MCM4116's)
2726252423222120 ARG e - e One bank of 64K x 8 (like MCMB665's)

PROGRAMMING GUIDE

SAM — Programmability
The SAM contains a 16-bit control register which allows the MC6B0SE to program the SAM for the following
options:
VDG Addressing Mode .......... 3-bits
VDG Address Offset ............... 7-bits

32K Page Switch . 1-bit
MPU Rate ............ 2-bits
Memaory Size ... .. 2-bits
Map Type ........ . 1-bit

Note that when the SAM is reset by first applying power or by manual hardware reset,1 all control register
bits are cleared (to a logic "0").

VDG Addressing Mode

Three bits (V2, V1, V0) control the sequence of DISPLAY ADDRESSES generated by the SAM (which are used
to scan dynamic RAM for video information). For example, if you wish to display Dynamic RAM data as
INTERNAL ALPHANUMERICS VIDEQ, you should program$? the MC6847 far the INTERNAL ALPHANUMERICS
MODE and CLEAR BITS V2, V1 and VO in the SAM. The table on the following page summarizes the available
modes:

t Sea Figure 7 for manual reset cifcult
1 Typically, part of a PIA [MCBB21] a1 location SFF22 is used 1o control MCBBAT modes (See MCEB4T Data Sheet |

I |
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MCEB4T Mode SAM Mode
GMé
Made Type GA GM2 GM1 EXT €SS v2 V1 A v_n_
Internal Alphanumerics i TS T TN R T S S [ VT T
External A'pl‘ldnuﬂle_l‘l:h _n ] K_ bl K__ 1 1 | S J I 1] 3 i)
:@%elrug.ri_h\ms_-_—ﬂ o ; - ¥ % X_ ! 0 i X h] = c §
Semigtyphich 8 _ = B O O A o & . 0
Samigigpbics —1; 8 b ] & . & i X% 0 .
Semigraphics — 12° o x x o x ¥ l L
f'sm.;.-;;.'.:,.;;."zz; - o . x | x | 3 x ¥ 1 W
— — . Y L LIRS S + . - -
Foll Graphics — It e Oy R e b B o
Full Graphics 'q_ B L o LA “ ) { . 0 1 1
| Fut Graphics — 2C _ L . T 0 x | & i )
Full Graphics IR . 1T 4 . L y P
Full Graphics — 3C _ ] 1 Ny § 0 ) I \ , 3 1 | )
Ful’ '}rup';-.s_' an 1 | [ o H ' N x 1 : 0 ?
Full Sva;!\-;s — bl 1 ' \ 3 i 0 x i a -
I..F:.lifi-_,ph.c_g R ___1_ : 'T: 1 t X S )
Diristt Mamary Access® x X x | X 1 1

SR 517 R S24 modes ate npt descrbed oo thie MUBBAT Dats Shagt See appendis A
“EMA s dentics 1o B except i shown v Figure b on page 9

VDG Address Offset

Seven bits (F6. F5, F4, F3, F2, F1 and FO! determine the Starting Address for the video display The
“Starting Address’ is defined as “the address corresponding 1o data displayed in the Upper Left corner of
the TV screen”. The ‘Starting Address’ 15 shown below in binary

Lrelrireles]rz mlrlofololoTafololo]o]

Mot Least f
\ Sigahicant Signiticany —"
it Bu

Note that tha “"Starting Address’” may be placed anywhere within the 64K address space with 3 resalution of
YK {the size of one alphanumeric page)
The F6-F0 bits take effect during the TV vertical synchronization pulse (e when FS from MCEBAT s ow!

Page Switch
One bit (P1) is used “in place of” A15 from the MCEB0SF n order to refér access within S0000-$7FFF 10 une
of two 32K byte pages of RAM. if the system does not use more 1han 32K bytes of RAM P11 can be grorec *°

Blag 1hey gare RN (o

“oWhen using 4K = * RAMS twg tanks of sght (0 aee alonea Tre gocnants fos Adaivees
addressed at $2000 $IFFF S4000 SEFFF and 56000 STFFF
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MPU Rate
Two bits (RY, A0 control the clock rate to the MCEB0%E MPU. The aptions are-
AATE (FREQUENCY OF "E" CLOCK) A1 | Ae
0.9 MHz {Crystal Frequency = 18] Slow Do
0.91.8 MHt |Address Dependent Rate} 011
1.8 MHz {Crystal Frequency - B} Fast 1| X

{Typical Crystal Frequency = 14231818 MHz)

In the "address dependent rate” mode, accesses to $0000-§7FFF and SFF00-$FF1F are slowed 10 0.9 MHz
{crystal freguency + 18) and all other addresses are accessed at 1.8 MHz {crystal frequency = 8.}

Memory Size
Two bits (M1 and MO} determine RAM memory size. The options are:

SIZE M1 Mo

Qne or two banks of 4K « 1 dynamic RAMs
One or two banks o 18K < 1 dynarmic RAMs
One bank of 64K = 1 dynamic RAMs

Up 10 64K static RAM®

- - O
- -

L
"Raquires a lateh tar damulliplening ive RAM address.

IMPORTANT!

Note: Be sure to program the SAM faor the correct memary size before using RAM (i e, for a subroutine
stack).

Map Type
One Bit (TY) is used 10 select between two memory map conligurations,

Refer 1o pages 17, 18 and 12 for delails. When using Map Type “'TY = 17, only the “"Slow™ MPU rate may
be used, Futura versions of the SAM may aliow use af all rates.

Writing To The SAM Control Register

Any bit in the control register HCR] may ba se1 by wriling 19 a specific unigue address. Each bit has two unique
addresses . . writing Lo the even # address clears the bil and writing 1o the odd # address sets the bil. iData
on the data bus is irrglevant in this procedure. ) The specific addresses are labuiated on pages 17 and 18,

If desired, a short routing may be writlen to program the SAM CR “a word at 3 time™, For example, the
following routine comes "B’ bils from “A’" register to SAM CR addresses baginning with address "X,

SAMI 16 ROR A 2 C
24 08 BCC  $AMZ | ; *'—'

30 " INX  {LEAX1.X} L P

A7 #D  STA 0. (-t i

i 20 02 BRA  SaM3

Feamz A7 a STA QX -

SAM3 28 DEC B
26 F2 BNE  SAM1
39 AYS
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FIGURE 14 — MEMORY MAP (TYPE #0)

COURSE FINE
MCeB809F s2,
MCSB03E - B Address | S§1, S0 MCEBOSE
Vectors, Bits 1 Value Address Label Definmons
SAM SFFFF t i C—
Control. R e L -hlf'—o BESET 1
1o SFFO0 | N T —
S REEC M i (S |
{“n_ﬁﬂ_._‘ié: Swi
\‘\Lﬂﬂ T
ROM2** o _l[ﬂ,- M _—
S ,_Eﬂ fiRG
IR 1
(5= | \N m;& ! e
N FEEL 1L
N B
N
i5=2 |
W 1 |
\ a Reserved
---- +<sCooo ‘\\ for tuture
NF ey
ROMT** o enhancements
N
579 '
8=2) ; e
N B4KS Static
- === 1<$A000 i %
3 —: ‘OK Dynamic
| s: had Type |170) [ l_
NG~ \ - e T Te o "‘:"Jm
N 3 Memaory { Transparent
=1 £ i{wo | Sue 1]o]2]o -—smw \ Refresh
C L1 MPU | L] L
- === 4<$8000 ‘c RO Rate 1|left]o
! S| py | Pageer |} MPU Addresses from 50000 to SFFF
: 5 P I Apply to page #1 i P1 « 1
C
| ¥ 5 . Address of “Upper-Left- Most
|' s: Display Element « $0000 + (VK- Offset)
] Is=7 1 ™ | Display DMA
RAM S b1 | Offser ~GER. GEC
(S-0ifRW = 1) 3 (Binary) G3R
(S=7iHRW - 0 (o i | o T
| 5
! = ~G2C
! 5 | GIC, GIR
i =1 AL AE. 54,56
: = wa VDG L B L I gle|efe
\ 2 v | Mode vfv]efofr]tfa]e
e (34000 r ISAM! 1 P
i 1 Vo vjafvfojr]of1]e
: - Resetved Reserved for Future
| Do not uve! Control Ry or Specal | 0
I
" S o
16K (S = 6)] F41 | 102
i M ¥ - —
]
| ST
' SN e o
: (8 =5) '!E:Z 10y
== -*-‘-(S‘FWD - 2
| —
(13
: 4K e 3
IS = 4)}—FFa_ | | OgiSiow)
1t Lo [® R8RS
Page 1 Page 0 ot fe00 ] —
*Note **May also be RAM
M.S. = Most Significant S = Set Bt |

LS = Leas: Significam

L = Clear Bit )
§ - Device Select value -

¢ (AL bits are cleared when SAM s reset |

4x52 + 2x51 « 1550
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FIGURE 15 — MEMORY MAP (TYPE #1)
COURSE FINE
MCE803E 52
MCEH09E &
8 Address S1. 50 MCEBO3E ce
v"‘l‘;;" “aus Value Address fabel Refinitions
S -(sFFFF * 1 el —
Cantrol, ey o pre—
/0, Boot / $FFOD M
AOM ‘L‘ Ul
L La swi
M HO
ﬁ-—. Fifig
=3 swi2
i .
RW =0) swia
(=0 18=2)
if
RW =1) Reserved
s _—37_7‘-<scouo for i
p MPU
AW =0 enhancements
=0 Do not usa!
if
RW =1) B4KS Static
L RAM _| ¢sa000 '_ 84xD
8=1 - | —16K  Dynamic
if EAm| e lenl | e
FAST
RW =0) i w | Memory 1lilele FAST
= Sive ’— AD ! Transparent
s=0 =— MO v]olsfo |_]—SLOW|H.|,M
if 5
= C Rl MPU 1Tjr]ojo
§ ﬂ:u<mua i Rate 1]of1]o
g 5': P1 | Page et H [No effect in this map typel
(s=0 5w | ;
i 3 , Address of “"Upper-Left-Most
W‘" A Fs ¢ Display Element” = S0000 + (%4Ks Offsat)
= |
(8=17) o fladl e |
S s | Offset asnar.;:c
ic " (Binary| Gac
GIR
§=7 "'c 3] GIC
it 5 f [k sq. 56
RW=0) £ frcaces
‘c v VDG vl ]elofefe
S i | Mode 1fa]elofsfa]e]e
. 1SAM)
— vo 1ol l ofvjelr]o
1 ROMBoot Load"*
| & MC6809 Vectors
ES **Deacode 52, §1, and S0 with #n opan
1S =6) 10z collector SNT4L5156 and ‘wire-or’ state 7
with state 2. (Sse Appendix B for
Qg dd de circuit. )
| ***Tg avoid ROM enable during R W = LOW,
T o the ROM at § = 2 must be gated with R W
(§=5) thod 1Sea A dix B for sugg d decode circuit |
\ (S=4 VOglSiow)
£ $0000
o
*Note
ML: : :“:‘: s;l:':":‘:::: g : g::';" ‘ (All bits are clearsd when SAM (s reset |
8 = Device Select value ~ 4552 - 2x51 « 1 x50
-
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FIGURE 16 — MEMORY ALLOCATION TABLE
(Also, see the memory MAPS on pages 17 and 18.)

Intended Use

SAM Control Register: VO, — V2, FO - F8, P, RO, R1, M0, M1, TY,
103: Input Output (PlAs. ACIAs, etc.) To subdivide, use AD - A4
10y Input Output (PIAs, ACIAs, etc.| To subdivide, use AD - Ad.
1/0g: Input Quiput (PlAs, ACiAs, etc ) To subdivide, use AQ- Ad.

ROM1. BK addresses. Internal ROM*, Note that MCEBOSE vector addresses selact this

Type # 0:  (Primarily for ROM based systems|
[ S=4{S21+2 |
[ (S1)+50 |
Address Range S Value [
$FFF2 to FFFF 2 MCBBO0SE Vectors: Reset , NMI, SWI, TRQ, FIRO, SWiZ2. SWI3,
FFEO to FFF1 2 | Reserved for future MPU enhancements.
FFCO to FFDF 7
FF60 to FFBF 7 Reserved for future control register anhancemeants.
FF40 to FFSF 8
FF20 to FF3F -]
FFOQ to FF1F 4 [
C000 1o FEFF 3 ROM2. 16K addresses External cartridge ROM*
ADCO 1o BFFF 2 i
1 ROM*
B00O 1o SFFF 1 \ ROMGO: BK addresses. Internal ROM*
0000 to TFFF 0ifRW 1 [ RAM: 32K addresses RAM shared by MPU and VDG.
L THRW =0 I

Type # 1

f
|

Address Range S Value

| |
L 5o . I—
| l

SFFF2 1o FFEF
FFED 10 FFF1
FECO tc FFDF
FFE0 to FFBF
FF40 to FF5F
FF20 to FF3F
FFOO to FFIF
0000 1o FEFF

e

~ ls-as2)e2]

(81)+ 50

B NN

:O.iRﬁ'—-”

By SRS ———

*Not restricted to ROM For exampls. RAM or | D may be used here

{Primaniy tor RAM pased systems)

B _Em ended Usg

MCEBOSE Vectors Reser, NMi, SWI, [AC, FIRQ. SWI2, SWI3

Reserved for future MPU enhancemants

SAM Control Pegister: V0 - V2, F0 - Fg, P, R0, R1, MO, M1, TY

Small ROM_ Boot load program and init.al MC6B0S vectors.

102 Input Output (PiAs, ACIAs. etc.) To subdivide. use AD-Ad

109 Input Qutput (PlAs. ACiAs, etc.) To subdivide, use AD - Ad

1'Oq: Input Qutput iPlAs, ACIAS. et | To subdivide, use AZ - A4

RAM: BAK| - 256) addresses, sharad by MPU and VDG

(HRW = OthenS - 3 for SCO00-SFEFF. 5 - 2 for SADOO-SBFFF. 5 = 1 for
S$8000-S9FFF and & = 7 for $0000-$7FFF |
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APPENDIX A
VDG/SAM Video Display System Offers 3 New Modes

Paul Fletcher

Thare are three new modes created when the VDG
and SAM are used together in a video display sys-
tem. These modes offer alphanumaearic compatibility
with 8 color low-to-high resolution graphics,
64H*64V, B4H*96Y, 64H*192V. The new modes S8,
$12, and 524 are created by placing the VDG in the
Alpha Internal mode and having the SAM in a 2K,
3K or 6K full color graphics mode. In all modes the
VDG's S/A and Inv. pins are connected to data bits
DD7 and DD6 to allow switching on the fly between
Alpha and Semigraphics and between inverted
and non-inverted alpha. This method is used in
most VDG systems to obtain maximum flexibility.

The three modes divide the standard 8*12 dot box
used by the VDG for the standard alpha and semi-
graphics modes into eight 4*3 dot boxes for the 58
mode, twelve 4*2 dot boxes for the S12 mode, and
twenty-four 4*1 dot boxes for the 524 mode. Figure
17 shows the arrangement of these boxes. One byte
is needed to control two horizontally consecutive
boxes. It therefore takes four bytes for the S8, six
bytes for the S12, and 12 bytes for the S24 mode to
caontrol the entire 8*12 dot box. These two horizon-
tally consecutive boxes have four combinations of
luminance controlled by bits BO - B3. For conven-

ience B2 should be made equal to B0 and B3 should
be made equal to B1. This eliminates a screen place-
ment problem which would cause other codes to
change patterns when moved vertically on the
screen. The illuminated boxes can be one of eight
colors which are controlled by B4 - B6 (see Figure
18). The bytes needed to control all the boxes in the
8*12 dot box must be spaced 32 address spaces
apart in the display RAM because of the addressing
scheme orginally used in the VDG and duplicated
by the SAM. This means 1o place an alphanumeric
character on the TV screen it requires 4, 6, or 12
bytes depending on the mode used. These bytes are
placed 32 memory locations apart in the display
RAM (see Figure 18). This multiple byte format al-
lows the mixing of character rows of different char-
acters in the same 8*12 dot box creating new char-
acters and symbols. It also allows averlining and
underlining in eight colors by switching 1o semi-
graphics at the correct time,

These new modes optimize the memaory versus
screen density tradeoffs for RF perfarmance on
color TVs. This could make them the most versatile
of all the modes depending on the users creativity
and the software sophistication.

APPENDIX B
Memory Decode for "MAP TYPE = 1”
MPU Vectors and
Boot Load ROM
128 X 8 lor 256 X 8}
EN EN
Ve = 16 A
Gnd = 8 -5-3 AW
7 (035 rCan
B +5.0
L 2" A = >0,
& I - o
5 (D1a) 3 =10y
.-S,O-ﬁMj
4 f(-loal B .;\1"' > ﬁo
SN74L5156
3 (Oan) Pl ene
Sz - Eb 7 (Ogn) L ——
E
_E_ T —= (10
From SAM - 3 11014} —eNC
Sy >—— A +5. V-'ww—l
3 B (O ] fo ~
So >_'E_ Ag 0 (Opn) > >
RAM READ
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38—
Left  Right Address Byte
i 1 | L
Scan $XX00 ($01)
Lines
D
; ol e P $XX20 ($07) [ <44 is the
s8 12 £ m VDG “ASCH"
s[efe[se] | sXx40 (s01) | code for A~
Ll .
s -
1 $XX60 ($01)
14
e Alphanumeric Compatible
- H ——— |
tloss Left  Right ...
Scan
Lires L Red Red SXX00 (SBF)
Biue Off $XX20 (SAA)
o Green | $XX40 ($85)
512 — 12
i Orange | Orange | $SXXB0 (SFF)
F_
otf oy SXXBO ($80)
Yellow | Yellow | $XXAO ($9F)
# Options: One of 8 colors for
L or R or both. Off - Black
e B
Scan - $XX00 (SAF)
Lines $XX20 ($80)
sxxa40 $80; VDG
$xx60 (s14) —Code
sxxgo (s1g) forT
A; . e $XXA0 (818)
S24 % . sxxco ($18){ vDG
. |e SXXEOD ($18) » Code
. o] 1$X100 ($18) \ tor X
- o] 1$x120 (818}
[ Black | Black |$X140 (SBO)
[[Green | Green |$X160 ($8F)

FIGURE 17 — DISPLAY MODES S8, 512, 524
Bit/Visible Dot Correlation

o Underline, Overline

® Mix Character Dot Rows

*** Characters will always rumgin in stendard VDG positions
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FIGURE 20 — EQUIVALENT OF OSCILLATOR INPUT AND OUTPUT
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Vee Oscout Ve vee
Vee

FIGURE 21 — DAG INPUT

Vee Vee

Vee

>

DAD 0—

FIGURE 22 — VCIk INPUT/OUTPUT

Vee VClk Vee Vee
+]

FIGURE 23 — E AND Q OUTPUTS

vVec o @ Voo
o0

FIGURE 24 — TYPICAL INPUT

%ﬂi

Vee Vee

FIGURE 25 — TYPICAL OUTPUT

vVee }

il
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FIGURE 18— EXAMPLE of MCEB09E. MC6883 and MCE847 COMPUTER

LEFANSION
CONNETTON

MR T Mode Comrod B Mo L0 cannects here \
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| Aty
A
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AR = F
1
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A
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Yo - Y.
Ab Mi‘ Gnd -8
" (L)
Ay O
— A2
.
S A i P £ & 15
-— e s = o f
14 38t '2
P L3
2 * 5 i
e B
. o L
_— :u 0 Ma
—_— — By
_la 1
—_— 2 musy L ]
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" B
rs_.:i ol Blew
- 14 SRV “3
E 1
= 13 oo
»
l ' J
— l,_g Atf ﬁ_
3
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'] et
HALT
)
ol _
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~¥ S 53 %
s e g - 3 = | ol
Voo f—oeny = ™
A hs Mg Ay Az Ar Ay RAR CAS Wi T
DS i BB =1 =113 i is
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Mlp Hor L) BN arw 3 1]
al. 2| e 5 5 s 2
L1 2los 7 A 8
E——— L Y '_____!_“‘ 2 L] Ll
»l 1o d
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*Thit pin number on B differant RAM chips s connecied 10 this paint

LFESOW DAA
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Appendix 3
MC6847 data sheet

Suppl i ed courtesy of Mtorola Sem conductors.

The information here has been carefully checked and is
believed to be entirely reliable. However , no
responsibility is assumed for inaccuracies. Mtorola
reserves the right to make changes to any products
herein to inprove reliability, unction or design.
Motorola does not assunme any liability arising out of
t he aBpIication or use of any product or «circuit
described herein. No licence is conveyed under patent
rights in any form Wien this docunent contains
informati on on a new product, specifications herein are
subject to change without noti ce.

312
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NONINTERLACE

@ MOTOROLA MC6347
Semiconductors MC684TY

Colvilles Road, Kelvin Estate - East Kilbride/Glasgow - SCOTLAND INTERLACE
Advance Information ]
VIDEO DISPLAY GENERATOR {VDG} INCHANNEL, SILICON-GATE}
The Motorola MCBB47 Video Display Generator (VDG) provides VIDEO
a means of interfacing the Motorola MGB00 microprocessor family DISPLAY
GENERATOR

(or similar products) to a commercially available color or black and
white television receiver. Applications of the VDG include video
games, bioengineering displays, education, communications and any
place graphics are required

The VDG reads data from memory and produces a compaosite

video signal which will allow the generation of alphanumeric or
graphic displays. The generated composite video may be up modu- 7
lated to either Channe! 3 or 4 by using the compatible MC1372 (TV 40 |
Chroma and Video modulator). The up modulated signal is suitable
for application to the antenna of a color TV. A typical TV game is

L SUFFIX

CERMAMIC PACKAGE

indicated in Figure 1

® Generates four different alphanumeric display modes and eight

PSUFFIX

graphic display modes 40 C¥
. CASE 71
® Compatible with the MBB0O family J
® Compatible with the MC1372 madulator [ —]

® The alphanumeric modes display 32 characters per line hy 16

I
ines PIN ASSIGNMENT

® An internal multiplexer allows the use of either the internal ROM
of an external character generator

13 vgg oD7? an
® An external charac\‘tar generator can be used to extend the in = css | a0
ternal character set for “limited hic™ sha
B ara r “limited graphic’ shapes 3+ = boo Y
® A Mask Programmable internal character generator ROM is avail acjoot Fs 3 a2
able on special order (Appendix A) s =] ooz aF 3 3s
] or AIG 15
® One display mode offers 8-color 64 x 32 density graphics in an il [= 38
alphanumeric display mode VS Dok A/S [T 34
| u ] DD& Cik ;:. 33
| L] Qne display m@e offers 4-color 64 x 48 density graphics in an = v 39z
| alphanumeric display mode WML W =, RN |
® All alphanumeric modes have a selectable video inverse 13 eA GMa [ 10
1223 Vs GMT [ ¢
® Generates full video signal T
B pas " = L
® Generates R-Y and B-Y signals for external color modulator 14 ] pas GMm2 [ 27
® Full-graphic modes offer 64 x 64, 128 x 64, 128 x 96, 128 x 192, 15 B e i
or 256 x 192 densities 16 £ OAB DA3 L os
17 Ve |=A?EJ4
| ® Full-graphic modes allow 2-color or 4-color data structures 18 ]
® Full-graphic modes use one of two 4-color sets or one of two L = |

2-color sets 2000

® Ayailable in either an interlace mode (NTSC Standard) or a non
interlace mode

This is advance informa®ion and wpecificalions are subject 10 change without notice . ADI 392 A2
+ i% ad and ! v HAaorint



314

FIGURE 1 - BLOCK DIAGRAM OF USE OF THE VDG IN A TV GAME

I——

MCGEED

Dats Bus

]

Agoress Bus

MCEBAEP]  E ek t MCBBO8

EXtal

MCBBET
vbG Marmory

A BPrecod
S e MCERAT | ] I MOM2114

ME Cik ob gA ¥

Mnemonic
viee
Vss
CLKE
DaAG-DAT2

DDO-DDS
DDE DD7

A, OB, Y
cHB

e

H5

INV
INT/EXT

Als
W
AlG
Fs
Css

GMD-GM2

358 MHz

Game Paddies

Pin Numbers

17

1

33

22,23.24,25 26

13, 14, 15, 16, 18, 19, 20, 1
3,4,5.6,7.8

2,40

11,10, 28
9

36

as

32

ki

30, 29,27

==
A58 MH: ] MC1372 L g AF 1o TV
Color /;1:——
+BV

Burst T
Fraguency W HE
o CHanI
Froquency
Ground

Calor burst clock 3 579545 MHz linput)
Address lines to display memory, high impedance during memory select (MS)

Functian

Data trom display memory RAM or AOM

Data from display memory in graphic mode; data also in alpha external mode; color data in
alpha sermigraphic 4 or 6

Chrominance and luminance analog (R-Y, B-Y, ¥] sutput to RF modulator IMC1372)
Chroma bias, reference @A and ¢B levels

Row preset — Output 1o provide timing for external character generator

Horzontal Sync — Output to provide tming for external character generator.

Inverts video in all alpha modes

Switches to external ROM in alpha mode and between SEMIG-4 and SEMIGE in
semigranhics

Alpha/Semigraphics; selects alpha and graphics in alpha mode

Memaory sekect forces VDG address buffers to high-impedance state

Switches between alpha and graphic modes

Field Synchromzation goes low at bottom of actve display area.

Color set select; selects betwesn two alpha display colors or between two color sets in
semigraphics B and full graphics

Graphic mode select; select one of eight graphic modes,
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ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Hisck in w

.

FORMAT OF THE TELEVISION SCREEN

BOROEA
A

LT

& Motes Deger

Rating

Value

Supply Voltage (Vepl

0.3 10+ 7.0V

Input Voltage any Pin

0.3 1w+ 1.0V

Operating Temperature

°C to 70°C

Storage Temperature

65°C 10 150°C

Pawer Dissipation

TBD

SPLAY AREA

moows §acn
n ge ott ang

@iges ahen on

*One an sech non

e lai e Ling

DC (STATIC) CHARACTERISTICS — Ve = 5.0V ¢ 5%, Vg = 0.0V, Ty = 0°C to 70°C uniess otherwise noted)

Charactenstic Symbol Min Tvp. Max. Unit

Input High Voltage Vin Ve
Clie Vgg + 2.4 Vee
Qther Inputs Vgg + 2.0 Ver

Input Low Voltage ViL Ve
Clie Vgg-03 Vg +0.4
Other Inputs Vgg - 0.3 Vgg+ 0.8

Input Leakage Current o - lin 25 uAdc

CLK. GMO-GM2, INV, INT/EXT, MS.V§§. DDO-DD7, A/S. AIG

Three-State (O State) Input Current DAG-DAYZ Lo 10 whdc

e

Ohtput High Voltage RP. HS, FS Vou 24 Ve
€ 1Load = 30 pF. || gad = - 100 LAl

Dutput High Voltage DAD-DA12 Vo 24 Vde
ICt oad ™ 55 PF. I gag = - 100 A}

Output Lood Voltage RP, HS, FS VoL Vgg + 0.4 Ve
(CLoag = 30 PF, I gag = 1.6 MA)

Output Low Voltage DAD-DAT2 Voo Vgg + 0.4 Ve
{CLosd ™ 55 PF, I Load = 1.6 mA)

Output High Current (Sourcing) All Outputs (except IoH =100 wAdc
IVgH = 24 V) oA, 0B, ¥, & CHB)

Output Low Current (Sinking) All Durputs lexcept loL 1.6 madc
VoL = 0.4 Vel ©A. 0B. Y, & CHB)

Input Capacitance All Inputs Cin - 75 oF
Win=0.Ta =26%C. f = 1,0 MH2)

Chroma Bias Violtage VR 03 Ve Vde
ICy oad = 20 pF, R Load = 200 k.ohm, Vg = 4.75-5.26 V)
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DC (STATIC) CHARACTERISTICS — (Vg - 50V + 5%, Vs - 0.0V, Ta = 09C 10 70°C unless otherwise noted)

Charactenstic Symbol Min Typ. Max Unit
Chroma A Voltage Figure 7 Vooa Ve
ICLami = 20 pF. B Load =200 k ohm] VHi VRr+0.1 Ve
Vo VR
Vio Va-01 Vgo
Chroma oB Voltage Veon Vdc
(Ciroag = 20pF, R Losd - 200 k ohm) Vr + 0.1 Ve
Vo VR
Viurst Vg - D05 Vee
Vio Vg - 01 Viee
Luminance ¥ Voltage Figure 2 Vy Vde
(CLoad = 20 pF, Ry a0 = 200 k ohm) Vs 0.2 Veg
VBLANK 0.75 Vs
VBLACK 0.7 Vs
WVoltage White Low Figure 2 VL 0.62 Vg Ve
{Voltage White Medium) Vium 05Vg -
(Valtage White Highl VM 0.38 Vg
AC (Dynamic) CHARACTERISTICS — Ve = 50 V £ 8%, Ta = 09C 1o 70°C
Characteristic Symbol Min Typ. Max. Unit
Cik Freguency 1 1579536 3579545 3579555 MHz
Clk Duty Cycle Clkﬂs 45% 50 55%
Chroma Phase Delay Figure 3C ng
Imeasured with respect to Y™ output)
@A A 200
o8B 1B 200 =
Luminance Rise Tima Figure 30 try &0 ns
Luminance Fall Time Uy &0
Chroma Fise and Fall Times Figure 3D ns
(@A Rise Timel 1,CoA 60
laA Fall Time) yCaA G0 =
(38 Rise Time) 1,CaB 60 -
(@B Fall Time) yCoB 60
Field Sync. (FS) Figure 3A TWFS 203 ms
{Pulse Wigith)
Faw Present (AP} Figure 3B
{Pulse Width) TWRP - 098 s
(Delay From HS} 'HEAP 0.98 i
Horizontal Syne (HS) Figure 38 WHS - 49 - s
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FIGURE 2 — VIDEO AND CHROMINANCE RELATIONSHIPS OUTPUT WAVEFORM

Lelt Boroer Right Border
e ""‘__ Active Video e
35 75 o 1
Sync
Blank A/G I By
Hlack _I
WL ]
Naote One
WM \ 1
WH , ¥
End of ~N
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Sync AVG ® C5S
VHI
VAR A/G » A/G (S8 I
V Burst =
VLD AG e
1Bu C55
rnmoved B
for A/G ® CS5 ® GMOD)
Aed Magenta Orange
::' A/G + A/G » CSS Yeullow Blue Bult
VLD A/G  C55 Grwen oA Cyan
FIGURE 3 - TIMING DIAGRAMS
A Field Sync B - How Prewt
- - TWHS
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I
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I WEs
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C — Chroma Phase Dalay 0 - Video Rise & Fall Times
4 I
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Lavel #1 Level »1
Ty g —t
try —_— My
L Y Lowel w2
Laval =1 Lovel &1
o8 WCo ey “eo
¢B
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VDG SIGNAL DESCRIPTION

Address Output Lines (DAQ-DA12) — Thirteen address
lines are used by the VDG to scan the display memory
The starting add of the display y is located at
the upper left carmer of the display screen. As the tele
viston sweeps from the left to right and top to bottom,
the VDG increments the RAM display address. These lings
are TTL compatible and may be forced into a high
impedance state whenever the MS pin goes low

Data Inputs (DDO-DD7) — Eight TTL compatible data
lines are used to input data from RAM to be processed by
the VDG. The data s mterpreted and transformed into
liminance ¥ (Pin 28) and color outputs @A and ¢B (Pin
11 and Pin 10).

Power Inputs — VC requires +5 voits, Vgg requires
zero volts and s normally ground. The relerance and cur-
rent requirements of the VDG are specified in the
Electrical Characteristics.

Video Outputs (9A, ¢B, Y, CHB) — These four analog
outputs are used to tranifer luminance and colar informa-
tion to a standard NTSC color television receiver, either
via the MC1372 RF modulator or directly into Y, ¢A, ¢B
television video inputs,

LUMINANCE (Y] — This six level analog output con
tains composite sync,, blanking and four levels of video
luminance

PA - This three level analog output is used in combina:
tion with ¢B and ¥ outputs 1o specify one of eight
colors.

¢B - This four level analog output is used in combina-
tion with ¢A and Y outputs to specify one of eight
colors. Additionally, ane analog level 1s used to specity
the time of the color burst reference signal

CHROMA BIAS (CHB) — This pin s an analog output
and provides o D.C. reference corresponding 1o the
guiescent value of ¢A and ¢B. CHB is used to quaran-
tee good thermal tracking and minimize the vanation
between the parts.

Synchronizing Inputs (M5 CLK)

Three-State Control — (M5! is a TTL compatible input
which, when low, forces the VDG address lines into a high
impedance state. This may be done to allow other devices
isuch as an MPU) 1o address the display memory [RAM),

Clock (CLK) = The VDG clock input (CLK) requires a
3579545 MHz istandard) TV crystal frequency sauare
wave. The duty cycle of this clock must be berween 45

and 55 percent since it controls the width of alternate
dots on the television screen, The MC1372 RF modulator
may be used to supply the 3.579545 MHz clock and has
provisions for a duty cycle adjustment.

Synchronizing Outputs (FS, HS, RP) - Three TTL
compatible outputs provide circuits, exterior 1o the VDG,
with timing references to the following internal VDG
states:

FIELD SYNC — (FS) — The high to low transition of
the FS output coincides with the end of active display
area. During this time interval an MPU may have tatal
access 1o the display RAM without causing undesired
tlicker on thi screen. The Low to High transition of FS
coincides with the trailing edge of the vertical synchro:
nization pulse.

HORIZONTAL SYNC — (HS] — The HS pulse is in
coincidents with the honzontal synchronization pulse
furnished 1o the television receiver by the VDG, The
high to low transition of the HS output caincides with
the leading edge ot the horizontal synchromration
pulse,

ROW PRESET — IRPI - If desired, an external char
acter generator ROM may he wsed with the VDG
However, an external four bit counter must be added
to supply row selection The counter is clocked by the
HS signal and cleated by the RP signal,

Mode Control Lines (Input) (A/G, A/S, INT/EXT,
GMOD, GM1, GM2, CSS, INV) — Eight TTL companble
nputs are used to control the operating mode of the
VDG, A/S, INT/EXT, CSS and INV may be changed on a
character by character hasis. The €SS pin is used to select
betwesn two possible alphanumeric colors, when the VDG
s n the alphanumernc mode and between two color sets
when the VDG i in the semigraphics & and full Graphic
maode. Tabile T illustrates the various modes that can be
obtained using the mode control lines

DISPLAY MODES

The VDG is capable of qenerating 12 distinet display
mokdes. (refer to Table 1) The color set selection and
nvert mins will allow vanations on tertain modes. The
VDG will display two alphanumeric modes with two com:
patble semigraphic modes or display one of eght full
graphic modes. A detailed description of the various
modes of operation follows. A summary of major modes
can be found in Table 2.
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ALPHANUMERIC DISPLAY MODES - All alpha
numeric modes oceupy an 8 x 12 dot character matrix
box and there are 32 x 16 character boxes per TV frame,
Each horizontal dot (dot-clock) gorresponds to one-half
the period duration of the 3.58 MHz clock and each
vertical dot is one scan line. One of two colors for the
lighted dots may be selected by the color set select pin.
An internal ROM will generate 54 ASCII display charac-
ters in a standard 5 x 7 box, Six bits of the eight-bit data
word are used for the ASCIH character generator and the
two bits not used can be used to implement inverse
video or color switching on a character by character basis
A 512 word display memory is required for this class
of display

The ALPHA SEMIGraphics -4 mode translates bits zero
through three into a4 x 6 dot glement in the standard B x
12 dot box. Three data bits may be used to select one of
eight colors for the entire character box. The extra bit is
available to implement mode switching on the fly. A 512
word display memory is required. A density of 64 x 32
elements is available in the display area, The element area
is four dot-clocks wide by six lines high.

The ALPHA SEMIGraphic -6 mode maps six 4 x 4 dot
elements into the standard B x 12 dot alphanumenc box,
a screen density of 64 x 48 elements is available. Six bits
are used to generate this map and two data bits may be
used to select one of four colors in the display box. The
element area is four dot-clocks wide by four lines high.

FULL GRAPHIC MODE — There are eight full graphic
modes available from the VDG. These modes require 1K
to 6K bytes of memory, The eight full-graphic modes
include an outside color border in one of two colors
depending upon the color set select pin (CSS). The CSS
pin selects one of two sets of Tour colors in the four color
graphic modes,

The 64 x 64 Color Graphics Mode — The 64 x 64 color
graphics mode generates a display matrix of B4 elements
wide by 64 elemenis high. Each element may be one
of four colors. A 1K x 8 display memary is required.
Each picte! equals four dot-clocks by three scan lines.

The 128 x 64 Graphics Mode — The 128 x 64 graphics
mote generates @ matrix 128 elements wide by 64
elements high, Each element may be either ON or OFF.
However, the entire display may be one of two colors,
selected by using the color set select pin. A 1K x 8 display
memaory is required. Each pictel equals two dot-clocks by
three scan lines.

The 128 x 64 Color Graphics Mode — The 128 x 64
color graphics mode generates a display matrix 128
elements wide by 64 elements high. Each element may be
one of four colors. A 2K x 8 display memuory is required.
Each pictel equals two dot-clocks by three scan lines.

The 128 x 96 Graphics Mode — The 128 x 96 graphics
mode generates a display matrix 128 elements wide by 96
elements high. Each element may be either ON or OFF
However, the entire display may be one of two colors
sefected by using the color select pin, A 2K x B display
memory s required, Each pictel equals two dot-clocks
by twa scan lines,

The 128 x 96 Color Graphics Mode - The 128 x 96
color graphics mode genmates a display 128 elements
wide by 96 elements high. Each element may be one of
four colors. A 3K x B display memary is required. Each
pictel equals two dot-clocks by two scan lines.

The 128 x 192 Graphics Mode — The 128 x 182
graphics mode generates a display matnix 128 elements
wide by 192 elements high. Each element may be either
ON or OFF, but the ON elements may be one of two
colors selected with color set select pin, A 3K x 8 display
memaory s required. Each pictel equals two dot-clocks by
one scan line

The 128 x 192 Color Graphics Mode — The 128 x 192
color graphics mode generates a display 128 elements
wide by 192 elements high. Each element may be one of
four colars. A 6K x B display memory is required, A
detailed description of the VDG modes i given in Table 3.
Each pictel equals two dot-clocks by one scan line.

The 256 x 192 Graphics Mode — The 256 x 192
graphics mode generates a display 266 elements wide by
192 elements high. Each element may be either ON
or OFF, but the ON element may be one of tweo colors
selected with the color set select pin. A 6K x 8 display
memaory 15 required. Each pictel equals one dot-clock
by one scan line,
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TABLE 1 — TABLE OF MODE CONTROL LINES (INPUTS)

A/ | Ass | INT/EXT | INV | GM2 GM1 GMO ALPHA/GRAPHIC MODE SELECT
0 o o [ X x x Internal Aiphanumencs
o o 0 1 X x X Internal Alphanumerics Inverted
1] 1] 1 1] X x x Extermal Alphanumencs
o 0 1 1 X x x External Alphanumaerncs Inverted
1] 1 4] x X X x Semigraphics - 4
o 1 1 X x x X Semigraphics - 6
1 x % X ) 0 ] 4 = 64 Color Graphics
1 X X X o o 1 128 x 64 Graphics
1 x X x 0 1 (1] 128 x B4 Color Graphics
1 X X X o 1 1 128 x 96 Graphics
1 X x x 1 0 0 128 x 96 Color Graphics
1 x X x 1 L] 1 128 192 Graphus
1 x x x 1 1 o 128 x 192 Color Graphics
1 o X x 1 1 1 266 x 192 Graphics
TABLE 2 - SUMMARY OF MAJOR MODES
MAJOR MODE ONE
TABLE OF ALPHA MINOR MODES

Title Memory Colprs | Duplay Elements

Alphanumenc (Internall 5128 2

Alphanumenc [Extermnal) 512x 8 2

Alpha Semig4 512« 8 B aoﬂ' ‘}ksmm-rm
Alpha Sermig 6 512«8 4 Bugﬂmum

MAJOR MODE TWO
TABLE OF MINOR GRAPHICS MODES

Tithe Memory Colars | Commaents

64 x 64 Color Graphic 1K x8 4 Matrix 64 x 54
Elements

128 x 64 Graphics” KB 2 Matrin 128
lamants wide by

128 x 64 Cotor Graphic KB 4 B4 elements hugh

128 x 96 Graphics* 1656 =8 2 Matrix 128
elements wide by

128 x 96 Color Graphic IKx8 4 96 elements high

128 x 192 Graphics® IKx8B 2 Matrix 128
alemants wde by

128 = 192 Color Graphic BK x B a 192 elements high

256 x 192 Graphics® EK x B 2 Matrix 256

182 slemenits tugh

*Graphics mode turns on or off sach element. The color may be one of two.
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Appendix 4
MC6821 data sheet

Suppl i ed courtesy of Mdtorola Sem conductors.

The information here has been carefully checked and is
believed to be entirely reliable. However , no
responsibility is assumed for inaccuracies. Mtorola
reserves the right to nmake changes to any products
herein to inprove reliability, unction or design.
Mdtorola does not assume any liability arising out of
t he aBpI ication or wuse of any product or «circuit
described herein. No licence is conveyed under patent
rights in any form Wen this docunent contains
information on a new product, specifications herein are
subject to change without notice.

322



323
\ - MC6821
| MOTOROLA | (1.0 MHz)
| MC68A21
(1.

, Hz)
' MC68B21

" SEMICONDUCTORS

Colvilles Road, Kelvin Estate-East Kilbridge/Glasgow-SCOTLAND ! (2.0 MHz)

PERIPHERAL INTERFACE
ADAPTER

PERIPHERAL INTERFACE ADAFTER (PIA) |
| | MOS
II IN-CHANNEL, SILICON GATE
| DEPLETION LOAD)
1

r J € e Ul it w S SUFFIX
Handshake pic ! i ind |

L 1
. = 1
L I T . |
L] : =
PIN ASSIGNMENT
L | s
— — -] . e

MAXIMUM RATINGS

L haracter i 7 l = : =
| s | |
R R B R I

THERMAL CHARACTERISTICS
[ Charanteristic [ symbol | Value | Unit
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POWER CONSIDERATIONS
The average chip-junction temperature. T, 0 °C can be obtained from:
Ty=Ta+IPp* a) (811
Where:

TamAmbient Temperature, *C
#am Package Thermal Resistance, Junchion-1o-Ambient, “C/W
Pp=PiNT+ PPORT
PiNT®Ice = VEe. Watts = Chip Internal Power
PpORT = Port Power Dissipation, Watts — User Determined
For most applications PpORT < PINT and can be neglected PpoRT may become significant if the device is configured to
drive Darlington bases or sink LED loads.
An approwmate relationship between P and T (it PpoRT s neglected) s

Pp=K =T+ 273°C) 2
Solwing equatons 1 and 2 for K gives
K = PpeiT A + 273°Ch + 8 aPp? 3

Where K is a constant pertaiming 1o the partcular part. K can be determined from eguation 3 by measunng Pp) (at eguiibnum)
for a known Ta Using this value of K the values of Pp and T J can be oblained by solving equanions | 1) and (2 iteratively for any
value of Ta

DC ELECTRICAL CHARACTERISTICS (Ve =50 Voc 5%, Vgs=0. Ta=T| 1o TH uniess athenwise noted)

[ Characteristic [Symbol | Min~ [ Typ [ Max [ Unn
BUS CONTROL INPUTS (R/W, Ensble, RESET, RS0, RS1, CS0, CS1, CS2)
Input High Voltage ViH Vgs+20 ] = Vce )
Input Low Voltage Vi |vss-03] - |Vss+08| Vv 4
Input Leakage Current (Vi =010 5.25 V) = - 10 25 |
Capacitance (Vin =0, Ta=25°C, =10 MHz) [ - - 75 oF |
INTERRUPT OUTPUTS h iRGB)
Output Low Valtage (l gaq =32 mAl VoL = E Vgs+04] V
Thiee State Output Leakage Curtent oz = To | © | A
Capacitance (Vyn =0, Ta=25°C, =10 MHzl Cout = — 50 oF
DATA BUS (DG-D7)
Input High Voltage Vi Vgg+20| - vee v
Input Low Voitage ViL |vss-03]| - |[vss+0B| V
Three-State Input Leakage Curent (V=04 10 24 V) W = 20 10 wA
Output High Voltage (| aad = ~ 206 pA) VoM Vgg+24 - - 1]
Output Low Voltage (1| gaq =16 mA) VoL - - [vVss+0a] V
C Win=0, 1o=25°C, I=10 MH2) Cin = - 126 oF
PERIPHERAL BUS (PAD-PA7, PBO-PB7, CA1, CA2, CB1, CB2)
Input Leakage Current R/W, RESET. RS0, RS1,CS0,CS1,ESZ.CALL [ | - o e i
Vin=010525V) c81 Enable| "
Three-Stite Input Leakage Cuttent (Vin=041024 V) PBO-PB7, CB2 Iz - 20 10 ph
Input High Current (V(p = 2 4 VI PAGFAT,CAZ| W S0 | -400 - T
Darlington Drive Curtent (Vg =15 VI PBO-PBY. CBZ| Ion -10 - -0 mA
Input Low Current (Vi =04 V) PAD-PAT.CAZ] Wy - -13[] -24 mA
Output High Voltage
{1 oa = — 200 gAI PAO-PA7, PBO-PB7, CA2, CB2| Vou |vss+24| - -~ v
U gad= ~ 10 A} PAD-PAT, CAZ vee-10| - -
Dutput Low Voltage 11 gag=3 2 mAl VoL = = |[Vgs+0d| V
C Win=0, Ta=26°C, =10 MHzl Cin - = 0 oF

POWER REQUIREMENTS
[ Powsr D Measured at T = T() [ et | - [ -] 0 |mw |
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BUS TIMING CHARACTERISTICS |5 N

Ident. c 2 Curin | MCBE21 MCEBA21 | MCE8B21 Unit
Number 2 in [ Max | Min ax | Min
1 Cyche Tami teye 10 10 |067 | w0 JO5 [}
2 Pulse Width, E Low PWg | 430 280 210
| 3 Puise Width, E High PWegw | 450 780 220 "k
| a Clock Rise and Fall Time . N * Fo) 20 s
9 Address Hold Tune AH 10 10 0 i)
13 Addrisss Setup Time Balore E 1AS B0 & 40 [
1 14 Chip Select Setup Time Befoe | s B0 60 a0 na
| 15 Chip Select Hoid Tima ICH 10 10 0 s
18 Read Data Hold Tune 1DMA A i 0| 53°] ns
21 Wite Data Hold Time tOHW 10 10 10 ms
30 Dutput Data Deday Tuna 100R 290 180 180 ns
31 Input Data Seip Time nsw | 168 B0 &) ns
*Thir data bus oulput Buters ane 0o longer souting of snkng cutrent by INHAMEs (Hgh fmipeitar

AW, Address
Non Muxea!

Read Data
Non Muxed

FIGURE 1 — BUS TIMING

e
~®

m——@ - S -1-@
,'\,'.j KXX
O @
b \ .
e ®_ i) -

MPU Head Data: Non Muxed

MPU Write Data Non Mused

V, unless otheowse speciled
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PERIPHERAL TIMING CHARACTERISTICS ivee =50V $5%, vss=0%.

Fa=TL o TH urtess alherwise specified)

e L MCEB MCeBAZ1 | MCeBB21 Retarence
Charactenstic v Min [ Max | Min | Max | Min | Max || Fig. No
Dala Seup Tune PS5 | 2K - 3% | - w | - ns L]
Daa Hold Tine FQH q - [¥] - i} — ns )
[elay Tune. Enable Meganve Transinor o Ca2 Neganve Transinion 182 10 - |o6| - JOBN Y us 3. 7.8
Detay Teme, Enable Megative Transition to CAZ Posnive Transibon TRE1 10 - (oeM] - (0500 ] us 3.7
Rise und Fall Times for A1 and CA2Z Input Signals LIt - 10 - 10 - 10 K b1
Datay Tiri fromm CAY Actee Transimon to CAZ Pastve TranSilion L2 - 240 - 1% - 10| ps a8
Detay Terne, Enable Meganve Transimon to Data Wald POy - i Q870 05 as | 3,910
Di?ro.';:? :::I:';Ie MNegatve Transinon 1o CMAS Dala Vahd 1CHDS _ 20 135 | - 16 | s | 4w
Delay Trne, Enatibe Fosires Transtion 1 CBZ Negalwe Transmon ICR2 - 10 04670 0% | as |3 1112
Oetay Tima, Dana Wahd o CB2 Megatve Transingn D 20 - 20 - x - ns 310
Delay Twne, Enable Posuiee Transibon to CB2 Posmive Transingn = - 10 - |06M] - a6 HE an
Conral Dwpul Pukse Wedth, CAZCR2 PWeT | 500 - s - 250 - s T
Hise and Fall Turne for CBY and CB2 Inpul Signals [ 10 to . 19 " 12
Delay Twne, £BY Acuve Transingn to CB2 Posiive Transinon CRS T 2 135 - K 3,12
errupt Release Twne, IROA and TROG A - |vee| - 1w - | 0ES ] ws 5 14
interrupl Response Time IRS% - 10 - 10 - 10 | us 513 |
mertupt Inpwt Pulse Time Py 506 - 500 - 500 - ns 13
AESET Low Time* [§-18 10 E ) 05 B 14
*The AESET Ime must be Fugh & macumoura ol 10 ps belone addressing the PLA
FIGURE 3 — TTL EQUIVALENT
FIGURE 2 — BUS TIMING TEST LOADS TEST LOAD
(D3-07) 50y {PAQ—PAZ, PED-PB7, CAZ, CB2)
R =240 S0V
Test Pawrn MMDEIS0 RL=125k0
or Equiv.
c A Tust Pauma :""'éf:i .“.SD
130 pF 1 TkG MID7000
o Equiv
ML TO00

FIGURE 4 — CMOS EQUIVALENT
TEST LOAD

IPAG-PAT, CAZ)

Test Pom oj

30 mF

—

or Bl

C=Hopf, A=12k

FIGURE 5 — NMOS EQUIVALENT
TEST LCaD

ITAC Oniy )
5.0

3k

Test Paint

100 nF :[
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FIGURE 6 — PERIPHERAL DATA SETUP AND HOLD TIMES
{Read Model

PADPAT J
PEO PH 7 \

- TP - - tpgk
E nalrle " 1

FIGURE B — CA2 DELAY TIME
(Read Mode: CRA-6 -1, CRA.3- CRA-4 -0}

X

FIGURE 10 — PERIPHERAL DATA AND CH2 DELAY TIMES
(Write Mode; CRB-5 - CRB-3-1, CRB-4- 0

Enatie A /

- = POW

[T X

T -

ce?® N\

.CB.‘. goes low gu a result of the
postve ransition of Enabile

FIGURE 12 — CB2 DELAY TIME
(Write Mode, CRB-5- 1, CRB-3- CRB-4-0)

f ml'—/_\_,/

f=tC B2 TAS 2"y |-

SAssumEL Dart Wis deselec ted during
any previous | pulse

FIGURE 7 — CAZ DELAY TIME
(Road Mode; CRA-5 - CRA3 -1, CRA4 ()

e Py — —
CA2

P AMUITES DAY wark chmalec tes) uring

the previnus E pulie

FIGURE 9 - PERIPHERAL CMOS DATA DELAY TIMES
(Write Mode; CRA-6- CRA-3-1, CRA4-0)

- N T\

TEMOY - -
WL e 30 Vi
Al PAT

CAZ

FIGURE 11 — CB2 DELAY TIME
(Write Mode. CRB & CRB-3- 1, CRE4-0)

S AN AT e T g TR

revious £ ojuais

FIGURE 13 — INTERRUPT PULSE WIOTH AND IRO RESPONSE

- W =i
cav. 2

ceav. 2 b 8

1ROAB x

- tasy® ———=f

Tanumes Interrunt Enabin Bits are et

e ming measurements e referénc 0 and from a low voltage of U8 voils and a hugh volta o vOits unless otherwise note
Note T g teranced 1 g ¢ | tage of 0 8 valts and a tugh voltags of 2 0 vol ks e ted




328

FIGURE 14 — TRQ RELEASE TIME

Erable 7

FIGURE 15 — AESET LOW TIME

f— 10

— -

RESET H (

*Tre AESET hne must be & Vi for a mitimum of
1.0 us betore addresung the PIA

Note Timing msasurements are referenced to and from a low voltage af 08 voits and a high valtage of 2.0 volts, unless otherwse noted

FIGURE 16 - EXPANDED BLOCK DIAGRAM
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PIA INTERFACE SIGNALS FOR MPU

The PIA interfaces ta the MBBOO bus with an B-bit tidirec
nonal data bus, three chup select lines, wo register select
lines, two interrupt request ines, a read wnite ing, an énable
e and a resel ine. To ensure propar operation with the
MCBBOO, MCEB0Z. or MCBS0B microprocessors. VMA
should be used as an acuve parnt of the adiress decoding

Bidirectional Data (D0-D7) — The tadirectional data lines
{D0-D7 allow the ransfer of data between the MPU and the
PIA. The data bus output divers are three-state devioes that
rémain i the Migh-impedance lolf) stale except when the
MPU pertorms a PIA réad opetaton . The read/ wiite hne &
the read Ihighl state when the PIA 5 selected for 4 read
Qperancn

Enable (E) - The enable pulse, E, is the anly bming
signal that is supplied to the PIA. Timing of all other signals
is referenced 1o the igading and trailling edges of the E puise

Read/Write (R/W) - This signal s generated by the
MPU 1o control the direction of data transters on the data
bus A low state on the PLA read/ wite ine enables the input
bufters and data 1§ transferred from the MPU 1o the PIA on
the E signal if the device has been selectad. A high on the
read/ wiite Iine sets up the PIA for @ transfer of data to the
bus. The PIA output butfers are énabled when the proper ag-
dress and the enable pulse E are present

RESET — The active low AESET line s used 1o reset all
register bits in the PIA 10 a logical 2ero (low!. This line can be
used as a power-on rteset and as a master reset during
SyStem oparaton

Chip Selects [CS0, CS1, and CS2) - These three nput
signals are used to select the PIA CS0 and CS1 must be
nigh and €S2 must be low tor selection of the device. Data
transfers are then gerformed under the control of the enable
and read/wnite signals. The chip select hines must be stable

for the duraton of the E puise The device is deselected
when any of the crhup selects are n the inaclive state

Register Selects (RS0 and RS1) The twao register
salect hines are usad to select the vanous registers inside the
PIA These two hines are used n conmnction with internal
Control Registers to seiect a particutar régister that s to be
whiten or read

The ragister and chip select hines should be stavle tor the
duraton of the E pulse while in the réad or wnle cycie

Request (IRQA and IRAB) — Tre sctve low (n-
terrupt Request lnes (TAQA and IRGB! act 1o intertupt the
‘MPU enther ditectly or through nferrupt prornity orcuitty
These unes are "open drain” (no lpad device on the chip)
This perruts all interrupt request lines 1o/ be ted together in a
wire-0R configuration

Each interrupt Reguest ing has two imernal interrupt flag
Dits that can cause the Interrupt Regues! bne 1o go low. Each
flag bit s assocated wih & parhicular penpheral inerrupt
ne Also, tour interrupt enabile bis are provided 0 the PLA
which may be used 1o nhib & parucular mterrup? from a
penpheral device

Serncing an interrupt by the MPU may be accomplished
by a software rounne that, onap d basis. seq ally
reads ang tests the two control registers in gach PIA for in.
tarrupt tlag bits that are set

The interrup! flags are cleared (zeroed) as a result of an
MPU Read Penpheral Data Operation of the corresponding
data register After being cleared, the interrup! flag bit can-
not be enabled 1o be set untl the PIA s deselected during an
E pulse. The E pulse 15 used to condition tha interrupt control
hnes ICA1, CA2, CB1, CB2) When these lines are used as
interrupt nputs, at least ore E pulse must occur from the in.
active edge to the active edge of the interrupt input signal 1o
condition the edge sense network It the intarrupt flag has
been enabied and the edge sense circuit has been properly
conditioned. the interrupt fiag will be set on the next active
ransimon of the interrupt INput pin

PIA PERIPHERAL INTERFACE LINES

The PIA provides two 8-bit bidirectional data buses and
four interrupt/contol ines for interfacing to peripheral
devices

Section A Peripheral Data (PAQ-PA7) - Each of the
peripheral data ings can be programmed 10 act @5 an input or
output. This 15 accomplished by setting a 1" in the cor
responding Data Direction Register bit for those lines which
are 1o be outputs. A 0" in a it of the Data Direction
Register causes the cotresponding petipheral data line 1o act
asan input. Dunng an MPU Read Peripheral Data Operation,
the data on penpheral lines programmed 10 act as puts ap-
pears dwectly on the corresponding MPU Data Bus nes. In
the nput made. the internal pullup resistor on these lines
represents a maximum of 1.5 standard TTL loads

The data in Output Register A will appear on the data lines
that are programmed 1o be outputs. A logical 1" written in-
1o the register will cause a “high”™ on the cotresponding data

ling while a 0" results in a “low " Data in Dutput Register A
may be read by an MPU ""Read Periphetal Data A operation
when the corresponding lines are progtammed as outputs
This data will be read property « the voltage on the
petipheral data knes s greater than 2.0 volts for a logic "1
output and 'ess than 0.8 volt for a logic 0™ output Loading
the output lines such that thie voltage on thiese lines doas not
reach tull voltage causes the data transferred into the MPU
on a Aead operation to differ from that contained in the
respective bit of Output Register A

Section 8 Peripheral Data (PEO-PBT) — The penpheral
data hines in the B Section of the PIA can be programmed to
act as esther inputs of outputs in a similar manner to PAQ-
PAT They have three-siate capabity, allowing them to anter
@ high-impedance state when the peripheral data line 15 used
as an nput In additon, data on the penpheral data hnes
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PBO-PB7 will be read properly from those lines programmed
as outputs even if the voltages are below 2.0 voits for a
“tugh'” or above DB V tor 3 "low” . As outputs, these ines
are compatible with standard TTL and may also be used as a
source of up 10 1 miliampere at 1 B volts to directly drve the
base of a transistor switch

Interrupt Input (CAY and CB1) — Pernpheral input lines
CA1 and CB1 are input only lines thar sel the mietrupt tlags
of the control regsters. The active transition for those
signals 15 also programmed by the two control registers

Peripheral Control (CA2) — The penpheral control ling
CAZ can be programmed 10 act as an intermupt inpul of as a

peripheral control outpul. As an output, this line 15 compati-
ble with standard TTL, as aninput the internal pullup resistor
on this ine represents 1.6 standard TTL loads. The function
of this signal ine is programmed with Control Register A

Peripheral Control (CB2) — Penpheral Control line CB2
may atso be programmed to act as an interrupt input or
penpheral control output. As an input, this ine has high in-
put impedance and 15 €O bile with standarg TTL. As an
outpul 1 is compatible with standard TTL and may also be
used as g source of up 10 1 milkampere at 1 & volts to directly
drive the base of a transistor switch . This hine s programmed
by Control Register B

INTERNAL CONTROLS

INITIALIZATION

A RESET has the effect of zerong all PIA registers. This
will set PAD-PA?Z, PBO-PBY, CA2 and CB2 as inputs, and all
imerrupts disabled. The PIA must be configured dunng the
restart program which follows the reset.

There are six locations within the PIA accessible 10 the
MPU data bus: two Peripheral Registers, two Data Direction
Registers, and two Control Registers. Selection of these
locations 1s controlled by the RS0 and RS1 inputs together
with bit 21 the Control Register, as shown in Table 1

Detwis of pessible conhguratons of the Data Drection
and Conurol Register are as follows

TABLE ' - INTERNAL ADDRESSING

Cantriol
Fleqiter Ba
RSt | ASO | CRA 2 | CHE 2 Lowation Selected

o 0o 1 ® Pt it 2l Flegester A

0 4] 0 o Dota Daection Regate: A
(1] kY u Contol Hegister &

1 0 x 1 Peiypiher ol Hegater B

1 a X 0 Plata Duection Regues B
1 1 ® x Lontral Hegister B

Notice the differences between a Port A and Port B read
operation when in the output mode When reading Port A,
the actual pin is read, whereas the B side read comes from an
output latch, ahead of tha actual pin

CONTROL REGISTERS (CRA and CRB)

The two Control Registers (CRA and CRB) allow the MPU

1o control the aperation of the four penpheral control lines
CA1, CA2, CBY. and CB2. In additon they allow the MPL 10
enable the interrupt lings and monitor the status of the inter
rupt Hlags Bits O theough 5 of the two ragisters may be wnt
ten or read by the MPU when the proper chip select and
eq select signals are apphed Bus 6 and 7 of the two
regpstens are read only and are modihied by external interrupts
occurring on control ines CA1, CA2, CB1, or CB2 The for
mat of the control words s shown n Figure 18

DATA DIRECTION ACCESS CONTROL BIT (CRA-2 and
CRB-2)

Bit 2. in each Control Regster (CRA and CRB), deter
mines selection of either a Peripheral Output Register or the
corresponding Data Direction E Register when the proper
register select signals are apphed to RS0 and RST A 1"
b1 2 aliows access of the Penpheral Intertace Register, while
a8 "'0" causes the Data Direction Register 1o be addressed

X Duon'r Cae

PORT A-B HARDWARE CHARACTERISTICS

As shiown in Figure 17, the MCBB21 has a parr of 110 ponts
whose characterisics differ greatly The A side s designed
1o drive CMOS logic 10 normal 30% 1o 70% levels, and ncor-
porates an inteinal pullup dewice that remains connected
even in the mput mode  Because of this, the A side requires
mare drve current in the input mode than Port B In con-
trast, the B side uses a normal three-state NMOS butter
which cannot pullup to CMOS levels without extermnal
resisiors. The B side can drive oxtra lpads such as Darl-
ngtons without problem When the PIA comes out of reset,
the A pott represents nputs with pullup resistors, whereas
the B side linput mode alsol will float high or low, depending
upon the load connectad 1o 1.

i upt Flags (CRA-6, CRA-7, CRB-6, and CRB-7) -
The four interrupt flag bits are set by actve transitions of
signals on the four Interupt and Penpheral Control lines
when those lines are programmed to be inputs. These bis
cannot be set directly from the MPU Data Bus and are reset
indirectly by a Read Peripheral Data Operation: on the ap-
propriate section

Control of CA2 and CB2 Peripheral Control Lines (CRA-3,
CRA-4, CRA-6, CRB-3, CRB-4, and CRB-51 - Bits 3 4 and
5 of the two control registers are used 1o control the CA2and
CB2 Penipheral Control ines. These bits determine if the con
trol ines will be an interrup! npul or an output control
signal If bit CRA-5ICRB-5 15 low, CAZ (CB2) 1s an interrupt
mput hne similar 1o CA1 (CB1) When CRA-5 (CAB-SI s
tigh. CAZ (CB2) becomes an output signal that may be used
o control penpheral data wansters. When i the output
mode, CA2 and CB2 hawve shghily different loading
chatacienstics
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Control of CAl and CB1 Interrupt Input Lines {CAA.Q,
CRB-1, CRA-1, and CRA-1} — The lwo lowest-arder bits of
the cantrol registers are used 10 contral the intgrupt iINpuk
fings CA1 and CB1 Bus CRA-D and CRB-O are used 10

enable the MPU inferiupt signals TRIA and RQE, respec-
ey, Brts CRA-1 and CRE-1 delermine the active Iransihon
of the inlerrupt anput signats CA&1 and CBY

FIGURE 17 — PORT & ANC POAT B EQUIVALENT CIACUITS
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Darormine Aclive CATICB1) Transition for Saring

lntetrupt Flag IRGATBI — (bt 7F

Bl=0 RGALBH 21 by hghan-dow Irangmon on AL
CeD

bl=1 IHGALEH 521 by low- Io-tugh nangnon gn CAd
(CaEn

I

IRCA{B) 1 Interrupt Flag [bit 71

Goes gh on ackve wansion of CATICE, Auloma-
neally cleared by MPL Fead of Quiput Register AEY
May also be cleared by hardware Feset.

FIGURE 18 — CONTRAOL WORD FORMAT
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Appendix 5
The Dragon 64

The major design aim of the Dragon 64 was to ensure
upward conpatibility with the Dragon 32 and Ket provi de
a nmachine wth enhanced facilities. These extra
facilities are:

(1) An additional 32K of RAM
(2) An RS232 (serial) interface.
(3) Aut o-repeati ng keys.

As the Dragon 64 is virtually identical to the Dragon
32 in nost other respects, we confine ourselves to
describing these extra features and detailing the
di fferences between the two nachi nes.

1. SWTCH NG IN RAM

The SAM chip, described in Aoppendix 2, can operate in
two nodes called map type and nmap type 1. Thi s
allows the chip to map addresses to either a 32K or to
a 64K RAM address space and this facility neans that
conpatibility between the Dragon 64 and the Dragon 32
can be nai ntai ned.

Unli ke the Dragon 32, the 64 can operate in both map

types provided by the SAM chip and yet still use
Extended (ol or | C O power up, the 64 s
configured like a 32. In other words, it is in map

type O which provides access to 32K of RAM addressed
from 0000 to 7FFF, 16K of BASIC ROV addressed from
8000 to BFFF, and 16K (mnus 256 bytes for 1/0O devices,
vectors, etc.) of expansion space addressed from Q000
to FEFF. Switching in the extra RAM invol ves sw tching
to map type 1 which gives a 64K RAM address space (less
256 bytes) from 0000 to FEFF.

The extra 32K of RAM therefore 'overlays' the BASIC
ROM and expansion addresses which means that neither
the Extended Color BASIC ROM nor the cartridge RCM can
be accessed. It is therefore necessary to 'bootstrap'
the machine by first Cé)&/i ng a small program into RAM
whi ch selects a 'new | C ROM and copies its contents
into map type 1. Naturally, the new BASIC ROM will
reside in map type O and therefore the bootstrap

333
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operates by reading a byte (fromthe ROM in map type
0, switching to map type 1, witing the byte, swtching
back to map type O to read the next ROM byte and so on.

Because the new BASI C does not need to reside in the
sane address space as the 'old BASIC it can occugy
the addresses Q000 to FEFF. This relocation of the
BASIC results in 48K of RAM being nmade available for
systemuser use. Naturally, if the BASIC interpreter
is not required, e.g. when using the G&9 o]perating
system or machi ne code prograns, the full 64K of RAMis
available to the programmer.

The bootstrap procedure is invoked by EXEC on its
own if no other Cs have been used. he Dragon 32's
default entry in the EXEC vector has been replaced by
the entry point of the Dragon 64's bootstrap routine.
Alternatively, if an EXEC has been used, C 48000
calls the bootstrap entry routine directly.

The 64K node can be distinguished from the 32K node
by the fact that the cursor flashes blue rather than
bl ack. e point worth noting is that booting into the
64K nmode will not w pe out an existing BASIC program as
it behaves like a CLEAR command. Subsequent resets
after the initial 64K coldboot wll perform a 64K
warnboot so that the system remains in 64K node and
does not revert to 32K node.

Sonme extra ' housekeepi ng' bytes which are unused in
the Dragon 32 are used to keep track of the boot state.
FLAG4 (11A) indicates whether this is a warnboot or a
col dboot. A warnboot (FLAG4 = $55) indicates that the
new BASIC has already been copied into RAM in which
case a further two bytes (11B:11C) hold a 16-bit
checksum that was cal cul ated during the BASI C copy

A checksumis a value that is calculated by addin
together the values of the bytes in the BASIC area o
RAM If one or nore of these bytes are changed, the
val ue of the checksum will change. Therefore, if the
BASIC system in RAM is changed, the change can be
detected because its checksumwll not be the sane as
the checksum for the original BASIC system

When the systemis reset, this checksum is checked
agai nst a recal cul ated checksum of the BASI C RAM ar ea.
I these do not agree then a col dboot, which copies
BASIC into RAM is initiated. This avoids the problem
of wusers or prograns poking the BASIC in RAM thus
causing the system to crash and then performng a
war nboot which would not restore the correct | C
system

Because the BASIC in the 64K node resides in RAM it
is possible to experiment with it. (Cbviously, great
care has to be taken with such experinentation as it is
all to easy to accidentally crash the system The
restoration of the original BASIC can be avoided if the
checksum is recalculated fromthe 'experinental' BAS C
so that it appears that the BASIC system is unchanged.
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A routine which carries out this recalculation is shown
bel ow.

* RECSUM - re-checksum the BASIC RAM and

* update the system checksum CSUM54)
*

: Regi ster inputs NONE

CSUMB4  EQU $11B
RECSUM  PSHS X, D

; System checksum
; Save registers
LDX #$C000 ; Base of 64K BASIC
LDD #$0 ; Zero running total
NXTADD  ADDD , X++ ; Add to checksum

CVPX #$FF0O until end of

BLO NXTADD BASI C r eached

STD CSUMs4 Updat e system checksum
PULS X, D, PC Restore and return

The original BASIC can be restored by clearing FLAG64
and then resetting the machi ne.

The 64K mpde bootstrap is contained in the 'old
BASI C ROM at address BF49 onwards. The ROM part of the
bootstrap copies the RAM part of the bootstrap into the
cassette buffer since this will not be used during a
boot, and then junps into the RAM part to complete the
boot sequence. Once |oaded, the secondary reset vector
(72:73) is set up to point to the 64K npde bootstrap so
that subsequent resets wll i nvoke the bootstrap
automatically.

Once in 64K mode, there is no easy way to return to
the 32K node since a reverse bootstrap has not been
provi ded. Whilst expanding into extra RAM (the 64K
boot strap) holds no danger, trying to contract back to
32K of RAM nmay cause the existing program variables to
be overwitten. It may appear that a safe reversion
techni que, which works with programs contained wholly
in the bottom 32K of RAM is as shown bel ow

CLEAR 200, 32766 'Default 32K settings
POKE &H72,&HB4 ' Restore normal 32K
POKE &H73, &HAF ' secondary reset vector

In fact, a reset after these statenents does not cause
reversion to 32K node. To revert requires resetting the
interrupt vectors and changing various other addresses
and pointers.

2. THE RS232 | NTERFACE

An RS232 serial interface (via a 7 pin DN connector)
is provided as standard with the Dragon 64 and can be
used in both the 32K mde and the 64K mpde. This
facility supports the additional commands DLOAD and
DLOADM whi ch enable BASIC programs, in ASCII format,
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and machine code prograns to be downloaded into the
Dragon 64 from a host conputer. These extra commands
are very simlar in operation to their cassette file
equi valents CLOAD and CLOADM However, DLOAD and
DLOADM are limted to loading files of a particular
format and cannot be wused for nore general inter-
conput er communi cati on.

The downl oad facility of the Dragon 64 is supported
by three lowlevel routines, the entry points of which
are contained in the 1/O junp tables. These routines
are, in actual fact, of nore general use for serial 1/0O
and a brief description of each is given bel ow

* SERIN - Read a byte (8 bits) fromthe serial port
*

* Register inputs NONE

* Register outputs A - returns byte read

: Regi sters destroyed NONE

* SERQUT - Send a byte (8 bits) to the serial port
* Register inputs A - byte to be output

: Regi sters destroyed NONE

* SERSET - set up serial port baud rate

*

* Register inputs B - baud rate select byte

* Register outputs CC.C = 0 if select byte K

* CC.C =1 if select byte out of range
* Registers destroyed B, X, CC

*

* The routine supports 7 baud rate select val ues:
* B=0-> 110 baud

* B=1-> 300 baud

* B=2-> 600 baud

* B=3-> 1200 baud

* B =4 -> 2400 baud

* B =5 -> 4800 baud

* B =6 -> 9600 baud

*

The default baud rate on power-up is 1200 baud

The entry points in the 1/O junp table for these
routines are:

802A SERI'N
802D SERCOUT
8030 SERSET

2.1 Using an RS232 ternminal with a Dragon 64

The above routines can be used in conjunction with the
character input/output RAM hooks described in section
9.5.1, to replace the nornmal Dragon keyboard and screen
with an RS232 termnal. In this exanmple, we show how
the character input RAM hook at 16A may be wused to
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redirect input to SERIN and the character output hook
at 167 to redirect output to the SEROQUT routine.
However, these RAM hooks are also called for cassette
and printer 1/O so you nust inspect DEVNUM (6F) to
avoid redirecting their 1/Q

The following program denmonstrates this technique:

* Redirect console |/O to RS232 term nal
*
: Program equates

HKCHRO EQU $167 ; Character output hook

HKCHRI EQU $16A Character input hook

SERI' N EQU $802A Serial input entry point

SERQUT EQU $802D Serial output entry point

DEVNUM EQU $6F Devi ce nunber |ocation
ORG $4E21

*

* SETIO - set up console 1/O redirection
* Regi ster inputs NONE

: Regi sters destroyed A X CC

SETI O LEAX | NCH, PCR ; Set up address of input
* routine
STX HKCHRI +1 ; and redirect consol e input

LEAX QUTCH,PCR  : Do the same for
STX HKCHRO+1 ; consol e out put
LDA #$7E ; Opcode for JMP

STA HKCHRI placed in I/0O
STA HKCHRO RAM hooks

* Use a call to SERSET here for baud rate setting
if not a 1200 baud device

RTS ;. Return

INCH - input a character from RS232 port

Regi ster inputs NONE

Regi ster outputs DEVNUM = 0 -> A contains character
DEVNUM <> 0 -> A unaffected

* ok F X

I NCH TST DEVNUM ; I's this console input
BNE INXIT
. JSR SERIN ; Yes, read RS232
* At this point, we have input the character from
* the RS232 port and therefore wish to avoid returning
* the code which will input from the normal keyboard.
* Sinmplest solution is to renove the return address
: from the stack

LEAS 2,S ; Renpbve l|atest return
I NXI T RTS ;. Return
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* OQUTCH - output a character to RS232 port

* Register inputs A - contains character

OUTCH TST DEVNUM ; |I's this consol e output

BNE OUTXI T

JSR SEROUT ; OQutput to RS232

LEAS 2,S ; Rempve return address
OUTXI T RTS ; Return
2.2 Using a serial printer with the Dragon 64
The RS232 port can also be used as the standard printer
i nterface i nst ead of the Centronics (parallel)

i nterface. VWhich of these two options is selected is
determined by location PRNSEL (3FF). A 0 (default)
value in this location selects the parallel interface,
non-0 selects the serial interface. Therefore:

POKE &H3FF,1 'Selects serial printer
POKE &H3FF,0 'Selects parallel printer

In addition to this printer select byte, there are two
other bytes (3FD:3FE) which specify an end-of-line
delay period since some printers (especially serial)
require this. The time delay is in increments of 10
mlliseconds. For exanple:

POKE &H3FE, 100
will provide a delay of 100*10 mlliseconds = 1 second.
The m ninum delay (default) is 0 and the maxi num del ay
is 655.35 seconds.

2.3 Configuring the RS232 interface
The pinout of the RS232 connector is shown in Figure

A5. 1. The device that drives this interface is an
R6551 Asynchronous Communi cation Interface Adapter
(AClA) which, like the PIA is a programmble device.

In its default configuration, this device is programed
to produce 1 start bit, 8 data bits and 2 stop bits
with no parity at a baud rate of 1200 baud.

PIN7 —12V - —— PIN 6 TRANSMIT (TX)
PIN 3 +12V = PIN 1 GROUND
PING5 CLEAR TO SEND - = PIN 4 DATA TERMINAL READY
(CTS) (DTR)

PIN 2 RECEIVE DATA

Fig. A5.1 RS232 Pin out connections
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Like all 1/O devices in the Dragon 64, the ACIA is
menory- mapped and occupies the follow ng address space:
Addr ess Regi st er

FF04 Transmit data register (on wite cycle)

FFO4 Receive data register (on read cycle)

FFO5 Status register

FFO6 Conmand regi ster

FFO7 Control register
Because the ACIA is a sophisticated device wth many
options, it is not possible to cover the operation of
this chip in detail here. In most instances, it is
easier to configure hardware (printers, term nal s,
etc.) to the default configuration since this is a once
and for all operation conpared to configuration by
software as this is necessary every time the Dragon is
swi tched on. However, we do provide the follow ng

BASI C statenment which can be used to select the baud
rate of the device.

PCKE &HFFO7, ( ( PEEK( &HFFO7) AND &HF0) OR B)
The variable B holds a value which specifies the baud
rate of the device connected to the RS232 interface.
Possi bl e val ues are:

B- val ue Baud rate

1 50
2 75
3 110
4 135
5 150
6 300
7 600
8 1200
9 1800
10 2400
11 3600
12 4800
13 7200
14 9600
15 19200
3. THE KEYBOARD AUTO- REPEAT FACI LI TY

This facility is provided in the 64K nmode only and is
not inplemented when the Dragon 64 is operating in 32K
node. The reason for this is to maintain conpatibility
with existing software, such as the DREAM assenbl er,
which provide their own auto-repeat facilities.

The auto-repeat makes wuse of the 50Hz (60Hz)
interrupt as the timng reference which determ nes the
del ay before repeating the key and which also controls
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the rate of repeat. A byte location, REPDLY (11F) in
RAM contains the inter-repeat delay value. The default
value of REPDLY is 5 giving an auto-repeat of 10
characters per second. The sane value is also used to
control the delay before starting the repeat but, in
this case, its value is multiplied by 8 giving a normnal
delay of 0.8 seconds before auto-repeat starts. By
altering the value in REPDLY with a POKE statement, you
may increase or decrease the auto-repeat rate/delay.

Auto-repeat is incorporated in the 64K node by
redirecting the secondary interrupt |IRQ vector to an
additional piece of code (entry point FE18) which is
dedi cated to updating the keyboard delay value. After
executing this code, a junp is made to the normal
i nterrupt service routine. Therefore, the auto-repeat
facility can be disabled by reinstating the nornal
interrupt service routine entry point (DD3D) into the
secondary |IRQ vector as described in section 8.2. 3.
Conversely, auto-repeat can be incorporated into the
32K node by altering the secondary |IRQ vector to junp
to the normally wunused keyboard delay update code
| ocated at BF20 in the 'old BASIC ROM

There are two further 'housekeeping' bytes which are
also used in the keyboard repeat process. These are
LSTKEY (11D) which keeps a copy of the last key code
returned by the keyboard polling routine and CNTDWN
(11E) which contains the updated delay value which,
when it reaches zero, triggers the code which resets
the keyboard rollover table thus causing the current
key depressing to be recognised as a new depression. A
mechanism to do this has already been described in
Chapter 8.

4. DRAGON 64/ 32 DI FFERENCES

The nost important differences between these two
machi nes have already been covered in the previous
sections in this appendix. However, there are a few

other mnor differences and these are summuari sed bel ow.

4.1 Differences in BASIC
The only differences between the two machines in terns
of Extended Color BASIC is that DLOAD and DLOADM are
i mpl emented in the Dragon 64 and that the USR call bug
described in Chapter 5 has now been corrected. Recal |
that this bug neant that USR calls 1 to 9 were not
recogni sed wi thout a padding character so that USR1 had
to be witten as USR0O1, USR2 as USR02, etc. Now, you
nmust wite these as USR1, USR2, etc. as USR01, USRO2,
etc. are all (correctly) taken to be syntax errors.
Another slight difference is that the functions
VARPTR and MEM have been altered so that they return an
unsi gned 16-bit value. Previously, if these functions
were used with an argument which was greater than 32767
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they returned a negative result because negative
integers are represented in two's conplenment notation
and have values from 32768 to 65535. Now a positive
result is always returned.

4.2 RAM usage

The Dragon 64 in 64K node provides an extra 16K bytes
for wuser/variable storage with 16K bytes used by the
BASIC and I/O space. The BASIC RAM area can also be
used for those applications which do not need a
resident BASIC interpreter such as the OS-9 operating

system and machi ne code prograns. In addition, some
unused bytes in the system pages of the Dragon 32 are
now used by the Dragon 64. These are locations 11A to

11F inclusive and 3FD to 3FF incl usive.

4.3 ROM usage

There are very few differences between the BASIC ROM
entry points in the Dragon 32 and the Dragon 64 when in
32K node. Al the dispatch addresses given in Appendi X
7 remain the sane. However, there are a nunber of ROM
patches to previously unused areas of ROM in the Dragon
64 which repair some of the bugs in the Dragon 32.
More major differences apply to the area of ROM which
contains 1/O driver code as, obviously, additions have
been made to support the RS232 interface, the Ilatent
auto-repeat facility and the 64K node bootstrap.

In the 64K node, the entry points to the system
routines are now in RAM in the address space CO00 to
FEFF so, obviously, old entry addresses are conpletely
i nconmpati ble. However, throughout nmost of this address
space there is a sinple relationship between the old
ROM entry points and the new ROM entry point since they
are offset by 4000 (hex) bytes. In other words, the
direct junp table is located at G000 onwards, the
indirect junmp table at EO00 onwards, etc. This sinple
relationship is maintained until the area of RAM that
corresponds to the old ROM initialisation sequence
(B39B/ F39B) from which point the relationship no |onger
hol ds.

The reason for this is that RESET automatically
selects map type 0 and therefore enters the 32K npde
ROM where the initialisation code (RESET service
routine) resides. This code is not duplicated in the
BASI C RAM ar ea.



Appendix 6
The ASCII character set

The table below shows the <characters in the ASCII
character set and their associated values. Notice that
the character values are given in octal (base 8) rather
than decimal notation. Each octal digit represents 3
bits from 000 to 111 and the octal representation means
that the bit pattern of each character may be readily
deduced.

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq
006 ack 007 bel 010 bs 011 ht 012 nl 013 vt
014 np 015 cr 016 so 017 si 020 dle 021 dcl
022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 ethb

030 can 031 em 032 sub 033 esc 034 fs 035 gs
036 rs 037 us 040 sp 041 ! 042 " 043 #
044 & 045 % 046 & 047 ' 050 ( 051 )
052 * 053 + 054 05 - 056 - 057 [/
060 0 061 1 062 2 063 3 064 4 065 5
066 6 067 7 o070 8 071 9 072 J 073 ,
074 < 075 = o076 > 077 ? 100 @ 101 A
102 B 103 C 104 D 105 E 106 F 107 G
110 H 112 I 112 J 113 K 114 L 115 M
116 N 117 0O 120 P 121 Q 122 R 123 S
124 1 125 y 126 VvV 127 W 130 X 431 Y
132 2z 133 | 134 \ 135 ] 136 " 137
140 \ 141 a 142 b 143 c 144 d 145 e
146 f 147 g 150 h 151 i 152 j 153 k
154 1 155 m 15 n 157 o 160 p 161 q
162 r 163 s 164 t 165 u 166 v 167 w
170 x 171y 172 z 173 { 174 | 175 1}
176 ~ 177 del

342



Appendix 7
Dragon-specific tables

This appendix is made up of detailed, Dragon-specific
information collected together in a tabular form
Rat her than include such information in the text, we
have <collected a nunmber of tables together in this
appendi Xx. First, we summarise the functions and
connections of the individual bits in the Dragon's PIA
regi sters.

1. Pl A SUMVARY

(1) PODDRA - A-side data direction register PlIAO
Al bits in this register DAO-DA7 are set to O
meaning that the corresponding bits in the PDR
are inputs.

(2) POPDRA - A-side peripheral data register PIAO

Bits PAO-PA6 are connected to keyboard rows 0 to
6. Bits PA7 is a joystick comparison input and
bits PAO and PA1 are connected to the right and
left joystick buttons respectively. PA0 and PAl
are also shared by keyboard rows 1 and 2 thus the
keyboard must be disabled when joysticks are
used.

(3) POCRA - A-side control register PlIAO
The table below shows the functions of the bits
in this register.

CRAO CA1 control, O0->disable IRQA, |->enable |RQA

CRA1L CA1L control, O->set IRQAL on H to LO, I->
set IRQAL on LO to HI.

CRA2 0- >PODDRA, 1- >POPDRA

CRA3 CA2 control, 0->CA2 LO, 1->CA2 HI

CRA4 1 ->CA2 in CRA3 in bit foll ow node

CRA5S as above

CRAG6 | RQA2 flag, not used

CRA7 |IRQAL flag

(4) CA1 - Horizontal sync interrupt input (63.5 m -
croseconds)

(5) CA2 - LSB of two analog nultiplexor select I|ines
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(6)

(7)

(8)

(9)
(10)
(11)

(12)

(13)

PODDRB - B-side data direction register PIAO

All bits in this registers are set to 1 thus con-
figuring the corresponding bits in POPDRB as out -
puts.

POPDRB - B-side peripheral data register PlIAO
This register is shared by the keyboard input and
printer data lines. Bits PBO-PB7 are either con-
nected to keyboard matrix colums 0O to 7 or are
printer data bits 0 to 7.

POCRB - B-side control register PlIAO
The table below summari ses the functions of the
bits in this register.

CRBO CB1 control 0 -> disable |RQB,
1 -> enable IRQB

CRB1 CBl1 control O -> set IRQ@B1 on H to LG
1 set IRQB1 on LOto H

CRB2 0 -> PODDRB, 1 -> POPDRB

CRB3 CB2 control, 0 -> CB2 LO, 1 -> CB2 H

CRB4 =1 CB2 in CRB3 bit foll ow node

CRB5 =1 CB2 in CRB3 bit follow node

CRB6 |R@B2 flag, not used

CRB7 IRBL flag

CBl1 - field sync interrupt (20ms, 50Hz)
CB2 - MsB of analog nultiplexor select Iines

P1DDRA - A-side data direction register PIAl

Bit O in this register is 0 thus configuring bit
O in the peripheral data register as an input.
Al other bits are 1, configuring associated
peri pheral data bits as outputs.

P1PDRA - A-side peripheral data register PIAl
Bits 2 to 7 in this register correspond to bits
0-5 of a 6-bit DAC input value. Bit 0 is a
cassette data bit input and bit 1 is the printer
strobe output.

P1CRA - A-side control register PlIAl
The functions of the bits in this register are
sunmarised in the table bel ow

CRAO CAl1 control, O0->disable |RQA,
1 -> enable | RQA
CRA1 CA1 control, 0->set IRQAL on H to LO
1 -> set IRQAL on LOto H
CRA2 0 -> P1DDRA, 1->P1DDRA
CRA3 CA2 control, 0->CA2 LO, 1->CA2 HI
CRA4 =1 -> CA2 in CRA3 bit follow nbde
CRA5 =1 -> CA2 in CRA3 bit follow node



(14)

(15)
(16)

(17)

(18)

(19)
(20)

2.
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CRA6 | RQA2 flag, not used
CRA7 | RQAL flag

CA1 - printer acknow edge interrupt input, not
used

CA2 - cassette nmotor control, 0 -> off, 1 -> on
P1DDRB - B-side data direction register PlIAl
Bits O to 2 in this register are 0, configuring
associated bits as inputs. Bits 3-7 are 1, con-
figuring associated bits as outputs.

P1PDRB - B-side peripheral data register PIAl
Bits 3 to 7 in this register are VDG control
[ines. Bit O is a printer busy input, bit 1 is
used for single bit sound and bit 2 is a RAM type
detect bit. If it is 0, available RAMis 32K or
64K type. If it is 1, available RAMis 16K type.
In the Dragon 64, bit 2 is programed as an out-
put to select between the 32K node BASIC ROM (bit
2=1, default) and the 64K node BASIC ROM (bit 2
=0).

P1CRB - B-side peripheral control register PIAl
The table below sunmarises the functions of the
bits in this register.

CRBO As POCRB

CRB1 As POCRB

CRB2 0- >P1DDRB, 1->P1PDRB

CRB3 CB2 control, 0->CB2 LO, 1->CB2 H

CRB4 =1 CB2 in CRB3 bit follow node

CRB5 =1 CB2 in CRB3 bit follow node

CRB6 |R@B2 flag, not used

CRB7 IRQBL flag

CBl1 - ROM cartridge interrupt detect

CB2 - sound source enable

RESERVED WORD TABLE

followng tab