

Dragondata.co.uk

An Introduction to

BASIC programming

using the DRAGON
 Data Ltd

micro computer

By Richard Wadman

First printing 1982

ISBN 0 95 08079 0 7

(C) 1982. DRAGON Data Limited

No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means electronic, mechanical,

photocopying, recording, or otherwise; without the prior permission of the

publisher.

This book is sold subject to the condition that it shall not by way of trade or

otherwise, be lent, resold, hired out, or otherwise circulated without the

publisher's prior consent in any form of binding or cover other than that in

which it is published and without a similar condition being imposed on the

subsequent purchaser.

Acknowledgements

The author and DRAGON Data Ltd wish to thank Professor A. G. Hawkes of

University College Swansea for his assistance, and Mrs. Dianne Mowat for typing

a difficult manuscript.

OPERATING INSTRUCTIONS

Having opened the box and found this manual you should also have found:

 1. Your Dragon 32 computer

 2. A mains power unit

 3. A TV connection cable.

In addition to these items you will also need an ordinary home television set.

Your Dragon 32 Computer will work with either a colour, or black and white

TV. However, to obtain the full colour graphic ability of your Dragon 32, you

will have to connect to a colour TV. This is all that is required to get your

Dragon 32 working.

You can, however, improve the capabilities of your machine by adding the

following options:

 1. A cassette recorder to store programs and data

 2. A printer

 3. Joysticks for games playing

 4. Disc drives for mass storage of programs and data.

None of these options are necessary, but a cassette recorder will save you a lot

of repetitive typing.

i

KEY

1. TV SOCKET
 Connection to standard television serial socket.

2. RESET BUTTON
 Used to reset computer to initial state. Stops running program, or

 input/output operations, immediately. Any program currently in memory

 is still present after pressing reset.

3. LEFT JOYSTICK

4. RIGHT JOYSTICK
 For both 3. and 4. 5 pin DIN sockets used for connecting joysticks,

 available as optional accessories.

5. CASSETTE INPUT/OUTPUT SOCKET
 5 pin DIN socket for connection of cassette recorder. Connection lead

 available as accessory.

6. PARALLEL PRINTER PORT
 Connection for a centronics type printer via a standard centronics cable.

7. PROGRAM CARTRIDGE SLOT
 Used for games cartridges. Cartridge must be inserted with the computer

 switched off.

8. POWER PACK SOCKET
 For connection of supplied mains power unit.

9. MONITOR SOCKET
 For connection of colour monitor.

10. ON/OFF SWITCH
 Controls mains power supply to computer.

ii

iii

CONNECTING YOUR DRAGON 32

1. Connect the TV connection cable to the serial socket of the Television and

 to the TV socket 1 on the Dragon 32.

2. Connect the mains power unit to the power pack socket 8 on Dragon.

 The other wire from the mains unit should be plugged into a 3 pin wall

 socket.

3. Switch on the TV and computer.

4. Using a spare channel on the TV set, adjust the tuning until the screen

 shows a green square with a black border, (or light grey square with a

 black border if the TV is a black and white set).

 In the green square will be a message as follows:-

 (C) 1982 DRAGON DATA LTD

 l6K BASIC INTERPRETER 1.0

 (C) 1982 BY MICROSOFT

 OK

 Your computer is now ready to use.

USING PROGRAM CARTRIDGES

Connect your Dragon 32 to the TV as above. Before switching on the computer,

insert the cartridge with the label facing upwards, into the Program Cartridge

slot 7.

Please ensure that before inserting or removing a program cartridge the

computer is switched off. Failure to do so many damage both the cartridge and

your computer.

USING GAME JOYSTICKS

Various types of joysticks are available as option accessories. The joysticks

for use with your Dragon computer should be of the potentiometer type.

To connect the joysticks just plug into the joystick sockets 3 and 4.

USING A CASSETTE RECORDER

Any reasonable quality cassette recorder can be used to store programs and

data from your Dragon 32. The cassette recorder must have sockets for remote

control, earphone, and auxiliary input. Connection leads are available

iv

as accessories for most standard cassette recorders. The connection to the

computer is at socket 5. The connections to the cassette recorder will depend

on the type of cassette. See chapter 4 of the Programming Manual for

instructions on how to use the cassette recorder.

TAKING CARE OF YOUR DRAGON

1. Keep all liquids well away from your computer. Your Dragon does not

 work as well on tea and coffee as you do.

2. Ensure all loose wires are kept out of harms way. An accidental trip

 could be expensive.

3. Make sure all plugs are firmly in their sockets before switching on.

4. Switch off everything and disconnect the machine when not in use.

5. To clean the case and keyboard, first disconnect unit completely from the

 power supply. Using a slightly damp cloth, wipe the case and keyboard.

 Do not use any spirit based cleaners.

v

CONTENTS

CHAPTER

 1. GETTING STARTED.

 The keyboard − Use as a calculator − Arithmetic Rules OK −

 Printing words. (1)

 2. WHAT'S IN A NAME.

 Constants − Variables − Naming Variables − Assigning values

 to variables − Strings and numbers do not mix − Command

 summaries. (9)

 3. A PROGRAM AT LAST.

 Putting in a program − Step by Step − Making changes −

 Program construction − A programming example. (15)

 4. GOOD HOUSEKEEPING.

 Setting up the recorder. Storing a program on tape − Loading

 programs into memory − Saving more than one program −

 Hints on reliable recording − The Editor − Moving down the

 line − All change − More system commands. (35)

 5. GOING PLACES.

 Selecting options − Decisions − Do it again, and again −

 Wheels within wheels. (47)

 6. NEW DIMENSIONS.

 Lists and Tables − What's its function − D. I. Y. functions −

 Alterations to Input − Pause for Reflection. (63)

 7. GETTING THE POINT ACROSS.

 Printing pictures − Moving pictures − A new resolution (81)

 8. MOVING TO A HIGHTER PLANE.

 In the mode − Familiar Friends − Draw the line, somewhere −

 A splash of colour − Going round in circles − Turning the

 page. (91)

 9. SOUNDS ELECTRIC.

 Adding a sound track − Play that thing! (109)

10. FURTHER GRAPHICS.

 Drawing − Get the picture. (117)

vii

CHAPTER

11. THE FINISHING TOUCH.

 Print extras − Cassette Input and Output − A bit more. (127)

Appendix A ASCII character codes (136)

Appendix B Print and Graphic screens (139)

Appendix C Error codes. (143)

Appendix D Trigonometric functions. (145)

viii

INTRODUCTION

This book is designed for those who wish to learn to program their DRAGON

32 computer using the BASIC language.

The BASIC language is an extremely powerful programming language, but at

the same time is very easy to learn. It is made up from less than 100

statements, which is less than 1 % of the average individual's vocabulary.

While programming may appear to be difficult at first, as with any new skill,

it is really solving a problem in a logical number of steps. The secret is

to take your time and make sure you understand the last step before trying the

next one. Do not be worried by the fact that you will make mistakes, this is

part of the learning process. You will not break your computer by making a

programming error, just find the mistake, correct it and carry on. Try your

own ideas − the "what if I do this" approach can be a very quick way of

finding out just what your machine is capable of. Enter and run each example,

not only to see what it does, but why it does it.

With time and patience you will find your computer is not just a

cartridge-playing games machine. Programming can become an absorbing and

enjoyable activity in itself, apart from the fun the results of it may give.

To aid beginners in understanding and developing BASIC programs, a small

Dragon is printed in the margin next to items that should be noted carefully,

as these rules are particularly important to remember.

lf you have used BASIC before then you should look out for the twin Dragon

symbol; these indicate special features of Dragon BASIC.

ix

CHAPTER ONE

GETTING STARTED

THE KEYBOARD

You have set up the computer according to the instructions and are now ready to

start. So switch on, your TV screen should show a GREEN square with a

message. (lf it does not, switch off and check all the connections again). The

message will depend on the type of machine, whether or not disk drives are

connected etc. − so we will not worry about it. The last line, however, is always

the same.

OK

OK is the computer's "prompt", telling you it is ready to receive instructions.

You have to wait for the prompt to appear before you can type anything.

Below the OK is a flashing square − this is called the cursor. It shows you

where you are on the line.

Now look at the keyboard: it looks like a typewriter with some extra keys. It

behaves like a typewriter too, just press a few keys and you will see the letters

appear on the screen. Notice how the cursor moves over after each letter to

show you where you have got to. If you press [SHIFT] and 0/ (zero) together and

carry on typing you will see that the letters on the screen have changed to green

on a black background. Throughout the book we will use 0/ to represent zero, to

distinguish it from the letter O. The computer is very fussy about the difference.

These are lower case letters (i.e. small a, b, c, d); BUT they will only appear as

lower case on a PRINTER. ALL your commands or instructions to the

computer must be in UPPER CASE letters (capital) − so

press [SHIFT] and 0/ together again and type some more. You should now be

back to black letters on a green background.

Now try the [←] key. This is the backspace key, as you press it the cursor

moves back along the line and the letter immediately to the left of it

disappears. This is useful for correcting mistakes, just backspace to the wrong

letter and retype.

To clear the screen completely press [CLEAR]; everything is cleared from

the screen and the cursor moves to the top left hand comer. [CLEAR] only clears

the screen, information stored in the computer is not affected.

1

Practise using the keyboard for a while to get used to the position of the

keys and how to correct mistakes. Then clear the screen and make sure you

are in upper case mode.

DRAGON THE CALCULATOR

Your computer will work in two different modes − immediate, it will obey the

command at once, and deferred, it will store a set of instructions and then

run them as a program. In the immediate mode the computer behaves like a

calculator.

The computer understands a language called BASIC. In BASIC there are a

number of special words to tell the computer to do certain things. For

instance, PRINT, this not surprisingly means print what follows on the

screen.

Try it, type PRINT 12 + 7 then press the [ENTER] key; the screen should show

19

OK

Try another, type PRINT 12 + 8/2 then press [ENTER]

16

OK

If you made a typing mistake you probably got a message −

? SN ERROR

This means a 'syntax error', that is the computer does not recognise

something, usually because it has been spelt wrongly. The computer will

give error messages when it does not understand the command, and sometimes

when it does understand the command, but feels that what it has been asked

to do is illogical or impossible.

Type PRINT 3/0/ then press [ENTER]

The message will be

?/0/ ERROR

which means an attempt to divide by zero has been made − which is

impossible.

The error messages are rather terse to save space, but a full list with probable

causes is given in Appendix C.

2

To return to syntax errors, the computer is very fussy about the spelling of

its special words in BASIC, if you spot the mistake before you press the

[ENTER] key you can use the back−space [] key to go back and correct it.

Otherwise there is no alternative but to retype the line correctly, for the

moment.

ARITHMETIC RULES. OK?

So far our examples have asked the computer to perform only 2 'arithmetic

operations', these are add (+) and divide (/). The word 'operation' means

something we are asking the computer to do. There are six simple operations

the computer can do in arithmetic and it has strict rules as to how these

are carried out. In the example above

PRINT 12 + 8/2

it is not clear whether the answer should be 16 or 10/ .

12 plus 8 divided by 2 is 10/ , or 8 divided by 2 is 4, plus 12 is 16.

The answer given by the computer is 16 because of the order it chooses to do

its arithmetic. The operations and the priority they are given are as follows:

1. Unary Minus

This is when a minus sign is used to indicate a negative number

PRINT −3 + 2

The computer will first apply the minus sign to the number.

So − 3 + 2 evaluates as − 1. If the computer did the addition first

− 3 + 2 would evaluate to − 5, but it doesn't.

2. Exponentiation

Exponentiation means raise to the power. 5 raised to the power 4, (5
4
) is

5 5 5 5.

After applying all minus signs the computer then does all exponentiations.

PRINT 4 + 3 ↑ 2

is evaluated by squaring three (3 3 = 9) then adding 4 to give at total of

13. If there is more than one exponentiation they are evaluated from left to

right. Try an example

 3

PRINT 2 ↑ 3 ↑ 2 ↑ 3 (the [↑] key on the left of the keyboard is used

for the exponentiation operation).

this is evaluated by multiplying 2 by itself 3 times (2 2 2 = 8) then

multiplying that result by itself (8 8 = 64) then multiplying that result

by itself 3 times (64 64 64 = 262144).

3. Multiplication

The sign the computer uses for multiplication is * so as not to cause

confusion with the letter x. This is obtained by the [SHIFT] and [*:] keys.

e.g.

PRINT 5 * 2 + 3

is evaluated as 13 (5 2 = 10/ plus 3 = 13).

4. Division

The sign the computer uses for division is / so 3 2 is written as 3/2.

PRINT 5/2 + 3

is evaluated as 5.5 (5 2 = 2.5 plus 3 = 5.5).

Multiplication and division have equal precedence, that is the same priority.

When arithmetic operators have equal precedence they are evaluated from

left to right.

PRINT 5 + 2 * 3 + 4/2

is evaluated as 13 (2 3 = 6, 4 2 = 2, 5 + 6 + 2 = 13).

5. Addition

The sign for addition is +

6. Subtraction

The sign for subtraction is −

Addition and subtraction have equal precedence, so they also are evaluated

from left to right after all the higher priority operations have been done.

To summarize the computers order of precedence for carrying out

mathematical operations.

4

FIRST − (minus sign is used to indicate negative numbers)

SECOND ↑ (exponentiation, from left to right).

THIRD * / (multiplication and division, form left to right)

FOURTH + − (addition and subtraction from left to right)

Below are some arithmetic expressions to evaluate. With each one first do it

in your head (or with a pencil and paper) and then try it on the computer. If your

answer is different to the computer try to find out why. Unless you have

a lot of experience with the way computers evaluate expressions, you should

actually do these examples. The majority of so−called 'computer errors' are

caused by the programmer following a different set of rules to the computer. No

answers are given. If typed in exactly as written, the computer will give

the correct answer.

PRINT 3 + 2

PRINT 4 + 6 − 2 + 1

PRINT 8 * 4

PRINT 4 ↑ 2 + 1

PRINT 5/4 − 1

PRINT 5 − 4/2

PRINT 6 * − 2 + 6/3 + 8

PRINT 4 + − 2

PRINT 2 * 2 + 3 * 4

PRINT 8/2/2/4

PRINT 20/ /2 * 5

PRINT 8 * 2/2 + 5 * 3 * 2 ↑ 2

It is not necessary to type PRINT each time, there is a shorthand symbol

available [?]. If you type

? 3 + 2 this is the same as PRINT 3 + 2

By now you should be used to pressing the [ENTER] key at the end of each

line.

The OK prompt tells you that the computer is ready.

The [ENTER] key tells the computer you are ready.

After all this heartache about precedence, it is possible to modify the

priority. This is done by using parentheses or brackets. Suppose you want to

divide 14 by 4 plus 3, if you write −

14/4 + 3 the answer will be 6.5, because you will get 14 divided by 4 with 3

added on. But this is not what you wanted. To accomplish this you can write

14/(4 + 3) the answer will be 2.

5

The parentheses modify the precedence, the rule is simple, do what is in

parentheses first. If there is more than one set then work from the

innermost outwards −

12/(3 + (1 + 2) ↑ 2) is evaluated as follows

a) 12/(3 + 3 ↑ 2) (1 + 2) done first

b) 12/(3 + 9) 3 ↑ 2 next

c) 12/12 (3 + 9) next

d) 1 division last.

Here are some more expressions to evaluate. Again, if you are not

familiar with the way computers work, the few minutes you spend working

them out will enable you to use your computer more effectively.

? 44/(2 + 2)

? (44/2) + 2

? 4 + (−5*2)

? 10/0/ (20/0/ (2*(9−5)))

? 42/((9/3) + 1.75 + (5/4))

PRINTING WORDS

So far we have only used numbers in our PRINT command. The layman often

sees the computer as a 'number cruncher', but this is not the only function

of a computer. A computer may also be used to manipulate characters. By

characters we mean the letters A to Z, the digits 0/ to 9, punctuation marks

and other special characters we shall be meeting later. BASIC allows us to

manipulate groups of characters called strings.

A string can be any mixture of characters − even a space can be an important

character in a string. To tell the computer that it is dealing with a string,

rather than a number, the string is enclosed in quotes (“”) Some examples of

strings are −

“THE TITLE”, “Z+*?!”, “MR J.P.SMITH”

“AXY 479W”, “0/1−479−6172”

The last two strings could be a car number and a telephone number, and
though they both contain numeric characters, we would not use this collection

of digits to do any serious arithmetic. As far as BASIC is concerned a

collection of digits enclosed in quotes is not a number, the string "12345" is a

completely different thing to the number 12345. In fact, strings and numbers

are stored in completely separate places in the computer’s memory.

6

Try PRINT “2 + 5 = ”; 2 + 5

The first part of the PRINT statement appears on the screen exactly as

written in the string. (The quotes are used to enclose the string, they are not

part of it). The second part of the statement is evaluated as a numeric

expression, so the screen should show −

2 + 5 = 7

As we have seen above, the space can be an important character in a string. In

the BASIC statements, spaces do not make any difference, they only make

the line easier to read. In strings, however, they do make a difference, as

when a string is printed on the screen it is copied exactly as the group of

characters appearing between the quotation marks. Throughout the book if

we feel a space is necessary we will indicate it by a symbol. This is not a

keyboard symbol, it means that a space should be typed. It will only appear in

strings, as all other spaces are optional.

You should now be able to use your computer to solve simple problems, like

those at the end of this chapter. Again, if you are not familiar with computers at

least try some of them.

7

1) Jim is 168 cms tall. What is his height in inches?

 (1 ins = 2.54 cms).

2) A recipe requires 0/ .75 kgs of flour. How many pounds of flour do you

 need?

 (1 kg = 2.2 lbs).

3) Your car uses 22.8 gallons of petrol on a journey. At the start the

 mileage on the clock was 10/346 and at the end of the journey it was

 11193. What is the m. p. g. for the trip?

4) You put 15 into a savings account which pays interest at 11 % per year

 How much will you have after 5 years?

 (A = P(1 + R/10/0/)
N
 P = Principal R = Interest rate per year N =

 Number of years A = Amount after N years).

5) How many turns does a 26 inch bicycle wheel make in one mile?

 (1 mile = 5280/ ft Circumference = PI x diameter PI = 3.14159).

ANSWERS

1) 66.14 inches

2) 1.65 lbs = 1 lb 10/ ozs

3) 37.149 m.p.g.

4) £25.27

5) 775.69

8

CHAPTER TWO

WHAT'S IN A NAME

CONSTANTS

All the examples we have used so far have only contained constants. A

constants is exactly what it says −something which does not change. 3.145 is a

constant, changing it to 3.146 just makes a different constant. Constant are

useful in computer programs, but not as useful as variables.

VARIABLES

A variable is something which may change in value. In the equation.

X + 5 = Y

X and Y are variables as both may take many values which still make the

equation true. Variables in a computer are places in the computer memory −

rather like a set of pigeonholes or boxes. To identify these it is necessary to

label them (or give them a name like X or Y). The variables in your computer

come in two flavours − numeric or string, and in two sizes, simple or array. We

already know the difference between numeric and string constants − so

numeric variables hold numeric constants (numbers) and string variables hold

string constants (characters). For the moment we will only consider simple

variables, array variables will be dealt with later.

NAMING VARIABLES

To name a numeric variable you may use any combination of a letter and a

letter or number.

N, AA, X, TI, Y, Z9, L5, BZ, PQ, K9

are all examples of valid numeric variable names.

Actually your computer allows a variable name to be any length but will only

recognise the first two characters of the name; so though it will accept names

such as

BIRD BIRTHDAY BIGNUMBER

they will be considered as the same variable BI. The same applies to string

variables

9

NUMERIC VARIABLE NAMES

A numeric variable can only store numbers.

The name of a numeric variable can consist of any combination of letters and

numbers, but must start with a letter.

As the computer only recognises the first two characters of a name, names

like:-

STAR, STATE, STEAMER

will be considered to be the same (ST).

Variable names that are longer than two characters are useful to remind you

of the contents,

NUMBER, COUNTER, SUM

will all be accepted but will take up more memory than NU, CO, SU.

10

FRED$ FRESHWATER$ FRIVOLOUS$

are all considered as FR$.

To name a string variable the same combinations may be used but the name

must have a $ sing on the end.

A$, P7$, MNS, Z0/$, FPS

are all examples of valid string variable names.

ASSIGNING VALUES TO VARIABLES

How do we use these variables? Type in the following example:

A = 5 remember to press the [ENTER]

B = 2 key after each line.

C = A + B

D = D + 3

PRINT A,B,C,D (make sure you type the commas.)

Your screen should show

5 2

7 3

The first line means store the value 5 into a variable called A, the next line

stores 2 into variable B. (The computer decides exactly where these places are

in its memory, you only have to supply the name). The third line says find the

values stored in variables A and B, add them together then put the results

 into a variable called C. After the computer has done this the variables A and

B still contain the original values (5 and 2 in this case) and C contains the sum

(7). The fourth line may seem a bit confusing to those of you who know

algebra. This is because the equals sign (=) in the BASIC language does not

mean the same thing as it does in mathematics. The = in BASIC means assign

to, or take the expression on the right hand side of the equals sing, (evaluate

it if necessary), and place it into the variable on the left hand side of the equals

sign.

This sort of line is called an assignment statement, and the left hand side of the

assignment statement must always be a variable. Something like 2 = B + C

may make sense in algebra, but does not in the BASIC language.

To return to the statement D = D + 3, this means take the current content of

the variable D (which happens to be 0/ because we didn't put anything there), add

3 to it and then put it back into variable D (or equivalently −

11

increase variable D by 3). This may seem a little confusing but it is a very

useful (and a very common) type of statement in computer programs. It also

demonstrates another feature of variables − they can only hold one value at a

time. If you assign a value to a variable (i. e. it appears on the left hand side of

an assignment statement) the value over-writes the old value and the old

value is lost. You may, however, copy the value in a variable (either into

another variable, or by using it in an expression as in C = A + B) as many

times as you like without changing it.

If you now type

A = B remember to press [ENTER]

B = 17 after each line.

D = D + 2

PRINT A,B,C,D

Your answer will be

2 17

7 5

Variable A now holds a copy of B from the last example, variable B holds a

new value (17), and the previous contents of both A and B have been lost.

Variable C is unchanged. Variable D is now 5, because it held 3 from the

previous example, to which has been added another 2.

String variables behave in exactly the same way (except you must remember

the name must end with a $ sign). Try this example

A$ = “THIS IS A ” remember to press the [ENTER]

B$ = “VERY ” key after each line.

C$ = “LONG STRING”

D$ = A$ + B$ + B$ + B$ + BS + B$ + B$

D$ = D$ + C$

PRINT D$

Your screen will show

THIS IS A VERY VERY VERY VERY VE

RY VERY LONG STRING

In lines 1, 2 and 3 we have assigned values to the string variables A$, B$ and

C$. In line 4 we add six copies of B$ to A$. With string variables the plus sign

(+) does not mean the same as it does with numeric variables. It means add to

end of the first string. (For those who like long words it is called

12

concatenation). In line 5 we add C$ to the end of the newly constructed D$.

This is one method of using a computer to construct sentences.

STRINGS AND NUMBERS DO NOT MIX

Please remember to keep numeric and string variables separate, only

numbers can be stored in numeric variables and only strings can be stored in

string variables; statements of the form −

D = “STRING”

A$ = 6

B = A$ * 2

will give you the error message ?TM ERROR (Type mismatch error).

The plus sign (+) is the only, arithmetic operator that can be used with

strings variables, all the others (−, * , / , ↑) will give an error message.

COMMAND SUMMARIES

Throughout the rest of the book we will place pages in boxes. These will give

details of each command as we introduce them. At the end of most boxes is a

small example program to demonstrate the use of the command. Study them

carefully, work through them and see if you can find out what will happen

before you get the computer to run it. These programs are intended to show

how a particular statement operates, but often include useful tips you may

wish to include in your own programs later.

13

STRING VARIABLE NAMES

A string variable can only contain strings.

A string variable name can consist of any combination of letters and numbers,

but must start with a letter, and end with the $ sign.

As with numeric variable names the computer will only recognise the first two

characters so that,

ANSWERS$, ANI$, AN2$

will be considered to be the same (AN$).

14

CHAPTER THREE

A PROGRAM AT LAST

So far your computer has done little more than echo the line you have just

entered. We will now start to construct a computer program.

A program is a set of instructions which tell a computer to do something. A

BASIC program consists of a number of lines. A line has two parts: first, a

line number and second, one or more statements. If there is more than one

statement on a line, each statement must be separated by a colon (:). A

statement is a command line such as we have already been using.

PRINT A$: A = 47.

Here is a BASIC program: −

10/ CLS0/

20/ PRINT “WHAT IS YOUR NAME?”

30/ INPUT NAME$

40/ I = RND(255):J = RND(9) − 1

50/ CLSJ

60/ PRINT @ 20/0/ + J,NAME$

70/ SOUND I,2

80/ GOTO 40/

As you can see this program contains some new BASIC commands. Do not

worry about these for the moment, we will explain them later. Notice the

form of a BASIC program − a sequence of lines, each line consisting of a line
number and at least one statement (line 40/ as two).

PUTTING IN A PROGRAM

To put a program into the computer’s memory, first we must clear the

memory of anything that may be there. To do this type NEW then press

[ENTER]. Then enter each line exactly as above pressing the [ENTER] key

at the end of each line. You will notice that after you press the [ENTER] key

nothing happens. A line starting with a number is not carried out

immediately, it is just stored. When a program is run, it starts with lowest line
number, carries out that line, then moves to next highest line and so on.

Because the sequence of the program depends on the line number, you can

enter the lines in any order you want, the computer will order them into the

correct sequence.

15

Try typing the program into the computer. If you make a mistake before

pressing the [ENTER] key, use the backward arrows key [←] as before. If

the mistake becomes obvious after pressing the [ENTER] key, then retype the

line again. The computer will only store the latest version of the line.

After you have entered all the program, to see the lines you have just entered

as the computer has stored them, type LIST and press [ENTER]. Note there

is no number before LIST. Without a number the computer will carry out the

command immediately. Check the program to make sure it is correct (if not

retype the lines that are wrong).

Now, at last, we are ready to get a program going. To do this type RUN and

press [ENTER].

The screen will clear and a message will appear at the top of the screen

asking for your name. Type in your name and press [ENTER].

The computer will spring into action −

The screen will flash different colours, and your name will appear jumping

about in the middle of the screen. Strange noises will accompany all this

activity (if you remembered to turn up the volume control on your TV).

This will carry on forever unless you stop it. One way to stop the program is to

switch off the power, but this is not very satisfactory − you will lose the

program. The best way to stop this program is to press the red BREAK key.

STEP BY STEP

Now you have seen what the program does, we will now explain how it does

it, a line at a time.

10/ CLS

As this is the lowest numbered line, it is the first to be obeyed. The command

CLS means clear the screen, and set the background to the usual colour

(which is green).

20/ PRINT “WHAT IS YOUR NAME”

This is the PRINT statement we have seen before. This line prints the

message at the top of the screen.

30/ INPUT NAME$

The command INPUT tells the computer to stop and wait for you to type

something in, which it will put into the variable following the command.

16

LIST

The LIST command displays the current program in memory, on the screen.

It is not preceded by a line number.

If the program is too long to fit on the screen, the listing can be stopped by

pressing the [SHIFT] and [@] keys together, (but you have to be quick). The

listing can be restarted by pressing any other key on the keyboard.

To LIST only part of the program you can use

LIST n1 − n2

where n1 and n2 are two line numbers (n2 must be greater than n1).

LIST 40 − 100

will display all the program lines between line number 40 and line number 100

LIST − 80

will display all program lines from the start of the program to line number 80.

LIST 120 −

will display all program lines from line number 120 to the end of the program.

17

RUN

The RUN command is used to start a program.

It does not have a number in front of it.

lf you wish to start a program from any place other than the beginning you

may do so by typing

RUN line number

where line number is the number of the line at which you wish to start.

RUN 250/

NEW

The command NEW clears the memory, and sets all variables to zero.

Note that it does not have a line number.

It is a good idea to type NEW before entering a program to ensure that none

of the old program is left to interfere with the current program.

18

ASSIGNMENTS STATEMENT

The assignment statement is used to place a value into a variable.

The form of the assignment statement is:-

LET Variable = expression

The LET part of the statement is part of standard BASIC, but it is not

necessary on your computer, so it will not appear in any of the program

listings in this book.

The variable part of the statement can be any variable name.

The expression part of the statement can be a constant, another variable or a

mixture of both connected by operators (+ , − , * , etc.). As string and numeric

variables cannot be mixed, both the variable and the expression must be of the

same type.

The equals sign (=) does not mean the same as the equals sign in algebra, it is

better to interpret it as 'assign to'. This means the same variable can appear

on both sides of the assignment, as in

40/ X = X + 1

which tells the computer to add 1 to the current value of X and put it back into

X.

10/ S = 0/ :N = 0/ :CLS5

20/ PRINT @ 72,“ENTER A NUMBER”;

30/ INPUT X:CLS5

40/ S = S + X: N = N + 1

50/ PRINT @ 194, “YOU HAVE ENTERED”;N;“NUMBERS.”;

60/ PRINT @ 262,“THE AVERAGE IS”;S/N;

70/ GOTO 20/

19

(Remember the computer will call the variable in this case NA$, and ignore

any other letters. It is, however, often useful to use a variable name that

is longer to make it more understandable to people. A longer name also acts as

a reminder of what the variable is being used for).

40/ I = RND(255): J = RND(9) − 1

line 40/ shows how more than one statement may appear in a line. (Note the

colon (:) separating them). This line also introduces another new command,

RND. This command generates a random number. A random number is like

picking a number out of a hat. The number in brackets after the RND tells the

computer which range of numbers to select from. In the first statement I =

RND(255),RND(255) means select a random whole number from the range

1 to 255 and then place this number into a variable called I. In the second

statement the range for the random number is from 1 to 9, however, after the

number has been selected, 1 is subtracted before it is put into J. This means

that J will be a number between 0/ and 8.

50/ CLS(J)

This line clears the screen. This time however, the background colour will

depend on the value of J. There are nine colours available, which are

numbered from 0/ to 8. This is the line that makes the screen flash different

colours.

60/ PRINT @ 20/0/ + J,NAME$;

This is a more sophisticated version of our old friend the PRINT statement. It

instructs the computer to print the value of NAME$ (in this case your name),

starting at a specified position on the screen. The position in this case is 20/0/ +

J, which is somewhere between 20/0/ and 20/8. Position 20/0/ is at line 7 and 8

spaces in. (Read the PRINT @ box to see how the screen is divided up).

Because the value of J changes, your name appears to be jumping about on

the line.

70/ SOUND I, 2

This is the line which makes the strange noises. The SOUND command tells

the computer to use its tone generator to make a sound; which sound, and

how long to make it are decided by the two numbers following the command.

80/ GOTO 40/

The GOTO command simply means go to the line number following the

command (40 in this program).

20

PRINT

The PRINT command is used to display output

It can be used to output constants, the value of variable, strings and also to

evaluate expressions.

If more than one item is included in a PRINT statement, the items should be

separated by either a comma (,) or a semi-colon (;).

The comma will cause the output to be printed in two columns, each fifteen

characters wide. (If the length of the first item is more than 15 characters it

will he printed in full. The next item will appear on the next line).

The semi-colon causes the output to be compressed− Strings will be printed

next to each other, and numeric items will have a space either side. The

semi-colon holds the print head at its last position ready to continue printing

when the program reaches the next PRINT statement.

A PRINT statement with no items prints a blank line.

10/ CLS

20/ PRINT

30/ PRINT “THE PRINT COMMAND”

40/ PRINT “A DEMOSTRATION.”

50/ PRINT

60/ PRINT “COLUMN ONE","COLUMN TWO”

70/ PRINT 14.2, 13.7

80/ PRINT 1,2,7,11

90/ PRINT

10/0/ A$ = “COMPRESSED”: B = 3

110/ PRINT; “SECOND LINE”

130/ PRINT A$;“OUTPUT ON LINE”; B

140/ PRINT

150/ PRINT “THIS WILL APPEAR”;

160/ PRINT “AS ONE LINE”

170/ PRINT “DEMOSTRATION”,

180/ PRINT “FINISHED”

21

INPUT

When a program comes to an INPUT statement, it stops and waits for

something to be entered from the keyboard. Following the INPUT command

must be one or more variable names separated by commas.

25 INPUT A,B,F$,H7

The above statement required you to enter 4 items. This can be done one at a

time by pressing the [ENTERI key after each one, or as a list separated by

commas, e.g.

146.2, 78.1, STRING,3[ENTER]

It is always a good idea to print a message before an INPUT statement, to

remind you what is needed. This can be done with a PRINT statement, or

included in the INPUT statement as follows:−

35 INPUT "TWO NUMBERS PLEASE"; N1, N2

Note the semi-colon separating the string from the input list.

You must ensure that the correct type of entry is made (strings to string

variables, numbers to numeric variables), or else the program will halt with a

?REDO, and you will have to re-enter.

It is not necessary to enclose strings in quotes when inputing to a string

variable both "STRING" and STRING are acceptable.

In the following demonstration program note: −

a) lines 10/0/ and 170/ . Uses the INPUT command to stop the program until

 ready. A$ will not contain anything.

b) the use of string variables (C$, P$ and T$) to avoid typing the same

 message more than once.

10/ CLS:T$ = "THIS IS AN INPUT DEMOSTRATION"

20/ P$ = "PRESS THE ENTER KEY TO CONTINUE"

30/ C$ = "ENTER 4 NUMBERS"

40/ PRINT:PRINT T$:PRINT

50/ PRINT C$;"PRESS THE"

60/ PRINT "ENTER KEY AFTER EACH ONE"

70/ INPUT A,B,C,D

80/ PRINT:PRINT "YOU INPUT THESE VALUES"

22

90/ PRINT A;B;C;D:PRINT

120/ PRINT “NOW”;C$;“SEPARATED”

130/ PRINT “BY COMMAS AND PRESS ENTER.”

140/ INPUT A,B,C,D

150/ PRINT: PRINT “THIS TIME THE NUMBERS WHERE:−”

160/ PRINT A;B;C;D

170/ PRINT: PRINT P$:INPUT A$:CLS

180/ PRINT: PRINT T$:PRINT

190/ INPUT “ENTER A STRING AND A NUMBER”;B$,N

20/0/ PRINT: PRINT “THE STRING YOU ENTERED WAS:-”;PRINT

210/ PRINT B$

220/ PRINT: PRINT “AND THE NUMBER WAS:-”;N

230/ PRINT: PRINT “DEMOSTRATION ENDED.”

23

So the program returns to line 40/ where it selects a different random number

for 1 and also for J. As the background colour is decided by J, that changes

when the program reaches line 50/ . And as 1 is also different the sound

changes in line 70/ . When the program reaches line 80/ again it goes back to

line 40/ where it selects (forever, or until you press the BREAK key).

MAKING CHANGES

That was the first program, it didn't do very much but it's a start. It got us

going and introduced some new commands. A more detailed explanation of

the commands can be found in the 'boxes' throughout the text. (Each box also

contains a small program to demonstrate the command, you should try

running these).

If you were not very impressed with the first program, you may like to make

some changes. To change a program you have already typed in is simple.

Because a BASIC program sequence is decided by the line number, a line can

be changed by typing a line with the same number as the one in the program.

The new line replaces the old. Try entering a new line 70/ .

70/ SOUND I,K

A new line can be inserted into the program by giving it a number that will

place it in the correct order.

Try typing

45 K = RND(20/)

As this line is numbered 45 it will come between line 40/ and line 50/ .

(When you write your own programs you can number lines with any number

between 0/ and 63999. It is usually a good idea to number lines in 10/ 's, i.e. 10/ ,

20/ , 30/ , so that you have room to insert extra lines if necessary).

Try running the changed program (type RUN), the new line 45 selects

another random number, this time between 1 and 20/ . The changed line 70/

uses this random number, (in variable K), to change the duration of the

sound.

PROGRAM CONSTRUCTION

Though it is easy to sit at the keyboard and type in program lines, the

difficulties tend to appear afterwards, especially when programs start to get

longer. Typing in the program should be the last part of creating a new

program.

24

RND

The command RND generates random numbers.

RND is a function. A function, in BASIC is something that takes one or more

numbers and performs some operation on them which results in a single

value. The numbers used by the function are called arguments and are always

put in brackets after the function name. The result of a function is said to

be returned to the program.

The RND function returns a random number, which depends on the value of

the function argument.

If the value of the argument is 0/ (RND(0/)) the function returns a value

between 0/ and 1.

If the value of the argument is greater than 0/ (RND(6)) the function returns a

value that is an integer (whole number) between 1 and the value of the

argument. (RND(6)) will return either 1, or 2, or 3, or 4, or 5, or 6, you don’t

know which because it is random!)

10/ CLS

20/ PRINT @ 8,“ENTER A NUMBER”;: INPUT N

30/ CLS: PRINT @ 194,“3 RANDOM NUMBERS FOR N = ”;N

40/ PRINT @ 270/ ,RND(N)

50/ PRINT @ 30/2,RND(N)

60/ PRINT @ 334,RND(N)

70/ GOTO 20/

25

CLS

The command CLS is used to clear the screen, and set the background colour.

The normal background colour is green. If you use CLS on its own this is the

colour that will be set.

To change the background colour add a number between 0/ and 8 after the

CLS command, (CLS 2).

The available colours are:-

 0/ − Black 1 − Green 2 − Yellow

 3 − Blue 4 − Red 5 − Buff

 6 − Cyan 7 − Magenta 8 − Orange

The actual hue of these colours will depend upon your television set.

You will notice, however, that whatever the background colour, the

computer will print all text as black or green.

10/ CLS

20/ PRINT @ 0/ ,“BACKGROUND COLOUR DEMOSTRATION.”;

30/ PRINT @ 192, “ENTER NUMBER BETWEEN 0/ and 8”;

40/ INPUT C

50/ CLS C

60/ PRINT @ 288, “THIS IS BACKGROUND COLOUR:-”;C

70/ GOTO 20/

26

Start with a pencil and paper, then write down what you intend to do. Break

the problem into distinct different sections. Many problems to be done on a

computer tend to divide easily into at least three parts,

1) Preparation, titles, instructions and data entry,

2) Calculations,

3) Displaying the results.

Now tackle each section separately, further dividing into sub-sections until

you are left with a simple action like 'add 1 to counter'. Order these actions

into a sensible sequence, write them out in full, then start with the next

section. When you have finished you have a series of steps (some of which

may be very primitive) inside each section. Anyone reading through the result

should be able to solve the problem, whatever it may be, by using only simple

arithmetic. (This plan of action is called an algorithm in computerese). All

that is left now is to convert your plan into a language the computer can

understand. Ideally, each step in your plan should translate into one line in a

BASIC program.

After the translation you should test each section separately and ensure that it

does what it is supposed to before you assemble the complete program. When

the program is running successfully, do not celebrate by having a bonfire of all

the pieces of paper lying around. Keep the final plan, parts of which may be

useful in other programs, also some errors may not appear until long after you

have forgotten what it was that you did. It is also useful to put comments into

the program itself to remind yourself of what is going on. To do this BASIC

has the REM statement. This statement does not actually do anything.

BASIC ignores anything after the REM command, so if more than one

statement appears on a line make sure the REM statement is last. There is a

shortened version of the REM statement which uses the single quote ('), (this

is obtained by [SHIFT] and

7

').

10/ REM PROGRAM TO FIND AVERAGE

140/ A = B * C:GOTO 15: REM RETURN TO START

48 K = K + 1:'INCREMENT COUNTER

While REM statements do take up some of the memory, it is unwise to do

without them completely. Trying to understand your own programs a year

after you have written them can be a frustrating experience if there are no

comments at all.

All this section may seem terribly pedantic, but it is a well known fact in

computer circles that more time is spent on debugging (locating errors in a

 27

Print @ Grid

4
8
0

4
4
8

4
1
6

3
8
4

3
5
2

3
2
0

2
8
8

2
5
6

2
2
4

1
9
2

1
6
0

1
2
8

9
6

6
4

3
2

0 ►

 ▼

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0

1

 1

1

 1

1

 1

1

 1

1

 1

1

 1

1

 1

1

 1

1

 1

1

 0

2

 1

2

 2

2

 3

2

 4

2

 5

2

 6

2

 7

2

 8

2

 9

2

 0

3

 1

3

28

PRINT @

The PRINT @ command is used to place output at a specified place on the

screen.

For this purpose the screen is divided into a 16 32 grid, giving 512

positions. See the diagram opposite to show how the grid is numbered.

The form of the PRINT @ command is

PRINT @ expression, print list

The expression can be a number, a variable or an arithmetic expression, as

long as the value is between 0/ and 511.

The print list is the same as used in the PRINT command, it can be numbers,

variables, strings or expressions, separated by commas or semi−colons.

lf you considered your screen as having 16 lines ruled on it, then the

statement,

PRINT @ 32 * (LINE − 1), A

will print the value of A at the beginning of the imaginary line on your screen.

Each line will depend on the value of the variable LINE, (a number from 1 to

16).

The following example is a deliberately confusing way of producing a fairly

simple result. Try and sort out what it is doing, run the program, then

write a more straightforward version to produce the same result.

Note the use of the semi-colon at the end of the statements to stop the rest of

the line being erased. (If you don't believe it, try entering line 110/ without the

semi-colon on the end).

10/ CLS: P$ = “PRINT @ ”:N = 1

20/ ROW = 12:A$ = “ON THE SCREEN”

30/ PRINT @ 32 * (ROW− 1)+19, “TO PLACE”;

40/ PRINT @ 448 + 9, "ANYWHERE"

50/ PRINT @ 262,"THIS";: PRINT @ 267,"SHOWS";

60/ PRINT @ 32*(ROW−1)+11,"BE USED";: PRINT @

 13,"PAGE";

70/ PRINT @ 448 + 18, A$:

90/ PRINT @ 273, "HOW'"; P$

29

80/ PRINT @ 32*(ROW−1)+7, “MAY”

10/0/ PRINT @ 134,P$;“DEMOSTRATION”

110/ PRINT @ 451, “ITEMS”

120/ PRINT @ 18,N

130/ GOTO 130/

The last line (130/) puts the computer into an endless loop, which doesn't do

anything. This stops the OK prompt appearing when the program has

finished. Press the BREAK key to stop the program.

30

SOUND

The SOUND command generates a tone or specified pitch and duration. It

requires two arguments:−

50/ SOUND P,D

P is a number between 1 and 255. The lowest tone is 1, the highest 255.

Middle C on the piano is P = 89.

D can be any number between 1 and 255. D = 16 gives a tone of about 1

second duration

10/ CLS

20/ PRINT @ 6, “SOUND DEMOSTRATION.”

30/ PRINT @ 64, “ENTER A NUMBER BETWEEN 1 AND 255”;

40/ PRINT @ 96, “FOR THE PITCH OF THE NOTE”;:INPUT P

50/ PRINT @ 192, “ENTER A NUMBER FOR THE DURATION OF

 NOTE.”;

60/ INPUT D: CLS(RND(9)−1)

70/ SOUND P,D

80/ GOTO 10/

GOTO

The GOTO command has the form −

GOTO line number

The line number must be a number (not a variable), and must exist

somewhere in the program. If the line number is not found the program will

stop with an ?UL ERROR (undefined line).

The GOTO statement is executed immediately, there is therefore no point in

putting another statement on the same line, after a GOTO statement. The

program will never reach it.

20/ CLS

30/ GOTO 60/

40/ PRINT "AT LINE 40/"
50/ GOTO 80/

60/ PRINT "AT LINE 60/ '

70/ GOTO 40/

80/ PRINT "END OF PROGRAM"

31

program) than on writing the program. If you work as suggested there is less

chance of errors getting into the program, and if they do, they are easier to

find.

A PROGRAM EXAMPLE

PROBLEM:− Use the computer to simulate the throw of 2 dice.

SECTION 1 − Display titles and instructions.

a) Clear the screen

b) Print the title

c) Print instructions

d) Print headings, 1st dice, 2nd dice.

SECTION 2 − Find the values for two dice.

(When you roll a dice any of the 6 sides appear randomly)

a) First dice is a random number between 1 and 6

b) Second dice is a random number between 1 and 6

SECTION 3 − Print answer.

a) Print the value of 1st dice, 2nd dice

SECTION 4 − Halt the program and repeat if needed.

a) Stop program

b) Ask for another roll

c) Repeat sections 1,2 and 3 as necessary

Translating into BASIC (with added comments) we get:−

10/ ' DICE SIMULATION PROGRAM

20/ '

30/ ' FIRST SECTION

40/ CLS: REM CLEAR THE SCREEN

50/ PRINT “DICE SIMULATION”:'TITLE

60/ PRINT

70/ PRINT “USE BREAK KEY TO END PROGRAM”:'INSTRUCTIONS

80/ PRINT

90/ PRINT “1ST DICE","1ND DICE”:'HEADINGS

10/0/ PRINT

110/ REM END OF FIRST SECTION

32

REM

The REM command is used for inserting comments into a program. The

computer ignores anything following a REM (or its shorthand form ') on that

line.

10/ REM THIS IS A COMMENT LINE

35 D = B*B−4*A*C: 'FIND DETERMINANT

33

120/ REM

130/ REM SECOND SECTION

140/ D1 = RND(6): ' ROLL 1ST DIE

150/ D2 = RND(6): ' ROLL 2ND DIE

160/ ' END OF 2ND SECTION

170/ '

180/ ' THIRD SECTION

190/ PRINT D1,D2: ' DISPLAY RESULT

20/0/ ' END OF 3RD SECTION

210/ '

220/ ' FOURTH SECTION

230/ INPUT“PRESS ENTER TO ROLL DICE”; A$

240/ GOTO 40/ : ' RETURN TO START

250/ ' END OF 4TH SECTION

This program does not really need all the comments, write your own version

of the program.

There is no ‘correct’ version of a program, the correct version is one that

works. There may be more elegant or efficient ways of doing the same

problem. Generally, a shorter program is faster and uses less memory.

We finish this section with a ‘fancier’ version of the same program, note how

breaking the problem into sections sometimes allows the program to be

assembled in a different order but with a similar result.

10/ ' DICE SIMULATION PROGRAM

20/ '

30/ ' FIRST SECTION

40/ CLS0/ : PRINT @ 8, “DICE SIMULATION”;

50/ PRINT @ 167, “FIRST";:PRINT @ 178,"SECOND”;

60/ PRINT @ 20/0/ ,“DICE”;:PRINT @ 211, “DICE”;

70/ PRINT @ 450/ ,“USE THE BREAK TO END PROGRAM";

80/ ' FOURTH SECTION

90/ PRINT @ 358, “PRESS ENTER TO ROLL”;

10/0/ INPUT A$

110/ ' SECOND SECTION

120/ D1 = RND(6): D2 = RND(6)
130/ ' THIRD SECTION

140/ PRINT @ 265, D1;:PRINT @ 276, D2;

150/ GOTO 90/

34

CHAPTER FOUR

GOOD HOUSEKEEPING

SETTING UP THE RECORDER

Some of the programs are beginning to get quite long and it is a nuisance to

have to type in a program every time you want to run it. However, it is fairly

simple to store your programs on tape and call them back into memory when

needed. To do this you need a casette recorder and a connection lead.

Any cassette recorder of reasonable quality can be used, provided it has the

ability to

a) record from an outside source (a jack socket usually marked AUX, or

LINE IN)

b) output to a loudspeaker or earphone (a jack socket marked EAR, or

MONIT, or L/S, or SPKR)

c) stop and start by remote control (a small jack socket usually marked

REM and next to the microphone socket).

d) operate from mains power, This is not essential, but weak batteries can

seriously affect your success in storing and retrieving programs.

To connect the recorder to the computer, put the DIN plug into the socket

market TAPE on the left side of the computer.

The three plugs on the other end of the lead are connected to the recorder as

follows:

1) The smallest jack fits into the socket marked REM (the remote on/off

switch)

2) The large jack with the grey wire goes into the socket marked AUX

3) The other large jack with the black wire goes into the socket marked

 EAR (the earphone socket)

Turn on the recorder, insert a tape and rewind back to the beginning of the

tape. Now set the volume control at 6 (or just over halfway between ON and

FULL). You are now ready to store your programs.

35

STORING A PROGRAM ON TAPE

Type in a program and run it to ensure that it works correctly. Then

proceed as follows:-

1) Press the PLAY and RECORD buttons together until they lock.

2) Type the command

CSAVE “PROGRAM 1” press [ENTER]

The name 'PROGRAM1' can be replaced with any name you like, (it must

begin with a letter and not be larger than 8 characters). When you press

[ENTER] the cassette motor will start and the program will be recorded.

After a while the OK prompt will return to the screen, and the cassette motor

will stop.

The program will still be in the computer’s memory, only a copy has gone on

to the tape. You have saved a program called PROGRAM 1, (or whatever

you called it) onto the tape.

LOADING PROGRAMS INTO MEMORY

To return a saved program into the computer, first type NEW to clear any

existing program from memory. The process is as follows:-

1) Rewind the tape to the beginning.

2) Press the PLAY button until it locks.

3) Type the command.

CLOAD “PROGRAM1” press [ENTER]

The cassette motor will start and a letter S will appear in the top left hand corner

of the screen. This indicates the computer is searching for the

program. When found the S will change to

F PROGRAM 1

When the OK prompt appears, and the cassette motor stops, the program has
been loaded into the computer memory. To check it is there, type LIST.

If the program is not there, or I/O ERROR appears on the screen, maybe

your cassette recorder requires a different setting. Check the connections are

correct, then repeat the saving and loading sequence with different settings of

the volume control until successful.

36

 CSAVE
CLOAD

SKIPF

The command CSAVE saves a program onto cassette tape. The program

name must be eight characters or less

CSAVE “PROGRAM”

To save data onto cassette use the extra parameter A, the information will

then be stored in ASCII format. It may then be read by an INPUT#−1

command.

CSAVE “DATA”,A

The CLOAD command loads a specified program file from cassette into

memory.

CLOAD “PROGRAM”

The SKIPF command skips to the next program file after the program

specified, or to the end of the specified program.

SKIPF “PROGRAM”

37

SAVING MORE THAN ONE PROGRAM

To save more than one program on tape, you want to avoid recording on top

of those already there. This requires the tape to be positioned past the last

program. This is done as follows: -

1) First rewind the tape to the beginning.

2) Press PLAY until it locks.

3) Type the command

SKIPF “PROGRAM 1”

The motor will come on, the computer will search (S) for the program, find

(F) it, read past it, then stop the motor and give the OK prompt.

4) Press the STOP button.

5) Press PLAY and RECORD buttons together, name the new program, then

CSAVE it.

After saving this program, you are past the end of it, so may type in and save

others if you want.

HINTS ON RELIABLE RECORDING

1) Operate the recorder on mains power to ensure constant speeds.

2) Use new, high quality cassettes. While longer playing cassettes (C120)

may appear to be more convenient, it is better to use shorter lengths (C30

or C12).

3) Always start the search at the beginning of the tape, do not rely on the tape

counter.

4) Do not leave the PLAY or RECORD buttons down, press STOP after

 you finish saving or loading.

5) Rewind cassettes before putting away.

6) Label cassettes, immediately after saving, and remove the erase protect tab

from the back of the tape for important programs.

Even if you are careful, accidents can happen! Some programs can be a

considerable investment of your time and effort − so make another copy on

another cassette.

THE EDITOR

As the program lines get longer, there is more chance of typing errors. Up to

this point the only remedy has been to retype the whole line. This is no longer

38

necessary, as we are going to introduce the EDITOR. The EDITOR

allows you to move backwards and forwards along a line, changing, deleting

or inserting characters. To call the EDITOR type,

EDIT linenumber [ENTER]

where linenumber is the number of the program line you wish to work on. The

line will be displayed on the screen in full. Then the line number will be

printed with the flashing cursor next to it.

MOVING DOWN THE LINE

The cursor is now at the start of the line. To move forward along the line press

the spacebar. The cursor will move, displaying the characters it has passed

over. To move backwards we can use the backspace [←] key. You can speed

up the movement by typing a number followed by the key, (i.e. [5] [SPACE]

will move the cursor 5 forward, and [3] [←] will move it 3 back). Using these

two keys you can position the cursor over any character in the line. You will

not see the character because the cursor will be flashing over it. Two other

commands allow you to jump directly to a particular place in the line. To add

to the end of a line type [X], for extend. The cursor will jump to the end of

the line, and you just type in the characters you wish to append. By using the

search facility you can move directly to a target character. TYPE [S] followed

by the character you wish to move to. ([S][A] will move the cursor to the first

occurrence of the letter A in the line). If there is more than one A in the line

and you want to move to the third A, then [3][SI[A], means search for the

third occurence of A.

ALL CHANGE

Once the cursor has been positioned by using the spacebar, backspace or [S]

key, you can:−

a) Delete a character by typing [D]. This will delete the character under the

cursor. To delete more than one character, [5][D] will delete the next

five characters starting from the cursor position.

b) Change a character by typing [C], followed by the new character. ([C][F]
will change the character under the cursor to F). As with delete [3][C]

 will change the next three characters to the three typed in.

c) Insert characters by typing [I] followed by the characters you wish to insert.

Once you type [I], the editor goes into its insert mode. In this

39

EDIT

The EDIT command is used to alter the contents of the specified line.

EDIT linenumber

Once in the EDIT mode any of the following editor commands may be used.

 L List the current state of the line

 C character Changes the current character

n C character Changes the next n character to

 new characters

 I Inserts characters

 D Deletes current character

n D Deletes next n characters

 H Deletes rest of line from current position, and goes into

 insert mode

 X Extends the line, moves to end and goes into insert

 mode

 S character Searches for first occurrence of character

n S character Searches for nth occurrence of character

 K Deletes rest of line from current position

n K character Deletes line to nth occurrence of character

n [SPACEBAR] Advances cursor n spaces. If n omitted 1 is assumed

n [←] Backspaces cursor n spaces. If n omitted 1 is assumed

 [SHIFT][↑] Leave insert mode and return to edit mode

 [ENTER] Leave editor, store line and return to keyboard

40

mode everything that is typed is inserted into the line. To leave the insert

mode and return to the normal editor mode you must type [SHIFT] and

[↑] together.

List the current state of the line by typing [L]. The line will be displayed

with any changes you have made so far. After displaying the line the

cursor returns to the beginning.

Leave the editor by pressing the [ENTER] key. This will place the

altered line back into the program in memory and then give the OK

prompt. You can leave the editor at any time or in any mode just by

pressing [ENTER].

Here is an example of an editing session. It may look a little complicated at

first, but you will be surprised how quickly you can become proficient with

very little practice. The keys you press are in square brackets.

[E] [D] [I] [T] [1] [0] [ENTER]

10 PRINT “THEIR ARE MANY MISTOOK IN LINE

10 ■ (■ denotes cursor position)

[1] [0] [SPACE] move ten forward, (or [21 [S] [1])

[C] [R] [C] [E] change I to R and R to E

[S] [M] move to start of MANY

[2] [D] delete M and A

[SPACE] [C] [0] skip over N and change Y to O

[S] [O] move to first 0 in Mistook

[D] [C] [A] delete first O and change second O to A

[SPACE] [1] [E] [S] pass over K and insert ES

[SHIFT] [↑] leave insert mode

[S] [L] move to L in LINE

[I] [T] [H] [I] [S] [SPACE] insert THIS and a space before LINE

[SHIFT] [↑] leave insert mode

[X] move to the end of line (you are now in

 insert mode)

[SPACE] [N] [O] [W] [“] add NOW and quotation mark to close

string

[SHIFT] [↑] leave insert mode

[L] list the current state of the line

10 PRINT “THERE ARE NO MISTAKES IN THIS LINE NOW”

10 ■

[ENTER] store the line and leave EDITOR.

41

There are two other editor commands, which should be used with care,

a) The kill character. Typing [K] deletes the rest of the line from the cursor

position. [K] followed by a character will delete everything from the

cursor to the first occurrence of that character. [3] [K] [A] will delete up

to the third occurrence of A.

b) The hack character. Typing [H] deletes the rest of the line from the

cursor position and then goes into insert mode. It is useful for retyping

the end part of a line.

If your typing is perfect and you never make programming mistakes, you may

ignore this section. For the rest of us, the EDITOR will make life much easier

from now on. Type in one of the examples you have been given, save it on

tape if you like, then turn into a different program by using the EDITOR.

MORE SYSTEM COMMANDS

Commands like LIST and RUN are system commands. They are not part of

the program but a direct command to your computer to do something now.

Here are some others which make the business of programming easier.

DELeting program lines

To remove a line from a program we have been typing the line number

followed by [ENTER]. This is alright for one or two lines, but what about 30/

or 40/ lines?

DEL linenumber − linenumber

will delete a whole block of lines starting with the first line-number up to and

including the second linenumber.

DEL 10/0/ − 250/

will remove all lines from 10/0/ to 250/ , inclusive, from the program currently in

memory.

The DEL command can be used in other forms as well,

DEL 20/ will delete line 20/ only
DEL 30/− will delete all lines from 30/ to the end of the program.

DEL−20/0/ will delete all lines from the start of the program up to

and including 20/0/

DEL− will delete the entire program.

 RENUMbering program lines

42

DEL

The DEL command is used to delete specified lines from the program

currently in memory.

DEL linenumber1 − linenumber2

The command will delete all lines from linenumber 1 up to and including

linenumber 2. Both linenumbers are optional and the command can be used

in any of the following forms:−

DEL − Delete the entire program

DEL −10/0/ Delete from the start to line 10/0/

DEL 30/0/− Delete from the line 30/0/ to the end

DEL 40/ Delete line 40/ only

DEL 10/0/−20/0/ Delete all lines between 10/0/ and 20/0/

RENUM

The RENUM command allows all or part of the program line numbers to be

changed. The RENUM command also changes the line numbers in branching

Statements (GOTO etc.) to ensure that program flow continues at the same

place.

RENUM newline, starline, increment

The command will remember all lines from startline beginning with newline

and a gap between the lines of increment. All parameters are optional and

the statement can be used in any of the following forms:

RENUM Renumber entire program. Lines will be numbered

 10/ ,20/ ,30/

RENUM 10/0/ Renumber entire program. Lines will be numbered

 10/0/ ,110/ ,120/

RENUM 10/0/ ,50/ ,5 Renumber starting at old line 50/ . Lines will be

 numbered 10/0/ ,10/5,110/

RENUM,,20/ Renumber entire program. Lines will be numbered

 10/ ,30/ ,50/

Note that if a parameter is omitted and a following parameter is to be used,

the comma must be present. RENUM cannot be used to alter the line

sequences.

43

The RENUM command will remember all, or some of, the line numbers in

your program. It will also change the line number in GOTO, GOSUB, IF

THEN, ON GOTO, and ON GOSUB statements to make sure they still

branch to the same place, we will meet these statements later.

RENUM newline, startline, increment

Newline is the new line number of the first line to be renumbered.

Startline is where you want to start renumbering from, and increment is the

increment to be used between each renumbered line. Any, or all, of these

parameters can be omitted. If you omit newline, 10 is assumed. Omitting

startline causes the entire program to be renumbered, and omitting increment
will cause the line numbers to increase in tens.

RENUM will number the entire program as 10/ , 20/ , 30/

RENUM 10/0/ ,50/ ,5 will number the lines from 50/ as 10/0/ , 10/5, 110/ ... All

 the lines before 50/ will be unchanged.

RENUM 110/ ,,2 will renumber the entire program as 110/ , 112, 114

RENUM,,5 will renumber the entire program as 10/ , 15, 20/

Note that if you omit a parameter, but wish to use one that comes after it

in order, you must include the comma.

TRacing a program flow

Sometimes when you have difficulty with a program it is useful to know where

it is going to. The trace facility allows you to do this. By typing TRON before

you run the program, you switch the trace on. The line number will now be

printed on the screen as the program comes to it. This enables you to see if

the program is branching to the correct place. To switch the trace off, type

TROFF.

STOPing and starting

A program can be halted during a program run by including a program line

containing the STOP command

185 STOP

This line will cause the program to halt when it reaches line 185. A message is

printed on the screen telling you the program has stopped and which line it

sopped at. You can now look at the contents of any variable by using PRINT

or ? To restart the program type CONT (means continue) and the program

will carry on from the next line after the STOP.

44

You can now renumber programs, delete unwanted lines, change the contents

of any line, and save the result into a cassette tape. As we are now in a postion

to maintain our programs, we will now start to construct some that do

something more interesting than flash screens and made weird noises.

45

TRACE

The program flow may be followed by using the trace. As each line is

reached the line number is printed on the screen. The trace must be

switched on before the program is run.

TRON switches on the trace

TROFF switches off the trace

Both are direct commands and do not require a line number.

END

STOP

CONT

The END command terminates program execution and returns control to the

keyboard.

The STOP command halts execution of the program at the line containing the

STOP. A message BREAK AT N appears on the screen to indicate the halt

has taken place at line number N. To restart the program use CONT

(continue), without a line number. The program will continue operation at

the next line after the STOP. A program will not continue after an END

statement, it must be rerun.

46

CHAPTER FIVE

GOING PLACES

At the end of chapter 3, we were discussing how to construct a program by

considering it as a number of separate sections. Next we shall cover how to

direct the path the program takes to join up these sections. This is called

branching. We have already met the branching statement, GOTO. This is an

unconditional branch, because as soon as the program reaches the GOTO

statement it jumps immediately to the specified line number and continues

from there. The program has no choice in the matter, GOTO means go to at

once, not maybe or sometimes. So far we have mainly used the GOTO to

return to the beginning of the program. While the ability to repeat part of a

program over and over is extremely useful, it is unlikely we would want to do

so forever. (It is also not a good practice to have to rely on the BREAK key to

stop the program). Fortunately, the BASIC language provides us with a

number of statements that allow us to control the flow of the program.

SELECTING OPERATIONS

The first of these statements is an extension of our old friend the GOTO

statement. It is the ON. . . GOTO statement and has the following form: -

ON numeric expression GOTO list of line numbers

The numeric expression is evaluated and, if necessary, truncated to a whole

number (i.e. the numbers after the decimal point are dropped). Control is

then transferred to one of the line numbers in the list. If the expression

evaluates to 1, it goes to the first line number, if 2, the second, and so on. If

the value of the expression is less than 1, or greater than the number of line

numbers in the list, the computer will ignore the statement completely and

carry on at the next line. A negative value for the expression, however, will

cause the program to halt with an error message. It is usually a good idea to

check that the value is within the intended range before reaching the ON. . .

GOTO statement. Here are some examples of the statement.

140/ ON P GOTO 20/0/ ,30/0/ ,40/0/

210/ ON X − 4 GOTO 20/ ,40/ ,70/0/ ,10/ ,690/
185 ON BC/D − E GOTO 115,285,90/0/ ,40/

The ON... GOTO statement is a useful way of selecting from a number of

options and can be considered as a conditional branch. We will use it this way

in the example in the next section.

47

ON. . .GOTO

The ON GOTO command performs a multiway branch to specified line

numbers.

ON expression GOTO line number list

The expression is evaluated (and truncated if not an integer). The program

then branches to the number in the list with a position equal to the value of

the expression. If the expression value is four, the ON GOTO command will

select the fourth item in the line number list. The value of the expression must

not be negative, an error will result. If the expression value is zero or greater

than the number of line numbers in the list, the statement will be ignored and

the program will continue on the next line.

10/ CLS: PRINT”SOLUTION OF QUADRATIC EQUATION”

20/ INPUT “A,B,C”; A,B,C:IF A = 0/ THEN 20/

30/ R = −B(2A):D = BB−4AC:S = SGN(D)

40/ P = SQR(DS)/(2A)

50/ ON S + 2 GOTO 80/ , 60/ , 70/

60/ PRINT “PERFECT ROOTS”: PRINT R,R:END

70/ PRINT “REAL ROOTS”: PRINT R + P, R − P:END

80/ PRINT “COMPLEX ROOTS”: PRINT R,R: PRINT P, −P: END

48

DECISIONS

A much more useful form of a conditional branch is available using the

IF . . . THEN statement. This is probably the single most powerful statement

in the BASIC language, and as such can range from very simple to extremely

complex. In its simplest form:-

IF condition THEN linenumber

it has the meaning IF the condition is true THEN, go to line number,

otherwise continue on the next line.

120/ IF D > 9 THEN 250/

180/ IF A$ = “YES” THEN 60/0/

In line 120/ , above, the program will transfer control to line 250/ if, and only if,

the value of D is greater than 9. If D is less than, or equal to, 9 the program

will continue at the next line. In line 180/ the branch to line 60/0/ will occur only

if the string variables A$ contains the characters YES. The match in this case

must be exact. YESS, YEH, YEA, YEP, Y, OK, (or even 'yes', remember

lower case characters), will cause the program to ignore the branch.

In its full form the IF . . . THEN statement appears as follows:-

IF condition THEN action 1 ELSE action 2

which has the meaning IF the condition is true THEN perform action 1, if

the condition is not true then perform action 2.

210/ IF P = 3 THEN PRINT “TRUE” ELSE PRINT “FALSE”

In this example TRUE will be printed only if P is equal to 3, if P has any other

value, FALSE will be printed. In both cases the program will continue on the

next line. It is possible for both action 1 and action 2 to consist of more than

one statement.

210/ IF P = 3 THEN PRINT “TRUE”: R = R + 1:GOTO 560/

 ELSE PRINT”FALSE”: L = L + 1

If P is equal to 3 the computer will print TRUE, add 1 to variable R and

continue the program at line 560/ . For any other value, it prints FALSE, adds

1 to L and continues on the next line.

The computer will accept for action 1 and action 2 any legitimate BASIC

statements, including other IF . . . THEN statements, if you wish. The only

constraint is that the complete IF . . . THEN statement must fit onto one line.

(One line may contain a maximum of 256 characters including the line

number).

49

Up to this point we have only considered what happens after the condition

has been evaluated. The decision part of your computation lies in testing the

condition. A condition can be TRUE or FALSE, nothing else. (The

computer gives TRUE the value 1, and FALSE the value 0). A simple

condition has the form

expression1 relation expression2

expression 1 and expression 2 are the usual BASIC expressions, such as

appear in the assignment statement. Both expressions must be of the same

type, (both numeric, or both string). A relation can be any of the following:-

MEANING SYMBOL EXAMPLE

Equal to = 60/ IF X=Y+2 THEN 10/0/

Less than < 110/ IF AB+2<C/2 THEN 20/

Greater than > 185 IF A$>B$ THEN PRINT A$

Less than or equal to <= 220/ IF 4W9<=B/Z9 THEN A = A − 1

Greater than or equal to >= 415 IF B7>=0/ THEN X = 0/

Not equal to <> 80/ IF A$<>“'YES” THEN 999

Note that a relation can be applied to strings as well as numeric expressions.

When strings are compared each character is checked in turn, and so IF. . .

THEN statements can be used to compare for alphabetic order.

The condition “A” < “B” is true, because the letter A comes before the

letter B in the alphabet. The condition “AAA” < = “AA” is false, because

AAA would appear after AA in a dictionary, for instance.

Conditions can be extended by combining two or more conditions using the

operators AND, OR

270/ IF A = 4 AND B = 7 THEN 50/0/

The AND operator means both conditions must be true at the same time for

the whole conditional expression to be true. In the example, if A is equal to 4

and B has any other value but 7, the whole will be false and the program will

continue on the next line.

The OR operator means that if any one of the conditions is true, the whole

expression is true.

320/ IF D<3 OR F+G>25 THEN 10/0/

The program will branch to line 10/0/ if D is less than 3, no matter what the

value of F+ G may be. Alternatively, it will branch to line 10/0/ if F+ G is

greater than 25, irrespective of the value of D.

50

IF. . .THEN. . .ELSE

The full form of the IF command is,

IF condition THEN action1 ELSE action2

The statement tests the condition which will be either TRUE or FALSE. lf

TRUE then action 1 is carried out, if FALSE then action 2.

A condition is made up of an expression, a relation and an expression. The

expressions may be any BASIC expressions of the same type (i.e. both

numeric or both string). A relation is any of the following operators,

= Equal to <> Not equal to

> Greater than < Less than

>= Greater than or equal to <= Less than or equal to.

Conditions may also be combined by the logical operators AND, OR, NOT.

condition AND condition only TRUE if both conditions are true

condition OR conditionTRUE if either condition is TRUE

NOT condition TRUE if condition is FALSE.

Action 1 and action 2 may be any BASIC statement including another IF

statement.

The ELSE part of the command is optional and may be omitted, in which case

the program continues on the following line if the condition is FALSE.

10/ CLS: PRINT @ 9, “GUESSING GAME”:N = RND(10/0/):T = 0/

20/ INPUT “GUESS MY NUMBER”;G: T = T + 1

30/ IF G = N THEN PRINT “CORRECTIN”;T; “TRYS”: END

40/ IF G > N THEN PRINT “NO IT'S SMALLER” ELSE PRINT

 “NO IT'S LARGER”

50/ GOTO 20/

51

INKEY$

The INKEY$ command is a function. It checks the keyboard to see if a key is

being pressed, if so returns the string character of the key.

It can be used to place a single character into a string variable, and does

not require the [ENTER] to follow the entry.

10/ CLS0/ :PRINT @ 5, “PRESS ANY KEY AND I WILL”;

20/ PRINT @ 38, “TELL YOU WHAT IT WAS. ”

30/ B$ = “YOU ARE NOT PRESSING A KEY”

40/ C$ = “THE KEY YOU PRESSED WAS:− ”

50/ A$ = INKEY$

60/ IF A$=“” THEN PRINT @ 193,B$; ELSE PRINT @ 193,C$;A$

70/ FOR D = 1 to 60/0/ : NEXT D: GOTO 50/

52

The program which follows is a simplified form of a common educational

program. The comments in the program indicate what each section is doing.

Note the use of ON ... GOTO to select the option and IF . . . THEN statements

to check the arithmetic. At line 80/0/ we introduce another new word,

INKEY$. This command scans the keyboard to see if a key has been pressed.

If it has the character pressed will be stored in A$. It does not require the

[ENTER] key to be pressed after the input. See the box marked INKEY$.

The program looks a lot longer than it really is, as over half of it is comment

lines. To save space in the future we will not be quite so liberal with

comments.

10/ REM ARITHMETIC PRACTIQUE PROGRAM

20/ REM

30/ REM ZERO COUNTERS & FIND DIFFICULTY LEVEL

40/ REM

50/ R = 0/ :W = 0/ :CLS

60/ T$ = “ARITHMETIC PRACTICE”

70/ PRINT @ 6,T$

80/ PRINT @ 64,“ENTER LEVEL OF DIFFICULTY”

90/ PRINT @ 128, “A NUMBER BETWEEN 1 AND 10/”:INPUT

 L:L1 = 10/*L−1

10/0/ REM

110/ REM DISPLAY OPTIONS

120/ REM

130/ CLS:PRINT @ 6,T$

140/ PRINT @ 71, “1. ADDITION.”

150/ PRINT @ 10/3, “2.SUBTRACTION.”

160/ PRINT @ 135, “3.MULTIPLICATION.”

170/ PRINT @ 167, “4. DIVISION.”

180/ REM

190/ REM SET PRINT POSITION

20/0/ REM

210/ P = 224: Q = 352

220/ REM

230/ REM SELECT OPTIONS

240/ REM

250/ PRINT @ P, “WHICH DO YOU WANT TO TRY”; :INPUT A

260/ REM

270/ REM SELECT 2 NUMBERS FOR PROBLEM

280/ REM

53

290/ N1 = RND(L1):N2=RND(L1)

30/0/ REM

310/ REM BRANCH TO OPTION

320/ REM

330/ ON A GOTO 390/ ,460/ ,530/ ,60/0/

340/ REM

350/ REM OPTION WRONG − TRY AGAIN

360/ REM

370/ CLS: SOUND 160/ ,3:GOTO 130/

380/ REM

390/ REM ADDITION SECTION

40/0/ REM

410/ PRINT @ P, “ ADDITION.”

420/ PRINT @ Q,“WHAT IS”;N1;”PLUS∆“;N2;:INPUT N4

430/ N3 = N1 + N2

440/ IF N4 = N3 THEN 690/ ELSE 730/

450/ REM

460/ REM SUBSTRACTION SECTION

470/ REM

480/ PRINT @ P, “SUBTRACTION.”

490/ PRINT @ Q, “WHAI IS”;N1; “TIMES”;N2;:INPUT N4

50/0/ N3 = N1 − N2

510/ IF N4 = N3 THEN 690/ ELSE 730/

520/ REM

530/ REM MULTIPLICATION SECTION

540/ REM

550/ PRINT @ P, “MULTIPLICATION.”

560/ PRINT @ Q, “WHAT IS”;N1;”TIMES”;N2;:INPUT N4

570/ N3 = N1*N2

580/ IF N4 = N3 THEN 690/ ELSE 730/

590/ REM

60/0/ REM DIVISION SECTION

610/ REM

620/ PRINT @ P, “DIVISION.”

630/ PRINT @ Q, “WHAT IS2;N1;”DIVIDED BY”;N2;:INPUT N4

640/ N3 = N1/N2

650/ IF N3 = N4 THEN 690/ ELSE 730/

660/ REM

670/ REM CORRECT ANSWER

680/ REM

54

690/ R = R+1:PRINT @ P, “CORRECT.”:GOTO 770/

70/0/ REM

710/ REM WRONG ANSWER

720/ REM

730/ W = W + 1:PRINT @ P, “WRONG.”:

 PRINT

 @ P+32, “ THE ANSWER IS“;N3:GOTO 770/

740/ REM

750/ REM CHECK FOR REPEAT & CLEAR LINES

760/ REM

770/ FOR D = 1 TO 60/0/ :NEXT D

780/ PRINT @ P, ““:PRINT @ P+32, “ “:PRINT @ Q, “∆”

790/ PRINT @ P, “DO YOU WANT TO TRY ANOTHER?(Y/N)”

80/0/ A$ = INKEY$: IF A$ = “” THEN 80/0/

810/ IF A$ = “Y” THEN 130/

820/ REM

830/ REM GIVE RESULTS AND FINISH

840/ REM

850/ CLS: PRINT @ 128, “YOU GOT”;R; “CORRECT

 AND”;W; “WRONG”

860/ END

DO IT AGAIN, AND AGAIN, DRAGON

Often a program needs to repeat a sequence of lines a number of times. The

next type of branching statement allows us to do this. Enter this small

program and RUN it.

10/ CLS

20/ FOR I=1 TO 50/

30/ PRINT @ 198, “COUNTER I =”

40/ PRINT @ 214, I

50/ NEXT I

60/ PRINT @ 396, “LOOP ENDED”

It is far too fast to see what is going on, so add the line,

45 FOR J = 1 to 10/0/ : NEXT J

As you can see, the program counts from 1 to 50/ . The lines that are being

repeated are lines 30/ ,40/ and 45. A repeat sequence like this is called a 'loop',

because the program loops back, in this case to line 20/ . The

55

statements which control the loop are at line 20/ , (the top of the loop) and at

line 50/ (the bottom of the loop). Line 20/ translates as 'FOR all values

between 1 and 50/ in steps of 1, do all the following statements until the NEXT

statement is reached'. The variable 1 is acting as the counter and has values

1,2,3,. . . .50/ . We added the line at 45, because it was counting so fast. This loop

has no statements to perform, so the counter (variable J this time) just counts

from 1 to 10/0/ . The pause is sufficient to slow down the other loop, to enable us

to read the numbers on the screen. If we now change line 20/ to,

20/ FOR 1 = 1 TO 50/ STEP 2

the counter will now count on from 1 in twos (1,3,5,7, 49). The addition

of the STEP allows us to decide on the counter increment, or how much to

count on by. If the STEP word is left off, the counter assumes you want to

count on in ones. Change the example by typing in the following lines,

15 INPUT “START,FINISH,STEP”;A,B,C

20/ FOR I = A TO B STEP C

70/ PRINT @ 428, “AND I = ”;I

RUN the program with various values for start, finish and step. Try some of

the following values

START FINISH STEP

 50/ 1 1

 −50/ 50/ 5

 1 10/ 0/ .5

 2.6 3.9 0/ .1

 1 −2 1

You will notice that you can count forwards or backwards in any step you

like. The only rule is if the step is positive the start must be less than the

 finish, or if the step is negative the start must be larger than the finish. From

the last example given above (1, −2, 1) you can see that even if you break the

rule, (it is not possible to count from 1 to −2 in steps of + l) the loop will still

be performed once.

Loops can be ‘nested’ inside another loop (the loop at line 45 is nested

inside the other loop starting at line 20/). You must make sure that the

loops are closed in the correct order.

56

20/ FOR I = 1 TO 10/

30/ FOR J = −2 TO 4 STEP 0/ .6

40/ FOR K = 1 TO 0/ STEP −0/ .1
.

.

.

.

.

.

10/0/ NEXT K

110/ NEXT J

120/ NEXT I

Every FOR statement must have its corresponding NEXT statement, the

variable after the NEXT indicating which FOR it belongs to. The loops

should be closed in the opposite order to that which they were opened in. If

the last three lines above were,

10/0/ NEXT J

110/ NEXT K

120/ NEXT I

the program will stop and give an error message, because loop J and loop K

overlap.

If all the loops end in the same place, the NEXT statements can be combined

as,

10/0/ NEXT K,J,I

but the order of the variables must still be as before.

The variables used to set up a loop, (in the example I,A,B, and C), can be

used inside the loop. But you will not be allowed to alter the start, finish or

step size. The counter can be changed by appearing on the left hand side of an

assignment statement, but this is not a good practice.

Other branching statements, like GOTO or IF ... THEN, can be used inside a

loop to leave it before it is finished. You cannot jump into the middle of a

loop, however, you must start a loop with a FOR statement.

The following program demonstrates the use of nested loops. It simulates a

digital timer. To make it really accurate you may have to adjust the delay loop at
line 220/ . Note the use of INKEY$ to stop and start the clock at lines 90/ , 150/ and

170/ .

10/ CLS0/ : PRINT @ 10/ ,“DIGITAL TIMER”;

20/ ' PRINT POSITIONS

57

FOR…NEXT…STEP

The FOR ... NEXT command consists of two statements,

FOR numeric variable = expression TO expression

 STEP expression

and,

NEXT numeric variable

The FOR ... NEXT statements work together to control the number of times a

section of program is executed. The technique is called looping.

The expressions are evaluated and the loop counts from the value of the first

expression TO the value of the second expression with an increment given by

the third expression. The current value of the counter is held in the numeric

variable. The loop will be performed at least once, even if the range and

increment are not possible. If the STEP part of the statement is omitted + 1 is

assumed.

Loops can be nested inside each other, but must be in the correct order.

You may branch out of a FOR ... NEXT using GOTO, IF ... THEN or similar

statement, you cannot however branch into the middle of a loop.

10/ CLS: CLEAR: DIM L(10/0/0/)

20/ INPUT“ENTER A NUMBER”; N:IF N > 10/0/0/ OR N < 2 THEN 20/

30/ CLS: PRINT “PRIME NUMBERS BETWEEN 2 AND”; N

40/ FOR I=2 TO N: IF L(I)<0/ THEN 80/

50/ PRINT I;

60/ IF I>SQR(N)THEN 80/

70/ FOR J = I TO N STEP I: L(J) =−1:NEXT J

80/ NEXT I

58

30/ P = 261: Q = 196

40/ ' INSTRUCTION BLOCK

50/ PRINT @ 386,“PRESS SPACEBAR TO STOP & START”;

60/ PRINT @ 424, “AND 'R' TO RESTART”;

70/ ' PRINT DISPLAY AND WAIT FOR START

80/ PRINT @ Q,”HOURS”;:PRINT @ Q + 10/ ,“MINS”;:PRINT @

 Q+22, “SECS”;

90/ A$ = INKEY$:IF A$<>““ THEN 90/

10/0/ ' START LOOP FOR HOURS MIN & SECS

110/ FORH=0/ TO 23:FOR M = 0/ TO 59:FOR S = 0/ TO 59

120/ SOUND 220/ ,1

130/ ' TENTHS OF SEC LOOP

140/ FOR T = 0/ TO 9

150/ A$ = INKEY$:IF A$<>““ THEN 20/0/

160/ ' CHECK FOR KEYPRESS

170/ A$ = INKEY$:IF A$=“R” THEN 110/

180/ IF A$<>“” THEN 170/

190/ ' PRINT TIME

20/0/ PRINT @ P,H;:PRINT @ P + 10/ ,M;:PRINT @ P+ 19,S;

 “.”;T;

210/ ' TIMER ADJUSTMENT LOOP

220/ FOR D = 1 TO 13: NEXT D

230/ NEXT T

240/ ' END OF TENTHS LOOP

250/ NEXT S,M,H

260/ ' END OF SECS, MINS & HOURS LOOPS

270/ PRINT @ 448, “STOPPED”

280/ END

WHEELS WITH WHEELS

By now you should be aware that programs have an overall structure and are

assembled from smaller blocks. Some of these blocks may be required many

times in different places in the overall program. The structure of the program

can often be simplified by treating these situations as subroutines. A

subroutine, as the name implies, is a subsidiary part of a program, or a

program within a program. The main feature of a subroutine is that when

called it carries out its sequence of lines and then returns to the place it was

cared from. To call a subroutine, you use the statement,

GOSUB line number

59

where line number is the number of the program line where the subroutine

starts. As a subroutine must come back, each subroutine ends with the

statement,

RETURN

The GOSUB behaves in a similar way to the GOTO statement. The

difference being with GOTO the program branches to a line and continues

from there, it does not come back unless it meets another GOTO statement.

Type in the following example and RUN it,

10/ CLS: PRINT “IN MAIN PROGRAM”

20/ GOSUB 50/

30/ PRINT “BACK IN MAIN PROGRAM”

40/ END

50/ PRINT “IN FIRST SUBROUTINE”

60/ GOSUB 90/

70/ PRINT “BACK IN FIRST SUBROUTINE”

80/ RETURN

90/ PRINT “IN SECOND SUBROUTINE”

10/0/ RETURN

The program line number sequence is as follows:

10/ ,20/ ,50/ ,60/ ,90/ ,10/0/ ,70/ ,80/ ,30/ ,40/

Note how the first subroutine (lines 50/−80/) calls the second subroutine (lines

90/ ,10/0/). The END statement we have slipped in means exactly what it says. It

is used to indicate where the program actually finishes. Try taking out line 40/

and running the example again. You should get ? RG ERROR IN 80/ . This is

because the program encountered a RETURN statement without being told

to go to a subroutine. The program ‘fell’ through the bottom into the first

subroutine. You must always protect subroutines and ensure the only way in

is by a GOSUB statement, and the only way out is by a RETURN. You can

use GOTO, IF ... THEN, and similar branching statements inside a

subroutine, but they must not cause a branch to a line number outside the

routine.

As with the ON ... GOTO statement, a multiple branch is also available for
subroutines, and has a similar form,

ON expression GOSUB list of line numbers

Most experienced programmers keep a library of subroutines, so many new

programs can be constructed from stock, so to speak. It is usually a good

60

idea to number subroutines with large line numbers, 10/0/0/0/−, so that they can

fit into a program without renumbering.

Many examples of subroutines will appear in following chapters. so we will

not give specific examples now.

61

GOSUB

RETURN

ON ... GOSUB

The GOSUB command transfers program control to the beginning of a

program subroutine. The RETURN transfers control back to the line

following the GOSUB statement.

The GOSUB is followed by a line number, which is the first line of the

subroutine.

GOSUB 160/0/

A subroutine must contain at least one RETURN statement.

The ON ... GOSUB command allows a multiple branch to subroutines in a

similar way to the ON ... GOTO command.

ON expression GOSUB list of line numbers

lf the expression is negative the program will stop with an error message. If

the expression is zero or greater than the number of items in the list of line

numbers, the statement will be ignored and the program will continue on the

next line.

10/ CLS:INPUT“ENTER ANY TWO NUMBERS”;A,B

20/ INPUT“NOW ENTER A NUMBER FROM 1 TO 4”;C

30/ ON C GOSUB 10/0/ ,20/0/ ,30/0/ ,40/0/

50/ PRINT C; “IS NOT BETWEEN 1 AND 4”:GOTO 20/

10/0/ PRINT“ADDITION”;A; “PLUS”;B; “IS”;A+B

110/ RETURN

20/0/ PRINT “SUBTRACTION.”;A;”MINUS”;B;”IS”;A − B

210/ RETURN

30/0/ PRINT“MULTIPLICATION.”;A; “TIMES”;B; “IS”;AB

310/ RETURN

40/0/ PRINT“DIVISION”;A; “DIVIDED BY”;B;”IS”;A/B

410/ RETURN

62

CHAPTER SIX

NEW DIMENSIONS

In chapter 2 when we were discussing variable types, we said that variables

came in two sizes, simple and array. Up to now we have only used simple

variables.

If you decided to use your computer to keep an index of all your books, or

records, it would not take long to run out of variables to store them in. It

would also be a very difficult program to write, keeping track of all those

different names! Your computer comes to the rescue with array variables.

LISTS AND TABLES

Array variables are especially useful for dealing with lists of items, so we

could set up a list of books as follows:

1. Title 1

2. Title 2

3. Title 3
.

.

.

To refer to our books now, we could ask for number 8 on the list. In our

program we give a name to this sequence of variables (the titles), and refer to

a single value in the list by giving the index number. So first we must give our

list a name.

An array variable name follows the same rules as for simple variables. The

computer recongnises the difference between the two, because array

variables are always followed by brackets containing the index number.

A(5) refers to the 5th item in a numeric array (list called A)

D7$(28) refers to the 28th item in a string array called D7$

The index number is called a subscript. To set up an array you have to tell the

computer what it is called and what size it is. This is done with the DIM
statement,

DIM arrayname (number). arrayname (number, number)

DIM stands for dimension, the statement not only names the array, but sets

the maximum size it may take. The number can be any positive number, or a

63

simple variable, provided the simple variable has already been given a value.

Only set up the size you need as very large arrays take up a lot of the memory

available..

10/ DIM A(22), NA$(40/)

The above line tells the computer to set up an array called A of length 22 and

a string array called NA$ of length 40/ . (Actually the lengths are 23 and 41,

because the index numbers start with 0/).

To refer to an array element in an expression, you just include the index

number, or subscript, in brackets after the name.

25 A(4) = 7.0/

32 A(M) = BC/A

Line 25 will set item 4 in array A to 7.0/ . Line 32 will evaluate the expression

and put the result into item M of array A, (note that the A on the right hand

side of line 32 is a simple variable called A, and has nothing to do with the array

A on the left hand side).

Arrays can also have two dimensions, the line,

10/ DIM T(10/ ,5), TB$(12,4)

will create a numeric array, T, which will be a table with 10 rows and 5

columns. The string array, TB$, will have 12 rows and 4 columns. For

instance, a teacher may wish to enter the examination scores for 25 students

on 6 different subjects. An array EXAM(25,6) would do for this purpose. To

refer to an element in the table you would need two subscripts.

25 PRINT EXAM(10/ ,3)

would display the mark for the loth student on the 3rd subject. Of course, the

subscripts must refer to an element which exists. Trying to use EXAM(30/ , 7)

will cause an error because you did not set up an array of that size.

Time for an example using arrays. The following program is short, but will

require a little thought on your part as to how it works. It is used for shuffling

a pack of cards. Each card is given a number from 1 to 52, in array X. Items
are selected at random from X, and put into array Y. When the program

ends, Y contains the numbers 1 to 52, but in random order (i.e. Shuffled).

You cannot use the random number generator to produce the shuffled pack

directly, because you can have only one number per card. The RND function

could draw the same number more than once. Line 50/ is printing out the

shuffled array, note how it uses an expression as an array subscript.

64

DIM

The DIM command is used to dimension arrays. Arrays may be one or two

dimensional and he either numeric or string. Array names follow the same

rules as for simple variables.

DIM arrayname (n), arrayname (n,n)

If the maximum size fo the array does not exceed 10/ the DIM statement is not

necessary.

To refer to an array element in an expression, the name must be followed by

the subscript in brackets.

A(14,K) N9(B) L$(14,4)

65

10/ DIM X(52), Y(52):CLS

20/ FOR I = 1 TO 52: X(I) = 1:NEXT I

30/ FOR I = 52 TO 1 STEP − 1

40/ J = RND(I): Y(I) = X(J): X(J) = X(I):NEXT i

50/ FOR I = 1 TO 13: FOR J = 1 TO 4: PRINT Y(4 (I − 1)+J);: NEXT

 J,I:END

The elements of a string array can be moved about in the same way. One of

the most common applications to strings is sorting a list into alphabetical

order. In the following example a list of words is sorted by the subroutine

starting at line 20/0/ . Many books have been written about sorting on

computers and the method used here is called the exchange sort. It is not

necessarily the best method, but it is the simplest. If you are not familiar with the

method, work through by hand just using the list D, B, A, E, C.

10/ CLS: DIM W$(50/)

20/ INPUT “HOW MANY WORDS”;N

30/ CLS: PRINT “ORIGINAL”

40/ FOR I = 1 TO N: PRINT I;”.“;

50/ INPUT W$(I): NEXT I

60/ GOSUB 20/0/

70/ PRINT @ 18, “SORTED”

80/ FOR I = 1 TO N

90/ PRINT @ 18+32I,I; “.”;W$(I)

10/0/ NEXT I: END

20/0/ M = N

210/ F = 0/ :FOR I = 1 TO M−1

220/ IF W$(I)<=W$(I+1) THEN 240/

230/ T$=W$(I): W$(I) = W$(I+1): W$(I+1) = T$:F = 1

240/ NEXT I: IF F = 1 THEN M = M − 1:GOTO 210/

250/ RETURN

WHAT'S ITS FUNCTION

Remember RND, and how we keep calling it a function? Well, it is not alone.

A function, in the computing sense, is a special subprogram which when given

a set of arguments, returns a single value. A function in the BASIC language

has the form,

Function name(arguments)

and can be used in an expression in the same way as other arithmetic

operators (↑ , *, /, +, −). Functions, however, take priority over all other

operators, except brackets.

66

The arguments of a function are the values to be given to the function, which

then returns the result. Arguments may be constants, variables or

expressions.

RND(10/), RND(X) or RND(A2+F)

are all acceptable arguments. Note that the argument is always enclosed in

brackets.

Your computer supplies you with a number of functions, like RND, which are

part of the BASIC language. The available 'built-in' functions can be

considered as belonging to one of five different classes. We will take each

class in turn, give a list of the functions, a short explanation, and an example

line. They will appear in programs from now on, so we will not give example

programs for each one, there are far too many.

CLASS I functions

These are numeric functions, mostly for mathematical use. They have a

numeric argument and return a numeric value. Class 1 functions can only be

used in numeric expressions. For those of you not familiar with trigonometric

functions see Appendix D.

Function

Name

Operation Example

ABS(X)

The absolute of X

10/0/ A = ABS(D2 − C)

ATN(X)

Arctangent of X, in radians.

The inverse of TAN (X).

110/ PRINT “ANGLE = ”;

ATN(R3)

COS(X)

Cosine of X, where X is an

angle measured in radians.

510/ F7 = COS(X+4)

EXP(X)

Raise the base e, (natural

logarithms) to the power x,

(e
x
). The inverse of LOG (X)

215 Q=EXP(−AA)

FIX(X)

Returns the integer part of X,

(i.e. truncates all digits

after the decimal point).

172 N = FIX(Z.0/5)

INT(X)

Truncates if X is positive, as

for FIX. If X is negative, it

rounds downwards (i.e. INT

(−12.0/0/1 is 13)

280/ P = INT(10/0/X)

67

Function

Name

Operation Example

JOYSTK(X)

Returns the current

horizontal, or vertical position

of the left or right joystick as

follows:

X = 0/ , horizontal left joystick

X = 1, vertical left joystick

X = 2, horizontal right joystick

X = 3, vertical right joystick

10/40/ A = JOYSTK(0/):

B=JOYSTK(1)

LOG(X)

Natural logarithm of X. The

value of the argument must he

greater than zero. The inverse

of EXP (X).

617 L1 = 5.2LOG(W4)

PEEK(X)

Returns the contents of the

memory location whose

address is X.

55 P = PEEK (65280/)

POINT

(X,Y)

Test whether a low resolution

graphics cell is on or off. X

must be in the range 0/ − 63

(horizontal), Y in the range

0/ − 31

(vertical). Returns the value

 0/ if cell is off

 − 1 if in text mode

1 to 8 if on, the number of

colour.

50/ IF POINTS (5,A) = C

THEN 210/

POS(X)

Returns the current print

position. The only arguments

are,

0/ for screen display

1 for printer.

168 IF POS (0/) > 30/ THEN

PRINT A$

PPOINT

(X,Y)

Tests high resolution graphic

cell. Returns 0/ if cell is off,

otherwise returns colour code

of cell.

115 C = PPOINT(A1,A2)

68

Function

Name

Operation Example

 (X in range 0/ − 255, Y from 0/

−191)

RND(X)

Returns random whole

number between 1 and X. X

equal zero (0/) returns random

number between 0/ and 1.

220/ PRINT @ RND(510/);

“”;

SGN(X)

Returns the sign of the

argument

X negative returns −l

X zero returns 0/

X positive returns + 1

412 Y = RND (ABS

(N))SGN(N)

SIN(X)

Sine of X, where X is an angle

in radians.

20/5 S=SIN(KPI/180/)

SQR(X)

Square root of argument

(x), X should not be

negative. If X is negative then

function returns -- ABS(X)

330/ C=SQR(AA + BB)

TAN(X)

Tangent of X, where X is an

angle in radians. The inverse

of ATN (X)

840/ R5=B/TAN(EQ−5)

Class II functions

The class II functions have a numeric argument, but return a string value.

They can only be used in string expressions.

Function

Name

Operation Example

CHR$(X)

Returns the character for the

code given by X. X must be

from 0/ to 255. See Appendix

A for list of codes.

20/ M$=CHR$ (143) +

CHR$ (128)

69

Function

Name

Operation Example

HEX$(X)

Computes the hexadecimal

value for a decimal number X

42 PRINT HEX$(30/)

STR$(X)

Converts a numeric

expression into the string

equivalent

175 A$ = STR$(12,49)

Class III functions

Class III functions are string functions. The arguments (there are usually at

least two), are a string and a number. They all return a string value and

therefore must be part of a string expression.

Function

Name

Operation Example

LEFT$

(X$,N)

Returns the first N characters

of string X$

114 A$ = LEFT$(B$,7)

MID$

(X$,M,N)

Returns the N characters of

string X$, starting at position

M. If N is omitted the entire

string to the right of M is

returned. M must be greater

than 0/ .

760/ K$ = MID$(W$,I,4)

RIGHT$

(X$,N)

Returns the last N characters

of string X$

340/ T$ = RIGHT$(Q$,B+7)

STRING$

(N,C)

Returns a string of length N

consisting of the character

defined by C. The argument C
can be, either a number, (the

ASCII code for the character)

or, the character itself,

enclosed in quotes.

40/0/ A$ = STRING$(5,67)

410/ PRINT

STRING$(32,“”)

70

Class IV functions

These are a mixed function similar to class II. They have a string argument

and return a numeric value, and so only appear in numeric expressions.

Function

Name

Operation Example

ASC(X$)

Returns the ASCII code

number of the first character

of the string argument.

715 P = ASC(F$) − 64

INSTR

(P,S$,T$)

Searches the string S$ for the

target string T$, starting from

position P of the search string.

Return 0/ if not found,

otherwise the position of the

target string.

212 F = INSTR(N,X$,”AB”)

LEN(X$)

Returns the length of the

string X$. All characters are

counted including spaces. lf

the string is empty returns 0/ .

845 N = LEN(N$)

VAL(X$)

Converts the character

representation of figures into

a number. If the string starts

with alphabetic character it

returns 0/
 .

92 Z = VAL(AB$)

Class V functions

Class V are system functions. They have no arguments

Function

Name

Operation Example

INKEY$

Checks the keyboard and

returns key being pressed (if

any). Returns a string so must

be used in a string expression.

146 P3$ = INKEY$

 71

Function

Name

Operation Example

MEM

Finds the amount of free

memory available.

PRINT MEM

TIMER

Returns contents of the timer,

a value in the range 0/ − 65535.

To reset use TIMER

62 T1 = TIMER − T

65 TIMER = 0/

D.I.Y FUNCTIONS

Apart from the functions supplied by the system, it is possible for you to

create up to another 26 numeric functions of your own. The form of the

statement is

DEF FN letter(dummy variable) = formula

The letter is any letter from A to Z. The dummy variable is a letter, which will

be replaced by the function argument when the function is called. The

formula is a BASIC expression written in terms of the dummy variable and/or

other variables. Other functions, both built in or user-defined, may be

present in the expression, but a function cannot call itself.

The equation y = ((x − 3)
2
 + (x − 4)

4
)/x

3
, will translate directly into a

defined function as,

25 DEF FN Y(X) = ((X − 3) ↑ 2 + (X − 4) ↑ 4) X ↑ 3

The X here is the dummy variable, not a variable name. When the function is

called later in the program it will be replaced by the argument. To use the

function, just include it in an expression in the same way as a ‘built-in’

function.

150/ Y(I) = FN Y(X) + FN Y(W)

Functions can also be used to supply 'service routines', (commonly used
operations). You may have noticed that the numbers output to your screen as

results, tend to be a bit untidy. The computer is trying to be helpful by

printing the number to the maximum accuracy. Sometimes this accuracy is

not necessary and at other times a nuisance, printing cash amounts for

72

instance. The following function can be used to print to the required

number of decimal places, (D)

10/ DEF FN D(X) = INT(X * 10/ ↑ D + 0/ .5)/10/ ↑ D

Note that the X is a dummy variable, the D is not a dummy variable, the value

for D must be supplied from outside the function, possibly by an INPUT

statement. To use the function.

20/5 PRINT FN D(A) etc.

As all trignometric functions require the argument to be in radians, a

function to convert degrees to radians could be useful.

10/ DEF FN R(X) = X/57.295779

will do this. A more accurate result can be obtained by using instead,

10/ DEF FN R(X) = X ATN(1.0/)/45

The constant PI can be created by,

20/ DEF FN P(X) = 4.0/ ATN(1.0/)

Note that in this case the dummy variable has no effect at all, it is only

there because an argument is required.

As you cannot call a function that has not yet been defined, it is a good

practice to place your function definitions at the start of the program.

ALTERNATIVES TO INPUT

The only way we have been able to get values into variables has been by using

an INPUT statement. This is very convenient, but you may have noticed that

the INPUT statement will not accept certain characters. If you start a string

with spaces they are lost, and if you type a comma you lose everything after it.

There is an alternative, the LINE INPUT statement,

LINE INPUT “prompt”; string variable

The LINE INPUT behaves in a similar way to INPUT, except that it will

accept everything, including spaces and commas. The prompt is the same as

for INPUT, and string variables can be any string variable. You can only have

one variable in each LINE INPUT statement.

25 LINE INPUT “TYPE IN A LINE OF TEXT”; L$

Often in a program it is necessary to set up a number of constants before the

program really starts work. You could, of course, enter these every time the

73

DEF FN

The DEF FN command is used to define a user numeric function

DEF FN name (dummy variable) = formula

The name may be any letter from A to Z.

The dummy variable may be any letter, it is replaced by the argument when

the function is used. Only one dummy variable may be used.

The formula describes the operation in terms of the dummy variable and/or

other variables.

User defined functions must be contained in one program line. A defined

function may use other functions, (either defined or 'built in') in the formula,

but must not call itself.

A function must be defined before it is used, it should therefore appear at

the beginning of a program.

Other mathematical functions can be defined as user functions as follows:

10/ DEF FN S(X) = 1/COS(X):' SECANT

20/ DEF FN I(X) = −ATN(X/SQR(−XX+1))+1.570/8

30/ DEF FN H(X) = −EXP(X)/(EXP(X)+EXP(−X))2+1

40/ DEF FN M(A) = INT((A/B−INT(A/B))B+0/ .5)SGN(A/B)

50/ B = 8 : PRINT FN M(13)

74

LINE INPUT

The LINE INPUT command enters an entire line into a string variable,

including commas and leading spaces not accepted by the INPUT command

LINE INPUT “prompt”; string variable

The prompt is any prompt message included in quotes. It is optional and if

included must be separated from the string variable by the semi-colon (;). The

string variable may be any string variable. only one variable may appear in

the LINE INPUT statement. The maximum length of the line stored by a

LINE INPUT command is 255 characters.

10/ CLEAR 50/0/ :CLS

20/ LINE INPUT“ENTER YOUR FULL NAME”;N$

30/ LINE INPUT“AND ADDRESS”;A$

75

program is run with INPUT statements. There is, however, a more

convenient method using the READ and DATA statements. They are always

used together and have the form,

READ list of variables
DATA list of values

The READ statement behaves in the same way as the INPUT statement, except

instead of halting the program and waiting for you to enter a value, it

looks for the value in a DATA statement which is part of the program. The

DATA statement may be included anywhere in the program. If there is more

than one DATA statement, the READ starts with the lowest numbered statement

and works through in order.

10/ DATA 1,2,3,4,5

20/ FOR I = 1 TO 3

30/ READ A: PRINT A: NEXT I

40/ READ D,G: PRINT D,G

The above example will read the first item in the DATA list (1), print it out, read

the second (2), and so on. As each item is read the pointer moves to the next

item. Line 40/ will read the last two items. If you now add the line,

50/ READ X: PRINT X

and run the program again, you will get ?OD ERROR IN 50. This means the

READ has no more items in the DATA list and is therefore out of data

(OD). Add another line,

45 RESTORE

When you run the program this time it is alright, and X has the value 1. The

RESTORE statement sets the pointer back to the beginning of the first

DATA statement. Strings can also be included in DATA statements. You

must take care that any mixture of variables in a READ statement are

matched in order by values of the same type in the DATA list.

If you have written a program using a lot of strings, you may already have had

an ? OS ERROR. This means you have run out of memory reserved for string

storage. To allocate memory for strings use the CLEAR statement.

10/ CLEAR 10/0/0/

This statements reserves 10/0/0/ bytes of memory to store strings. As CLEAR

also sets all variables to zero, only use at the beginning of the program.

76

READ

DATA

RESTORE

The READ command reads the next item in a DATA line and assigns to the

specified variable in the list.

READ list of variable names

The DATA line stores data within the program and may be a numbered line

anywhere in the program.

DATA list of values

Both string and numeric variables may be used in READ and DATA

provided the sequence is correct. A string must be assigned to a string

variable, etc.

The RESTORE command sets the data pointer back to the first item in the

lowest numbered DATA line.

RESTORE

10/ CLS: PRINT: PRINT: PRINT

20/ READ A,B: IF A = −9999 THEN RESTORE: GOTO 20/

30/ PRINT A;“ +5IS“;:INPUT C

40/ IF C = B THEN PRINT“CORRECT” ELSE PRINT “WRONG”

50/ FOR D = 1 TO 60/0/ : NEXT D: GOTO 10/

60/ DATA 8,13,12,17,5,10/ ,27,32,14,19,3,8

70/ DATA 7,12,6,11,1,6,−9999, −9999

77

CLEAR

The CLEAR command erases all variables and reserves space for string

storage.

CLEAR 50/0/

will reserve 50/0/ bytes of storage for string variables.

The CLEAR command can also be used to set the highest BASIC address in

memory to reserve space for machine language routines.

CLEAR 20/0/ ,140/0/0/

will reserve 20/0/ bytes for string storage and set the highest address for BASIC

to 140/0/0/ . Machine language routines may now be stored from 140/0/1 onwards.

If CLEAR is not used 20/0/ bytes of string space are automatically reserved.

78

PAUSE FOR REFLECTION

The contents of this chapter, together with those of Chapters 1, 2, 3 and 5,

constitute the core of the BASIC language. Though there are still more

statements to come, they are to some extent icing on the cake.

All the material we have covered so far will be used frequently in the

following chapters, as they are essential parts of any program. While you may

be eager to get into drawing pictures with your computer, some time spent at

this point ensuring you understand exactly what is going on, will make using

graphics so much easier.

Check back through the examples, try to adapt them to suit your own ideas.

We finish this section with two more examples. The first extends the shuffling

example of the last chapter. The program 'deals' a hand of cards. Note the

following points,

a) the shuffle now appears as a subroutine at line 90/ ,

b) the use of READ and DATA to set up the arrays at the start,

c) lines 130/ and 140/ to find the suit and which card within the suit.

10/ DIM X(52), PACK(52), CARD$(13), SUIT$(3)

20/ FOR I = 0 TO 3: READ SUIT$(I): NEXT I

30/ DATA SPADES, DIAMONDS, CLUBS, HEARTS

40/ FOR 1 = 1 TO 13: READ CARDS(I): NEXT 1

50/ DATA ACE, TWO, TREE, FOUR, FIVE,SIX, SEVEN

60/ DATA EIGHT, NINE,THEN, JACK, QUEEN, KING

70/ CLS: INPUT“HOW MANY CARDS TO DEAL”;N

80/ GOSUB 190/

90/ ST = 1

10/0/ EN = ST + N − 1:IF EN>52 THEN GOTO 80/

110/ CLS: PRINT @ 10/ ,”YOUR HAND”: PRINT: PRINT

120/ FOR 1 = ST TO EN

130/ S = INT((PACK(I)−1)/13)

140/ C = PACK(I) − S*13

150/ PRINT TAB(8);CARD$(C);”OF“;SUITS(S)

160/ NEXT I:ST = ST + N

170/ PRINT @ 448, “ANOTHER HAND. YES OR NO”;:INPUT A$

180/ IF A$ = “YES” THEN 10/0/ ELSE END

190/ FOR I9 = 1 TO 52: X(I9) = I9:NEXT I9

20/0/ FOR I9 = 52 TO 1 STEP −1

210/ J9 = RND(I9): PACK(I9) = X(J9):X(J9) = X(I9)

220/ NEXT I9: RETURN

79

The second example uses nearly all the available string functions. The

program checks through the entered text and reports the number of

occurrences of each letter. This type of program is often used for deciphering

coded messages. With little effort it can be adapted to search for words or a

sequence of characters.

10/ CLEAR 10/0/ ,0/ : CLS: READ A$

20/ DATA ABCDEFGHIJKLNlNOPQRSTUVWXYZ

30/ PRINT “TYPE IN ANY LINE OF TEXT”:PRINT

40/ LINE INPUT L$

50/ FOR I = 1 TO LEN (A$): CLS

60/ T$ = MID$(A$,I,1): C = 0/ : P = 1: P$ = L$

70/ F = INSTR(P,L$,T$)

80/ IF F>0/ THEN C = C+1 ELSE 140/

90/ P$ = LEFT$(P$,F−1) + STRING$(LEN(T$),CHR$(128))

10/0/ IF F>LEN(L$) THEN 120/

110/ P$ = P$ + RIGT$(L$,LEN(L$)−F)

120/ P = F + LEN(T$)

130/ IF P< = LEN(L$) − LEN(T$) + 1 THEN 70/

140/ PRINT P$

150/ PRINT @ 354, “FOUND”;C; “OCCURRENCES OF”;T$

160/ PRINT @ 416, “PRESS SPACEBAR TO CONTINUE, N TO STOP”

170/ Z$ = INKEY$: IF Z$ = “” THEN 170/

180/ IF Z$ = “N” THEN 20/0/

190/ NEXT I

20/0/ CLS: END

80

CHAPTER SEVEN

GETTING THE POINT ACROSS

When your computer displays anything on a TV screen, what it is doing is

setting points in the TV tube either on or off, to build up the image. If the

point is set on it appears as a coloured dot, if off as black. All the letters we

have been printing are made up from these dots of light. The size of the dot

you can control determines the resolution you are working in. A large area is

a low resolution, a small dot area is a high resolution, (because the smaller the

dot, the higher the number of points available on the screen).

Your computer has the ability to work in five different resolutions, ranging

from 512 points on the screen up to 49152 points. This gives you a large

amount of flexibility in the amount of detail you can put into your pictures.

We will start by creating images in the lowest resolution and working

upwards. The methods used to put drawings and movement onto the screen

are much the same, irrespective of the resolution you are working in.

PRINTING PICTURES

You remember from chapter 3 when we introduced the PRINT @ statement,

we described how the screen was divided into a 16 x 32 grid. This allowed us

to print a character anywhere on the screen by giving the appropriate

position. Using the CHR$ function (see chapter 6 for functions), we can

generate special graphic characters. The following program will display all the

characters available from CHR$.

10/ FOR I = 1 TO 255:CLS 0/

20/ PRINT @ 10/0/ ,“CHR$(“;I;”)”;

30/ PRINT @ 120/ ,CHR$(I)

40/ FOR D = 1 TO 60/0/ : NEXT D,I:CLS

The numbers from 1 to 31 are used for control characters, so not much

happens. From 32 to 127, the keyboard characters appear. The codes from

128 to 255 are the special graphics characters. (A complete list of the available

characters is given in Appendix A). These graphics characters are patterns of
colour blocks which can be assembled into simple shapes. The simplest

pattern is a rectangle of colour. For instance, CHR$(143) gives a rectangle of

green, which is colour 1. Add 16, and CHR$ (159) gives a rectangle of yellow,

colour 2, and so on. There are sixteen patterns from CHR$ (128) to CHR$

(143), these are made up from green and black. To obtain the same pattern,

81

but in a different colour, just add the appropriate number of 16's to the code.

+16 yellow +32 blue +48 red

+64 buff +80 cyan +96 magenta

 +112 orange

The following program shows the effect of increasing the code by sixteen (it

can also be used for adjusting the colour balance on your TV set, use C =

143).

10/ CLS0/ : INPUT”ENTER CODE FROM 128 TO 143”;C

20/ FOR I=1 TO 14: FOR J = C TO 255 STEP 16

30/ FOR K=1 TO 4: PRINT CHR$(J);: NEXT K,J,I

40/ GOTO 40/

As you can see from the above, the CHR$ characters can be printed directly

onto the screen. But as they are characters they can also be placed in string

variables. This is more convenient, as they can be manipulated much more

easily.

We will now start to construct a picture. We will draw a castle − one, because

it is a simple shape and two, because it shows how starting from a simple base,

you can add increasing detail. Enter and run each section as we give it, so you

can see the steps the picture goes through.

First we need to build a wall across the screen, so it will be 32 blocks wide,

and we will make it 6 blocks high.

10/ CLEAR 50/0/ : CLS0/

20/ FOR I=1 TO 6:FOR J=1 TO 32

30/ WALL$ = WALL$ + CHR$(20/7): NEXT J,I

40/ PRINT @ 256, WALL$

20/0/ GOTO 20/0/

The first line reserves space for the strings we are going to use. Lines 20/ and

30/ 'build' the wall out of buff coloured blocks, CHR$ (20/7), and store it in a

string called WALL$. Line 40/ prints WALL$ which appears on the screen as

a solid block of colour. The last line (20/0/) is just to hold the picture on the

screen.

Next we add the battlements, this is done with alternative blocks of buff

and black. We only need one row this time.

50/ FOR I = 1 TO 16: B$ = B$ + CHRS(128) + CHRS(20/7): NEXT I

60/ PRINT @ 224,B$;

82

Line 50/ constructs the battlements and 60/ prints them on top of the wall.

Now we need a tower. The tower is built from the same material as the wall,

so let us take some bricks from WALL$.

70/ P = 11

80/ FOR I = 1 TO 3:PRINT @ 128 + 32*I+P,LEFT$(WALL$,10/);

 : NEXT I

Line 80/ takes 10/ bricks from WALL$ and builds 3 rows in the middle of the

wall. The value of P places the tower in the middle. If you want to try the

tower in another place, change P. The tower is 10/ blocks wide, so P can be

any number from 0/ to 22.

We now do the same with the battlements for the tower.

90/ PRINT @ 128 + P, LEFT$ (B$,10/)

That completes our basic, (BASIC?) castle. We can add arrow slits by using

a different character and overprinting.

10/0/ FOR I = 2 TO 32 STEP 4: PRINT @ 288+I,CHR$(20/6);:

NEXT I

We also need a gate, so we print black blocks in the appropriate place.

110/ G$ = CHR$(128) + CHR$(128) + CHR$(128)

120/ FOR I = 353 TO 417 STEP 32: PRINT @ I+P+5,G$;: NEXT I

The gate is stored in G$ and printed in line 120/ (using the P in the PRINT @

expression to keep the gate in line with the tower).

A castle with an ever open gate is not much use, so now we need a portcullis,

using another character, (142+112) we can construct something similar.

130/ P$ = CHR$(254) + CHR$(254) + CHR$(254)

140/ FOR I = 353 TO 417 STEP 32: PRINT @ I+P+5, P$;

150/ FOR K = 1 TO 30/0/ : NEXT K,I

Line 130/ constructs an orange (!) portcullis which is printed from the top

down in line 140/ . The delay loop K causing it to be 'lowered' slowly.

We will leave the castle now, you might like to add further details, like a blue

moat and a flag on the tower, and so on.

83

MOVING PICTURES

In the castle example, lines 140/ and 150/ showed us how to get some

movement into the picture, by printing parts in succession. This type of

movement is limited, largely to opening and closing doors. A much better

method is to print the image in full, then blank it out and print it again in a

slightly different position. As you are constantly redrawing the figure; the

drawing part should be a subroutine. But first the figure, we will construct it

in a 3 x 4 block. The top 'line' will be the head, the next the body, and the last

the legs.

10/ CLEAR 50/0/ : CLS0/

20/ M1$ = CHR$(128) + CHR$(193) + CHR$(194) + CHR$(128)

30/ M2$ = CHR$(196) + CHR$(20/7) + CHR$(20/7) + CHR$(20/0/)

40/ M3$ = CHR$(128) + CHR$(20/2) + CHR$(197) + CHR$(128)

The figure is now stored in three string variables M1$, M2$ and M3$. Now

the subroutine to print the strings in the correct order.

50/0/ P = 32Y + X

510/ PRINT @ P,M1$;:PRINT @ P + 32,M2$

520/ PRINT @ P + 64,M3$;:RETURN

This wall print the figure as three lines directly under each other, starting at a

point decided by X and Y. (Remember the X,Y grid? X is 0/ to 31

horizontally, and Y, 0/ to 15 vertically). You will have to enter all the lines up

to line 160/ below before you will be able to run the program.

Now to move the character we need to change the print position, that is to

change X or Y. This can be done from the keyboard. We will use INKEY$ to

read the keyboard, and the obvious characters to use are the arrow keys.

These keys have codes as well, just as the letters do.

[←] CHR$(8)

[→] CHR$(9)

[↓] CHR$(10/)

[↑] CHR$(94)

We shall use X to hold the horizontal position of the figure, and Y to hold the

vertical position. If the background arrow key [←], is pressed, we want to

move to the left, so take one off the current X value. But we must make sure

that we do not go off the edge of the screen.

90/0/ GOSUB 50/0/

10/0/ A$ = INKEY$:IF A$ =“” THEN 10/0/

120/ IF A$ = CHR$(8) THEN X = X−1: IF X < 0/ THEN X = 0/

84

Line 10/0/ reads the keyboard until a key is pressed. If it is [←] then line 120/

takes one
~
off X, checks to see if we are off the screen, and if we are, then

stops the movement at the left hand side. To move right, up and down the

pattern will be similar.

130/ IF A$ = CHR$(9) THEN X = X+1:IF X>28 THEN X=28

140/ IF A$ = CHR$(94) THEN Y = Y−1:IF Y<0/ THEN Y=0/

150/ IF A$ = CHR$(10/) THEN Y = Y+1:IF Y>13 THEN Y = 13

160/ GOSUB 50/0/ : GOTO 10/0/

In line 130 we set the maximum permissible value of X to be 28. It cannot be

greater than 31, anyway, and remember our figure is four blocks wide. The

same applies to Y, we must leave room to print the three lines. Line 160 goes

to the print subroutine, then back to check for another keypress. If you run

the program now, you should be able to move the figure around on the

screen, but it makes a mess because we are not removing the figure from the

old position. To do this we need a blanking string and a subroutine to print it.

50/ BL$ = CHR$(128) + CHR$(128) + CHR$(128) + CHR$(128)

60/0/ P = 32*Y+X: PRINT @ P,BL$

610/ PRINT @ P+32,BL$;:PRINT @ P+64,BL$

620/ RETURN

The new subroutine (60/0/) does exactly the same as the other, except this time

prints a block of black squares. All we need to do now is to erase the figure

just before moving it.

110/ GOSUB 60/0/

You should now be able to move the figure anywhere on the screen. In its

current form this program is just an example, but moving figures like this can

be incorporated into games and junior educational programs.

A NEW RESOLUTION

We now move to the next level of resolution. This has a 32 x 64 grid, which

gives 20/48 points on the screen. This level and the previous 16 x 32 screen are

the low resolution screens, and can be used together, if wanted. To switch on,

or off, the points on this screen, there are two commands

SET(X,Y,C) and RESET(X,Y)

85

The SET command switches on the point X,Y in the colour C. The X, (from 0/

to 63) and the Y, (from 0/ to 31), are the horizontal and vertical positions

as before. The C is a number from 0/ to 8 representing the number of the colour

you want the dot to be.

The RESET command switches off the point X,Y. Using these commands

movement can be suggested by switching on and off in turn. Try the following

program.

10/ CLS0/ : X1 = 0/ : Y1 = 0/ : XI = 2: YI = 2

20/ X2 = X1 + XI: IF X2>63 OR X2<0/ THEN XI = −XI:

 SOUND 180/ ,1: GOTO 20/

30/ Y2 = Y1 + YI:IF Y2>31 OR Y2<0/ THEN YI = −YI:

 SOUND 180/ ,1: GOTO 30/

40/ SET(X2,Y2,8): RESET(X1,Y1): X1 = X2:Y1 = Y2: GOTO 20/

You can see what it does, how does it do it? Starting with a point X1, Y1 the

program increases X1 by a small amount XI and Y1 by YI, to create a new

point X2,Y2. The new point is switched on and the old one (X1,Y1) off in line

40/ . The X2,Y2 point becomes the old point and the program goes back to line

20/ to create another X2,Y2. This moves the 'ball' across the screen. When the

‘ball’ reaches the edge of the screen, the sign of the increment is changed.

This means that X (for instance) now starts to decrease, causing the direction

to change. This causes the ‘bounce’ off the edges. If you change the size of the

increment, (XI and YI in line 10/) you can make the 'ball' move at different

speeds. This type of program is the basis of most computer ball games, but

these are usually written in machine language, not BASIC.

Another use for moving points is in shooting type games. These sort of games

require movement over the screen, and the ability to ‘fire’ a weapon. We

could use the arrow keys as before, but a much better method is to use the

joysticks.

The joysticks plug into the sockets on the side of your computer, and allow

much finer control over movement than the arrow keys. The joystick position

is read by the function JOYSTK. JOYSTK(0/) returns the horizontal position

of the left joystick, and JOYSTK(1) the vertical position. JOYSTK(2) and

JOYSTK(3) do the same for the right joystick. As the value returned by the

function in each case is between 0/ and 63 it will be necessary to scale the value

to fit the resolution of the screen you are working in.

86

SET

The SET command is used to set a specified point on the low resolution

screen to a specified colour

SET(x,y,c)

x,y are the co-ordinates of the screen point. X must be in the range 0/ to 63,

and Y in the range 0/ to 31.

c is the colour code of the desired colour. It must be a number between 0/

and 8.

10/ CLS0/ : SET(5,27,8): SET(6,27,8)

20/ FOR X = 0/ TO 6: FOR Y = 28 TO 30/

30/ SET(X,Y,8): NEXT Y,X

40/ FOR X = 7 TO 63: FOR D = 1 TO 20/0/ : NEXT D

50/ FOR Y = 27 TO 30/ : IF Y = 27 THEN RESET(X−2,Y)

60/ SET(X,Y,8): RESET(X−7,Y): NEXT Y,X

70/ GOTO 70/

RESET

The RESET command is used to erase a point switched on by the SET

command. It is used in low resolution graphics mode.

RESET (x,y)

x,y are the co-ordinates of the point to be switched off. X must be from 0/ to

63, and Y from 0/ to 31.

The point is set to the background colour, causing it to be ‘erased’. See SET

for an example.

87

10/ CLS0/ : FOR I = 0/ TO 3

20/ PRINT @ 74+32I,“JOYSTK(“;I;”)”;JOYSTK(I);

30/ NEXT I: FOR D = 1 TO 40/0/ :NEXT D: GOTO 10/

Run the program above and move the joysticks. You will see the values

change with the joystick position. You can also use the button on the joystick.

Add the line.

25 P = PEEK(65280/): PRINT @ 20/2,”BUTTON VALUE “;P

The PEEK function tells the computer to look at a specified part of its

memory. The memory address 65280/ contains the result of checking the

button. It will be either 127 or 255 at the moment. If you press the left button

it wall change to 125 or 253, press the right and it will change to 126 or 254. (If

both are pressed together, the number wall be 124 or 252).

So let us start work on a game program − a battle between two ships in space.

We can use the joysticks to move the ships and the button to fire the weapon.

First the ships; we will use a similar method to that used to construct the

figure in the last example. Each ship will he a 2 ˣ 3 block, one yellow, the

other blue, stored in arrays S$ and S2$.

10/ CLEAR 50/0/ : FOR I=0/ TO 5:READ S(I): NEXT I

20/ DATA 128,131,128,134,140/ ,137

30/ FOR Y = 0/ TO 1:C = (Y+1) 16

40/ S$(Y) = CHR$(S(0/) + C) + CHR$(S(1) + C) + CHR$(S(2) + C)

50/ S2$(Y) = CHR$(S(3)+C) + CHR$(S(4) + C) + CHR$(S(5) + C)

60/ NEXT Y

If you do not like the shape of the ships, then design your own and change the

data in line 20/ .

Next we must read the joysticks, check we are still on the screen, and work

out where to print the ships.

70/ FOR Y = 0/ TO 1: A(Y) = JOYSTK(Y2)

80/ B(Y) = INT(JOYSTK(1+Y2)/2)

85 IF A(Y)>58 THEN A(Y) = 58

90/ IF A(Y)<2 THEN A(Y) = 2

10/0/ IF B(Y)>27 THEN B(Y) = 27

110/ L(Y) = INT(B(Y)/232 + INT(A(Y)/2): NEXT Y

The joystick positions are read in turn by line 70/ . The limits are set in lines

88

80/−10/0/ (remember the ship size). The final result is then converted into a

value for the PRINT @ command. (This is an example of mixing the two low

resolution screens − the joysticks work in one, the PRINT @ command in

the other).

We now need to print the ships and return to see if the joysticks have been

moved.

120/ CLS0/ :FOR Y = 0/ TO 1:PRINT @ 0/ ,Z(0/);:PRINT @ 26,Z(1);

130/ PRINT @ L(Y),S$(Y);:PRINT @ L(Y)+32,S2$(Y);:NEXT Y

170/ A$ = INKEY$:IF A$ = “” THEN 70/

180/ CLS:END

Line 120/ also prints the score, (but we haven't done that yet). To end the

game, press any key, otherwise go to 70/ and read the joysticks again.

Run the program so far and check that the ships will move anywhere on the

screen.

The next step is to fire the guns and display the 'plasma bolt' This is the

awkward part, because we have to read the joystick buttons and decide who is

firing. Also as the ships are able to move anywhere on the screen we have to

know the direction of the bolt. To keep it simple, we will only allow the bolt

to move from the ship firing, along a horizontal line towards the target ship. It

will travel at the vertical height of the

firing ship.

140/ P = PEEK(65280/)

150/ IF P = 125 OR P = 253 THEN F = 0/ : T = 1: GOSUB 20/0/

160/ IF P = 126 OR P = 254 THEN F = 1: T = 0/ : GOSUB 20/0/

These lines read the buttons and decide which ship is firing. The bolt will be

displayed by subroutine 20/0/

200 V1 = B(F): H1 = A(F): H2 = A(T): ST = 1

210 IF H1>H2 THEN ST = −1

220/ FOR H = H1 + ST5 TO H2 + 2 STEP ST

240/ SET(H,V1,4): SOUND 20/0/ ,1: RESET(H−2ST,V1)

250/ NEXT H: RETURN

Note the switch of the step in line 210/ , if the left and right positions are

reversed. The movement of the bolt is done in line 240/

All that is left now is to check if you have made a ‘hit’ If so, make the

appropriate noises and record the score.

89

The function POINT is used to check for a hit. The form is POINT (X,Y),

where X,Y is the point you want to check. The function returns 0/ if the point

is off, and the number of the colour code, if on.

As the screen is black, and we are firing in the correct direction (we hope), we

only have to know whether any coloured point in the line of fire is on. If we

add the following line to our subroutine,

230/ IF POINT(H,V1)>0/ THEN GOSUB 30/0/ : RETURN

then if a 'hit' takes place it will go to subroutine 30/0/ , (where we keep

score etc.), when it comes back, there is no point in firing the bolt any

further so we leave the subroutine and start again.

30/0/ Z(F) = Z(F) + 1

310/ FOR K = 1 TO 15: I = RND(5)−2: J = RND(4)−2

320/ SET(H+IST,V1+J,8): SOUND(RND(95)),1

330/ NEXT K: RETURN

This subroutine keeps the score, draws and sounds the 'explosion'.

Though only 28 lines long, this program is sufficient to produce a game

involving considerable movement. We leave it to you as an exercise to

develop refinements that bring it to the arcade level.

This has been a long and involved chapter, but it contains most of the

elements needed for graphics on your computer, whatever level of resolution

you may be using.

90

CHAPTER EIGHT

MOVING TO A HIGHER PLACE

We now move to the high resolution screens which are completely separate

from the low resolution screens. The two low resolution screens can be used

together, and are displayed on what is known as the 'text screen'. The high

resolution screens cannot be mixed with the text screen. You may switch from

one to the other, but cannot write text onto the high resolution screen, or

draw high resolution graphics on the text screen.

When anything is drawn in high resolution the Computer writes the

instructions on how to display the information to a special part of its memory

called the 'video RAM'. The video RAM is then read to the TV and

converted into pictures. A number of 'pages' are reserved in the video RAM

for this purpose, normally four. As the amount of detail you are using

increases, so do the number of instructions required to display the result.

More instructions need more room and so you have to reserve more pages.

This is done with the PCLEAR command, followed by the number of pages

you want to reserve, (up to a maximum of 8),

PCLEAR 8

As each page takes up 1536 memory locations, only reserve what is actually

needed. The amount of available memory is fixed, so the more you assign for

graphics pages, the less is available for program space. PCLEAR behaves in a

similar way to CLEAR and should be used at the beginning of a program.

IN THE MODE

The amount of space you need to reserve is dependant upon the level of

resolution you want to use. One disadvantage of the increased resolution is

that it is not possible to use the full range of colours available in low

resolution. The available colours and the resolution are determined by the

mode you are working in. The mode is set with the PMODE command,

PMODE mode, starpage

where mode is a number from 0/ to 4, and startpage is the ‘page’ in video RAM

you wish to start writing to. As before the screens are divided into grids. This

time, however, it is only necessary to remember one size (256 x 192). Even

though the resolution changes with different modes, you still refer to points

 91

PCLEAR

PCLEAR is used to reserve graphics pages in the high resolution modes.

PCLEAR n

N must be a number between 1 and 8. If the PCLEAR statement is omitted

PCLEAR 4 is the default.

As each graphics page requires 1536 bytes of memory only reserve what is

needed.

92

C
O

L
O

U
R

 S
E

T
 A

V
A

IL
A

B
L

E

S

C
R

E
E

N
 1

,1

B
la

ck
(0/

),
 B

u
ff

(5
)

B
u
ff

(5
),

C
y
an

(6
)

 M

ag
en

ta
(7

),
O

ra
n
g

e(
8

)

 B
la

ck
(0/

),
 B

u
ff

(5
)

B
u
ff

(5
),

C
y
an

(6
)

 M

ag
en

ta
(7

),
O

ra
n
g

e(
8

)

 B
la

ck
(0/

),
 B

u
ff

(5
)

S

C
R

E
E

N
 1

,0/

1

B
la

ck
(0/

),
 G

re
en

(1
)

G
re

en
(1

),
 Y

el
lo

w
(2

)

B
lu

e(
3
),

 R
ed

(4
)

1

B
la

ck
(0/

),
 G

re
en

(1
)

G
re

en
(1

),
 Y

el
lo

w
(2

)

B
lu

e(
3
),

 R
ed

(4
)

1

B
la

ck
(0/

),
 G

re
en

(1
)

P

A
G

E
S

 U

S
E

D

 1

 2

 2

 4

 4

 P

O
IN

T

S

IZ
E

 G

R
ID

S
IZ

E

1
2
8
 x

 9

6

1
2
8
 x

 9

6

 1

9
2
 x

 1
2
8

 1

9
2
 x

 1
2
8

 2

5
6
 x

 1
9
2

P
M

O
D

E

 N
U

M
B

E
R

 0/

 1

 2

 3

 4

93

SCREEN

The SCREEN command is used to switch the display between the graphics and

text modes.

SCREEN type, colour set

type is either 0/ for text and low resolution graphics

 or 1 for high resolution graphics

colour set is either 0/ or 1. The colour set for the text screen is 0/ , black on

green, or 1, black on orange. For the high resolution graphics the colour set

available depends on the working mode as follows:-

PMODE SCREEN 1,0/ SCREEN 1,1

 0/ Black, Green Black, Buff

 1 Green, Yellow Buff, Green

 Blue, Red Magenta, Orange

 2 Black, Green Black, Buff

 3 Green, Yellow Buff , Cyan

 Blue, Red Magenta, Orange

 4 Black, Green Black, Buff

94

on the screen by using the 256 x 192 grid. The difference is in the size of the

point that is drawn. The mode selected also decides which colours you can

use. Each mode has two colour sets available. The colour set is selected with the

SCREEN command, which also selects the screen type.

SCREEN type, colour set
.

Type is 0/ for the text screen and 1 for the high resolution screen. The colour
set is also either 0/ or 1. The default, which we have been using up to this

point, is SCREEN 0/ , 0/ . This sets the text screen with the black on green

colour set. (It is possible to use SCREEN 0/ ,1, which gives black text on an

orange background, but every time the computer prints it will revert to black

on green). To display the high resolution screen you have to set type to 1. The

table opposite gives available modes and colour sets.

As you can see from the table, the resolution and colour set are closely

related. You will also notice that as the mode increased from 0 to 4, the

number of pages required also increases.

So to display one screen of graphics PMODE0/ only needs one page of

memory, while PMODE 3 and PMODE 4 require four pages. When the

colour set has been selected, the computer chooses the lowest numbered

colour from the set as the background colour. The highest numbered colour

in the set is used as the foreground colour. For instance, with PMODE 3 and

SCREEN 1,0/ set, the computer will draw in red on a green background. You

can change the foreground and background colours with the COLOR

command,

COLOR foreground, background

where foreground and background are the required colour codes from the set

for that mode.

FAMILIAR FRIENDS

You will remember from the low resolution screens the commands CLS,

SET, RESET and POINT. Their high resolution equivalents are also

available. They are called PCLS, PSET, PRESET and PPOINT to indicate
their new status. Their job is the same as before, PCLS clears the high

resolution screen, and if followed by a colour code will set the background to

that colour. PSET switches on a point and PRESET switches it off. PPOINT

tests whether the point is on or off. The following example works through

95

each available mode and colour set in turn. It sets dots in a random colour on

the screen, the dots should be in a rectangular grid. The blank places in the

grid are caused by the random colour being the same as the background, or

not available in the colour set.

10/ FOR P = 0/ TO 4: PMODE P,1

20/ FOR S = 0/ TO 1: SCREEN 1,S

30/ PCLS:FOR I = 50/ TO 150/ STEP 20/

40/ FOR J = 50/ TO 150/ STEP 20/

50/ C = RND(8): PSET(I,J,C): NEXT I,I

60/ FOR D = 1 TO 10/0/0/ :NEXT D,S,P

Look closely at the size of the dot, this is the resolution available in

that mode.

DRAW THE LINE, SOMEWHERE

So we can put dots on the screen, what next? The most obvious thing to do

with two dots is to join them with a line. Fortunately there is a command to do

just that, LINE. Delete lines 40/ and 50/ from the last example and change line

30/ to read,

30/ PCLS: LINE(10/ ,180/) − (245,10/),PSET, BF

and run the program. A line is drawn across the screen from bottom left to

top right. The statement means draw a line from the start point, (10/ , 180/) to

the finish point (245,10/) in the foreground colour (PSET). If you change

PSET to PRESET the line will be drawn in the background colour. Drawing

in the background means it cannot be seen, it can also be used for erasing

previously drawn line. The PSET and PRESET are essential parts of the

LINE command, and here nothing to do with the commands to switch points

on or off.

It is not always necessary to specify the start point of LINE. With no start

point the line will begin at the most recent end point. (If the LINE statement

has not yet been used in the program, the last end point is taken to be 128,96,

screen centre). Add a further line to the current example.

40/ LINE − (130/ ,180/),PSET

A line is now drawn from the last end point (245,10/) to a point at the bottom

of the screen (130/ ,180/).

96

COLOR

The COLOR command is used to change the default settings of the foreground

and background colours in the high resolution graphics modes.

COLOR foreground, background

Both foreground and background are numbers between 0/ and 8, representing

the colour code. Both colours must be in the available colour set for the

current mode

PCLS

The PCLS command is used to clear the screen to a given background colour

in the high resolution mode.

PCLS c

c is the colour code of the background required. It must be one of the

available colour set for the working mode. If the colour is not available or c is

omitted the default background colour is used.

See the box for CLS for the colour codes.

PSET

The high resolution version of the SET command

PSET (x,y,c)

switches on the point (x,y) to the colour c, x must be in the range 0/ to 255, and

y in the range 0/ to 191.

c is the colour code 0/ to 8 and must be one of the available colour set.

PRESET

The high resolution version of the RESET command.

PRESET (x,y)

switches the point (x,y) off, (sets it to the background colour). x must be

from 0/ to 255, y from 0/ to 191.

97

To draw a square or rectangle, you could use four lines, but there is an

extension to the LINE command which takes care of this. Use the EDITOR

to add B to line 30/ , which should now read,

 30/ PCLS:LINE(10/ ,180/) − (245,10/),PSET,B

Instead of a diagonal line you now have a rectangle. To draw a rectangle all

you need do is specify the position of two opposite corners and add B to the

LINE statement. Get back into the EDITOR and add F to the end of line 30/ .

 30/ PCLS:LINE(10/ ,180/) − (245,10/),PSET,BF

The added F means fill the box, (rectangle) with the foreground colour. Such

a flexible command must have some use, so let us draw a picture.

We will start as before, in the construction business, but this time a house.

Run the program after each section so that you can see how it builds up.

First we set the resolution and draw the body of the house.

 10/ PMODE 3,1:SCREEN 1,9: PCLS

 20/ LINE(60/ ,48) − (20/0/ ,144),PSET,B

 260/ GOTO 260/

Next we add the roof.

 40/ LINE(60/ ,48) − (130/ ,20/),PSET

 50/ LINE − (20/0/ ,48),PSET

and a garage, with a door.

 70/ LINE(20/0/ ,144) − (255,94),PSET,B

 90/ LINE(210/ ,144) − (245,10/4),PSET,BF

We can use the same technique to put a door into the house.

 10/0/ LINE(160/ ,144) − (188,10/5),PSET,BF

To draw windows we need a rectangle with two lines as cross pieces.

 110/ LINE(85,132) − (135,10/8),PSET,B

 120/ LINE(110/ ,10/8) − (110/ ,132),PSET

 130/ LINE(85,120/) − (135,120/),PSET

The upstairs windows use the same approach,

 140/ LINE(90/ ,84) − (125,64),PSET,B

 150/ LINE(90/ ,74) − (125,74),PSET

 160/ LINE(110/ ,84) − (110/ ,64),PSET

98

LINE

The LINE command is used to draw lines and rectangles in the high

resolution graphics modes.

LINE (x1,y1) − (x2,y2),a,b

x1,y1 are the co-ordinates of the line's start point.

x2,y2 are the co-ordinates of the line's end point.

a is either PSET or PRESET. If PSET is used the line is drawn in the current

foreground colour. If PRESET, the line is drawn in the background colour.

b is an optional parameter. If used it is either B or BF. If B, a rectangle is

drawn instead of a line, the upper corner of the rectangle will be x1, y1, and

the lower right corner x2, y2. If BF is used, the rectangle is drawn and filled

with the current foreground colour.

10/ PMODE 4,1: SCREEN 1,1: PCLS 5: COLOR 0/ ,5

20/ FOR I = 1 TO 10/0/0/

30/ X = X + LSIN(R): Y = Y + LCOS(R)

40/ IF X<−128 OR X>128 THEN 90/

50/ IF Y<−96 OR Y>95 THEN 90/

60/ LINE − (X + 128,Y + 96),PSET

70/ R1 = R1+60/ : R = R1/57.29578: L = L+0/ .5

80/ NEXT I

90/ GOTO 90/

99

170/ LINE(155,64) − (175,84),PSET,B

180/ LINE(165,84) − (165,64),PSET

190/ LINE(155,74) − (175,74),PSET

and to complete the structure a chimney,

20/0/ LINE(150/ ,40/) − (160/ ,15),PSET,BF

This little program shows how quickly a picture can be drawn, and all with

just one command. This, of course, assumes you know where to draw the

lines. The easiest way to find these points is to take a copy of the graphic

screen grid in Appendix B, sketch the picture on it and read off the points.

A SPLASH OF COLOUR

Our house looks a little drab, what it needs is a coat of paint to brighten it up.

So we will tell DRAGON to get the brushes out and start work. The PAINT

command allows you to paint any shape with any available colour. All you

have to do is to tell it where to start, what colour to paint with, and the colour

of the border where the painting is to stop.

PAINT (x,y),a,b

where x,y are the co−ordinates of the start, and a and b are the colour codes of

the paint and the border. Add the following line to the house example,

30/ PAINT (90/ ,90/),2,4

This means starting at point (90,90), paint in yellow, (colour 2) until you meet

a red (4) border. Run the program to see what it does. Now delete the line

and re-enter as line 195 and run the program again.

195 PAINT (90/ ,90/),2,4

Note how it now stops at the window borders which were not there before.

Paint the garage the same way,

80/ PAINT (210/ ,140/),2,4

Now the roof. If you omit to put in a colour or a border in a PAINT

statement, the current foreground colour is selected for both.

60/ PAINT (130/ ,25)

We finish off by drawing the skyline and the sky.

210/ LINE(0/ ,64) − (60/ ,64),PSET

220/ LINE(20/0/ ,64) − (255,64),PSET

230/ PAINT(0/ ,54),3,4 no,

100

PAINT

The PAINT command is used in high resolution graphics modes, to fill a

shape with a specified colour.

PAINT (x,y),c,b

x,y are the co−ordinates of the point where the painting is to start.

c is the colour code of the colours to be used to paint. It must be between 0/

and 8 and be one of the available colour set for the working mode. If omitted,

the current foreground colour is used.

b is the colour code of the border at which painting is to stop. It must also be

between 0/ and 8, the painting will continue over a border of any other colour.

If omitted, the current foreground colour is used.

See CIRCLE for example of usage.

101

The place looks a little brighter now. You may like to continue with

improvements, add a path and a fence. Or you could take some time off to

practice drawing your own shapes and painting them to see what happens.

GOING ROUND IN CIRCLES

We have got lines, squares and rectangles, and now circles. The CIRCLE

statement will draw circles, ellipses and arcs.

CIRCLE (x,y), radius, colour, hwratio, start, end

The x,y point is the centre of the circle, the radius is the circle's radius

measured in screen points. The colour is one of the available colours in the

mode you are working in, (if omitted, the foreground colour is used). The

other parameters are for drawing ellipses and arcs, we will deal with them

later. First let us see what happens with circles.

10/ FOR P = 0/ TO 4: PMODE P,1

20/ SCREEN 1,1: PCLS

30/ FOR R = 120/ TO 10/ STEP − 10/

40/ CIRCLE (128,96),R: NEXT R

50/ FOR D = 1 TO 50/ 0/ : NEXT D,P

This will draw circles towards the centre of the screen. Circles are difficult to

draw and for a very accurate one you will probably have to work with

PMODE4.

You will notice that if a circle goes off the screen, there is no problem. If you try

to draw a line to a point that is not on the screen, it may not be drawn at

all, especially in the higher resolution modes. Try inserting

42 LINE −(30/ 0/ ,40/),PSET

and watch the result.

The PAINT command can also be used to fill in circles,

45 PAINT (128,96)

fills in the ‘bullseye’.

By using the hwratio parameter you can change the circle into an ellipse. The

hwratio means height to width ratio. The width in the CIRCLE command

always remains the same, twice the radius. The height can be varied by the

hwratio, if it is greater than 1 then the 'circle' will be higher than it is wide. A

value less than 1 will squeeze the circle in the other direction, wider than it is

102

CIRCLE

The CIRCLE command will draw circles, ellipses and arcs. It can only be

used in the high resolution graphics modes.

CIRCLE(x,y),r,c,hw,start,end

x is the X co-ordinate of the centre of the circle (from 0/ to 255)

y is the Y co-ordinate of the centre of the circle (from 0/ to 191)

r is the circle radius, measured in screen points

c is a colour code (from 0/ to 8), it must be one of the available

 set. If omitted, the foreground colour is used.

hw is the height-width ratio (from 0/ to 255). Used for drawing

 ellipses. If hw is omitted, 1 is used.

start is the start of the arc of the circle (from 0/ to 1). The 0/ position

 represents 3 o'clock. If omitted, 0/ is used.

end is the end of the arc (from 0/ to 1). The drawing proceeds

 clockwise from start. The .5 position represents 9 o'clock. If

 omitted, 1 is used.

10/ PMODE 3,1: SCREEN 1,0/ : PCLS

20/ CIRCLE (180/ ,156),28,3: PAINT (180/ ,156),3,3

30/ CIRCLE (110/ ,156),28,3: PAINT (110/ ,156),3,3

40/ CIRCLE (144,80/),68,4,1,0/ ,.5

50/ LINE (212,80/) − (76,80/),PSET: LINE − (48,32),PSET

60/ PAINT (144,82): CIRCLE(144,80/),70/ ,4,.8,.79,1

70/ LINE (160/ ,80/) − (160/ ,28),PSET: PAINT (210/ ,75)

80/ GOTO 80/

103

high. So the width along the X axis (horizontal) is always the same, only the

height on the Y axis (vertical) changes. When hwratio is 0/ the 'circle' is a

horizontal line, and with hwratio very large it approaches a vertical line

(actually a long thin rectangle). The largest value allowed is 255. Change lines

30/ and 40/ in our current example to read.

30/ FOR H = 0/ .5 TO 3 STEP 0/ .5

40/ CIRCLE (128,96),40/ ,,H: NEXT H

Note in line 40 the extra commas, these are because we have missed out the

colour parameter.

The final extension to the CIRCLE command is the ability to draw arcs (part

of a circle). To use this option you have to specify the start and finish of the

arc. Both the start and finish values must be a number between 0/ and 1. The

starting point of the circle is equivalent to the 3 o'clock position on a clock.

The drawing action then goes clockwise from the start. For instance, a start at

0/ .25 and end at 0/ .75 would draw 6 o'clock to 12 o'clock, the left half of the

circle. Start at 0/ .5 and end at 1.0/ to draw the top half of the circle. The

following program uses arcs to draw a pattern.

10/ PMODE 4,1: SCREEN 1,1: COLOR 0/ ,5:PCLS

20/ FOR R = 15 TO 60/ STEP 5

30/ CIRCLE (128,96+R), R,,1,.5,1

40/ CIRCLE (128,96−R), R,,1,0/ ,.5

50/ CIRCLE (128−R,96), R,,1,.75,.25

60/ CIRCLE (128+R,96), R,,1,.25,.75

70/ FOR D = 1 TO 50/0/ :NEXT D

80/ NEXT R

90/ GOTO 90/

TURNING THE PAGE

One way of introducing animation into drawings is to place a slightly different

picture on each page and then 'flip' through the pages. Remember you set the

number of pages with the PCLEAR command and the second parameter of

PMODE decides the page you are writing to. Of course, you have to bear in

mind the resolution in which you are working. In PMODE3 and PMODE4
each graphic screen requires 4 pages so it really only makes sense to flip

between page 1 and page 5. In PMODE1 and PMODE2, which needs 2

pages, you would flip between 1, 3, 5 and 7. The following example shows

how this is done, try entering all the PMODE values.

104

10/ PCLEAR 8: PMODE 3,4: PCLS

20/ INPUT“MODE”;M: ON M GOTO 40/ ,40/ ,50/ ,50/

30/ S = 1: GOTO 60/

40/ S = 2: GOTO 60/

50/ S = 4

60/ FOR P = 1 TO 8 STEP S: PMODE M,P: PCLS

70/ LINE(128,0/) − (128,(P−1) 15),PSET

80/ SCREEN 1,1:FOR I = 1 TO 10/0/0/ :NEXT I,P

90/ FOR P = 1 TO 8 STEP S: GOSUB 150/ :NEXT P

10/0/ IF M>2 THEN D = 4: S1 = 3 ELSE D = 7: S1 = S

110/ FOR P = D TO 1 STEP −S1:GOSUB 150/ :NEXT P

120/ GOTO 90/

150/ PMODE M,P: SCREEN 1,1

160/ FOR T=1 TO 20/ : NEXT T: RETURN

Lines 60/ to 80/ draw the changing figure onto the different pages. All this

drawing takes place without being displayed, as no SCREEN command has

yet been given. The remainder of the program displays each page in turn,

flipping first forwards, then backwards to give the impression of movement.

You can see that the more pages you use, the smoother the motion.

Another way of constructing displays is to use the command PCOPY

PCOPY sourcepage TO destinationpage

You may copy the contents of any page to any other page, provided the page

has been previously reserved with PCLEAR. PCOPY can also be used to

pack duplicates onto a PMODE3 or PMODE4 page. The following program

shows how PCOPY is used for this purpose, note how you have to be careful

where the figure is placed.

10/ PCLEAR 8: PMODE 3,4: PCLS

20/ LINE(10/0/ ,20/) − (140/ ,40/),PSET,BF

30/ CIRCLE (50/ ,25),20/

40/ CIRCLE (20/0/ ,50/),20/

50/ FOR D=3 TO 1 STEP −1

60/ PCOPY 4 TO D: NEXT D

70/ FOR P=4 TO 1 STEP −1: PMODE 3,P

80/ SCREEN 1,1: FOR I=1 TO 10/0/0/ : NEXT I,P

90/ GOTO 90/

105

In PMODE3, (and 4) the display consists of four pages, page 1 being the top

quarter of the screen, page 2 the next, and so on. So by copying the

contents of page 4 on to page 1 you have duplicated the top quarter of the

display in the bottom quarter. For PMODE1 and PMODE2 the same effect

can be obtained but this time the screen will be halved not quartered.

Those of you eager to continue with graphics may now turn to chapter 10/ , for

the rest of us there will be a short musical interlude.

106

PCOPY

PCOPY is a high resolution graphics command used to copy the contents of a

graphics page to another graphics page

PCOPY source TO destination

source and destination must be numbers between 1 and 8, and must refer to

pages previously reserved with the PCLEAR COMMAND. The space

required to hold a display screen differs for each mode and should be

considered when using PCOPY.

PCOPY 3 TO 5

107

ragondata.co.uk

108

CHAPTER NINE

SOUNDS ELECTRIC

ADDING A SOUND TRACK

Graphics, and other programs, can often be made more interesting by the

addition of sound. We have already used the SOUND command for this,

especially in the example in chapter seven. An easier way of adding sound is

to provide it yourself. We do not mean sing along with your programs, or not

quite. Your computer uses a cassette recorder to store programs, it can also

run a tape on demand. The commands MOTOR ON and MOTOR OFF will

do exactly that. Together, with the AUDIO ON and AUDIO OFF

commands which connect, or disconnect, the cassette output to the TV

loudspeaker. This means that by putting these statements into your program you

could have background music to your graphics. Or, on a more serious

note, a pre-prepared tape could deliver instructions and the questions in an

educational program. The example following shows how easy it is. If you do

not have a tape handy, use one of your program tapes. The strange noises you

will hear are how computers talk to each other!

10/ CLS: PRINT @ 135,“PRESS THE SPACEBAR”

20/ PRINT @ 195, “TO STOP OR START RECORDER”

30/ A$ = INKEY$: IF A$<>““ THEN 30/

40/ IF F = 0/ THEN MOTOR ON: AUDIO ON: F = 1 ELSE

 MOTOR OFF:AUDIO OFF: F = 0/

50/ GOTO 30/

Rewind the tape to the beginning and press the PLAY button, then run the

program. By pressing the spacebar you will be able to stop or start the

playback of the tape.

Using this method a general question and answer type educational program

could be written to handle a number of different subjects, just by changing

the question tape. Or your cartoon animations could be supplied with

appropriate music and sound effects.

PLAY THAT THING!

Alternatively, you can make the computer play the music. The PLAY

command converts the contents of a string into sounds

PLAY string

109

where string may be a string constant or a string variable. Not just any old

string, however, but a music string made up from note, octave, note, length,

tempo and pauses. The note is obviously the musical note you want to play.

The easiest way to do this is to enter the letter representing one of the

standard musical notes − A,B,C,D,E,F,G. To indicate a sharp you use #, or

+ (F# or F+ for F sharp), and for a flat −, (B − for B flat). The computer will

not recognise B# or C−, as they do not exist in the music 12 tone scale.

Another way of entering a note is to use the number representing its position

in the 12 tone scale

The notes and their number equivalent are marked on the keyboard above.

The PLAY command can be used as a direct command, which is useful for

checking a music string before incorporating it into a program. Like all good

musicians we wall start by practising our scales.

PLAY “CDEFGABCCBAGFEDC” The scale in C

PLAY “GABCDEF#GGF#EDCBAG” The scale in G

Well the scale in C is nearly right, but the one in G is a mess. This is because

the scales move into a different octave, and we must tell the computer this. To

select the octave, use O followed by a number between 1 and 5, 0/2, (which

includes middle C) is automatically set when the computer is turned on. The

current setting for octave will be used until a change is made, so it is usually

safer to always specify the octave you want to use at the start. Let us try the

scales again.

PLAY “O3CDEFGABO4CCO3BAGFEDC”

PLAY “O3GABO4CDEF#GG#EDCO3BAG”

To play the scale in C using the numbers instead of letters

PLAY “O3;1;3;5;6;8;10/ ;12;O4;1;1;O3;12;10/ ;8;6;5;3;1”

Note the separator (;) used in the string. You can use the semi-colon

anywhere you want but with numbers it is usually needed to avoid confusion.

110

AUDIO

The AUDIO command controls the connection of the sound output of the

cassette recorder to the television set loudspeaker. AUDIO ON directs

cassette output to the T.V. AUDIO OFF disconnects the link.

MOTOR

The command MOTOR controls the operation of the cassette recorder

motor. MOTOR ON starts the motor, MOTOR OFF stops the motor.

The play button of the cassette recorder must be depressed for the command

to be effective.

111

As the music string is still a string, it can be manipulated with all the

usual string operations. The following example plays the scale in C over

the entire range of the PLAY command.

10/ A$ = “CDEFGAB”: FOR I=1 TO 5

20/ B$ = “O” + STR$(I) + A$

30/ PRINT B$:PLAY B$:NEXT I

By using the same technique, and numbers instead of letters we can play the

entire chromatic scale.

10/ FOR I=1 TO 5:A$ = “O” + STR$(I) + “;”

20/ FOR J=1 TO 12:PLAY A$ + STR$(J): NEXT J,I

In most tunes, the notes are rarely of identical length, so we need to set the

duration of each note. This is done with the note length parameter of the

music string (L). The letter L is followed by a number between 1 and 255.

Usually, however, the number represents the lengths commonly used in

music. As the size of the number increases so the length decreases, L1 is a

whole note, L2 a half note, L4 a quarter note and so on. It is possible to have

a 1/255th note, but not many composers use them. Those of you who read

music will have heard of “dotted” notes. The dot tells you to increase the

length of the note by one half of its normal value. To obtain that effect with

the PLAY command, you put a dot, (or as many dots as you like) after the

number in the L parameter.

L4. = 1/4 + 1/8 = a 3/8 note

We now have sufficient to play a simple tune. Carefully type in the following,

5 CLEAR 50/0/

10/ A$ = “O2L4GG;L2GDL4BB;L2BGL4GB;

 O3L2DDL4C0/2B;L1AL4AB;

 O3L2CCO2L4BA;L2BGL4GB;

 L2ADL4F#A;L1G;”

20/ B$ = A$ + A$: PLAY B$

The separators (;) are being used here to indicate the bar divisions, they are

not actually needed. You should be able to recognise the tune, ‘Clementine’,
but it is being played far too slowly. The tempo parameter takes care of this,

 the letter T followed by a number between 1 and 255. The higher the number

the faster the tune is played. Try changing line 20/ to read,

20 B$ = A$ + A$: PLAY “T6” + B$

112

PLAY

The PLAY command is used to generate a music sequence. The argument is a

string expression, or string constant, or string variable. Its form is,

PLAY music

where music is constructed from the following elements:−

note A letter from 'A' to 'G' or a numeral from 1 to 12.

octave 'O' followed by a number from 1 to 5. Default

 O2. The default values are set by the computer when switched on.

note length 'L' followed by a number from 1 to 255.

 Default L4.

tempo 'T' followed by a number from 1 to 155. Default T2.

volume 'V' followed by a number from 1 to 31. Default V15.

pause length 'P' followed by a number from 1 to 255.

execution of substrings 'X' followed by string variable and a semi−colon.

A sharp flat note can be indicated by '+' or '#' for a sharp or '−' for a flat.

The note length parameter can be modified by the addition of a dot (.) after

the number, (L2.) to represent a dotted note.

The octave, volume, tempo, and note length can be modified by using one of

the following suffixes:-

+ Adds one to current value

− Subtracts one from current value

> Multiplies current value by two

< Divides current value by two

10/ X$ = “O3L4EF#L4.EL8AAG#ABL4O+C#O−B”

20/ A$ = “XX$;O4C#O−AF#O+DC#O−BL2AXX$;

 O+C#DEL8DO−BL<AG#L<AL4.BL8O+C#L4
 DO−BL4.O+C#L8DL<EC#L4.EL8EEEEEL1

 EL4.EL8DC#EDO−BL<AG#L<A”

30/ PLAY“T2V20/“+A$

113

Experiment by changing the 6, and find a value which suits your idea of what

speed the tune should be played at.

Most music also requires the ability to insert pauses in between phrases and

also to vary the loudness of certain passages. The pause parameter is the letter

P followed by a number. It follows the pattern of the note length parameter

(L), except you cannot use the dots after the number. To insert a pause the

equivalent of an L4. note, P4P8 would have to be used. The volume

parameter allows us to vary the loudness by inserting the letter V, followed by

a number between 0 and 31, as the number increases the piece becomes

louder. The example below uses the volume parameter to produce a

crescendo.

10/ A$ = “V10/O2L4GG;L1GP4V14L4GGG;

 L1GP4V18L4GGG;L2BL4BBBV22L2BL4BBB;

 V26O3L2DL4DDDL2DL4DDD;

 V30/L1GL2.F#L4C#;L2EDCO2A;

 L1GL2AL4.DL8A;L2B”

20/ PLAY “T5”+A$

Often a piece of music will contain a passage which is repeated in a number of

different places within the piece. Rather than type the passage more than

once, it is usually better to put it into a separate string variable. The execute

substring command X, allows this substring to appear as part of a normal

sequence of play commands. The X must be followed by the name of the

string variable and a semi-colon, as in,

10/ X$ = “O3L2GBO4C;DL4CO3BAG”

20/ Y$ = “L2ADD;L1.A”

30/ Z$ = “L2ADD;L1.G”

40/ A$ = “XX$;XY$;XX$;XZ$;L2BGG;O4CO3L4

 BAGF#;XY$;XX$;XZ$;”

50/ PLAY “T8” + A$

We could have used a substring in our 'Clementine' example, just change line

20/ to

20/ PLAY “T6XA$;XA$;”

The semi-colon must follow the dollar sign ($), substrings and the use of
numbers for the notes (instead of letters), are the only places where the

semi-colon is essential.

There is one more option which can be used with the volume (V), octave (O),

tempo (T) and note length (L) parameters. Instead of a number following the

114

letter, you can use one of the following suffixes:-

+ Adds one to the current value

− Subtracts one from the current value

> Multiplies the current value by two

< Divides the current value by two

Our final scale example could now be rewritten to include this extra option,

10/ PLAY “O1C”: FOR I = 1 TO 4:PLAY “DEFGABO+C”: NEXT I

Where does one get the music from? You could, of course, compose your

own, but for us lesser mortals, sheet music written for single line instruments

such as flute, recorder and trumpet are useful sources.

For those of you that have no inclination to play music on the computer, do

not ignore the PLAY command completely. Games fans can use it to produce

some very useful effects. Just try any one of the examples in this chapter with

the tempo parameter set at T255.

The final example uses ail the modern technology of the PLAY command on

a 40/0/ year old song. Would Henry be impressed?

10/ A$ = “O3L2E;L1GL2AL2.BL4O+C#L2O−B;

 L1AL2F#L2.DL4EL2F#;L1GL2EL2.EL4DL2E;

 L1F#V10/L2DV8L1O−BV6L2O+E;L1GL2AL2.B

 L4O+C#L2O−B;L1AL2F#L2.DL4EL2F#;

 L2.GL4F#L2EV8L2.D#V10/L4C#V15L2D#;

 L1.EL1EP1;”

20/ B$ = “O4L1.DL2.DL4C#O−L2B;L1AL2F#L2.D

 L4EL2F#;L1GL2EL2.EL4DL2E; L1F#L2D

 O−L1BO+L2B;O+L1DL2DL2.DL4C#O−L2B;

 L1AL2F#L2.DL4EL2F#;L2.GV10/L4F#L2

 EV6L2.D#L4C#V4L2D#;V15L1.EL2EP1;”

30/ PLAY “T10/XA$;XB$;XA$:XB$;”

115

116

CHAPTER TEN

FURTHER GRAPHICS

In chapter eight, we showed how the LINE and CIRCLE commands could be

used to produce regular shapes such as rectangles, circles, ellipses and arcs.

While these commands are extremely useful, it can require considerable

ingenuity to construct very detailed or irregular shapes using these

commands. The easiest way to handle these sort of shapes is to draw them.

When you draw a figure onto a piece of paper, you start at a particular place

and move the pencil up a certain amount, then to the right and so on. The

DRAW command allows you to repeat this process on the screen. The form

is,

DRAW string

where string is either a string constant, or a string variable, containing a set of

the draw subcommands. The approach is very similar to the PLAY command of

the last chapter.

Usually the first action of any drawing is to move to the start point.

M x,y means move to the co−ordinates given by x,y, as in M128,96, this will

move to screen centre. When you move to a point it is usually a good idea to

make a blank move, that is move without drawing or lifting the pencil off the

paper. If you do not you may get unwanted lines on your drawing. A blank move

is done by using the letter B, any drawing instruction following the B will be a

blank line. BM128,96 means move to the screen centre without drawing.

Having decided the start point, you may now move up (U), down (D), right

(R), or Left (L) by as many points as you like. The sequence U20/R20/D20/L20/

will cause a line to be drawn upwards 20/ points for the start, then to the right

20/ , then down 20/ and left 20/ , drawing a box. Time to start building an

example,

10/ PMODE 3,1: PCLS: SCREEN 1,1

20/ DRAW”C8;”BM120/ ,96:U26;R13;D26;L13”

80/ GOTO 80/

The semi-colon n a string is used as a separator. It is not actually required, we

have just used it to make the string easier to read. The example draws a

rectangle near the middle of the screen.

117

Apart from vertical and horizontal lines you can also draw diagonal lines.

These use the subcommands E,F,G and H, for instance E12 will draw a

diagonal line, 12 points long, at 45 degrees from the vertical. All the angles

are measured from the vertical as follows;

E 45 degrees F 135 degrees

G 225 degrees H 315 degrees

This allows diagonal lines to be drawn in any of 4 directions. Add the line,

40/ DRAW“L6;U6;E6;BR13;F6;D6;L6;BU26;H6;G6”

to our current program and the rectangle becomes a rocket! The computer

remembers its last position so line 40/ will continue drawing from that point.

Work through the string in line 40/ to see how it is done. The last position

drawn is the bottom left corner of the rectangle and BR13 means move right

13 points without drawing.

The rocket has been drawn in the default foreground colour, but we can

change that if we want by using C. The letter C is followed by a number from

0/ to 8, representing the code for one of the available colours. Using the editor

change line 40/ to read,

40/ DRAW“C7;L6;U6;E6;BR13;F6;D6;L6;H6;G6”

and we now have a two-tone rocket! The drawing can be painted exactly the

same way as other shapes, but the C command changes the default

foreground colour, so care is needed to avoid painting over everything.

The drawing is a bit small, so we wall scale it up with the S parameter. The S

means scale, and allows a drawing, or parts of a drawing to be scaled up or

down in units of ¼. So S1 reduces the drawing to ¼ scale, S2 to 2/4 (half) scale,

S8 to 8/4 (twice) scale, and so on. The default setting for scale is 4/4 (i.e. 1 the

original size). The S may be followed by any number from 1 to 62. Add the

line.

15 DRAW“S12”

and the rocket is now three times the original size.

Another option available is the angle parameter A. This allows us to rotate all

or part of the drawing, as all lines after the A will be drawn with the

displacement given by An. n is a number between 0/ and 3, as follows,

0/ 0/ degrees 1 90/ degrees

2 180/ degrees 3 270/ degrees

118

Alter the current program with the following lines

18 FOR I = 0/ TO 3:DRAW”A”+STR$(I):PCLS

50/ FOR D = 1 TO 10/0/ :NEXT D,I

The rocket now turns, but it also changes colour! This is because the

computer not only remembers the last position but also the last setting for C

and A. This problem can be solved by putting C8 at the beginning of the

string in line 30/ .

Line 20/ shows that, as with the PLAY command, the strings used by DRAW

can be used with the string functions. Also in a similar way to the PLAY

command you can execute substrings with the X command followed by a

string variable, XA$, and a semi-colon (;).

10/ PMODE 3,1:SCREEN 1,1: PCLS

20/ S$ = “L834F4”

30/ D$ = “A0/;XS$;A1;XS$;A2;XS$;A3;XS$;”

40/ DRAW”S24” + D$

50/ GOTO 50/

A triangle is stored as a substring in S$, which is then used in line 30/ to build a

pattern. Note this is the only place the semi-colon is essential, after the dollar

($) sign.

The final parameter is N, meaning no update of drawing position. This is to

draw a line as specified but do not use the end of the line as the new position,

NU10/L5, will draw a line 10/ points up, return to the start of the line, and draw

right 5 points (an L shape).

10/ PMODE 3,1: SCREEN 1,1: PCLS

20/ DRAW”BM128,96;NU25NR25NL25;NE17NF17NG17

 NH17”

30/ GOTO 30/

The above example will draw lines outwards from the centre, always

returning to the centre for the start of the next line.

Often you will want to add another drawing near to the one you have just

completed. You know where the new drawing is to be in relation to the old

one, but do not wish to work out the co-ordinates. This can be done with
relative movement such as 5 points to the right and lo up. The move command

(M) allows this easily, ali you have to do is specify the distance as plus or

minus the current point, i.e. M+5, −10. Remember to use the B to avoid

unwanted lines.

119

25 DRAW “BM−25,−25;U10/R25D10/L25”

Add the above line to the last example and a rectangle will be drawn above

the last drawing. The last position was 128,96, because of the N parameter.

We have now moved 25 points to left and 25 points up (remember y = 0/ is at

the top of the screen), and the rectangle drawing starts at that point (10/3,71).

The results of a DRAW command can be combined with shapes from the

LINE and CIRCLE commands, but remember that any subsequent scaling

(S), colour (C), or angle (A) changes will effect only the contents of the

DRAW part of the figure.

The PSET and PRESET commands can be used along with PAINT to block

in extra detail and colour. Be careful, in particular with PAINT, as changes in

the draw part of the figure may put the colour in all the wrong places.

GET THE PICTURE?

Having drawn your masterpiece using LINE, CIRCLE and DRAW etc, you

now want to move it around the screen. We could, of course, do this by

blanking out and redrawing each time, as before. This could take quite a bit

of time if the drawing was in any way complex, the next two commands take

care of this. All you have to do is GET a copy of your picture and PUT it

somewhere else. The GET command allows you to copy a rectangular area of

the screen into an array, which can be PUT back onto the screen later.

GET(x1,y1) − (x2,y2),arrayname, G

The x1,y1; and x2,y2 are the co-ordinates of the upper left corner and the

lower right corner of the rectangular area containing the picture you want to

store. The array name is the name of a previously dimensioned array, in which

the picture is to be stored. (If you have forgotten about arrays have another

look at the beginning of chapter six). The size of the array must match the size

of the display rectangle. The first array dimension is the width of the rectangle

(x2 − x1), the second the length, (y2 − y1). The last parameter, G is

optional and determines the amount of detail stored, it is necessary to include

the G parameter in PMODEs 0/ , 1, or 3 otherwise horizontal moves via PUT

may be inaccurate.

We will use our rocket to show how it is done. First, we must calculate the size

of the array that will be needed. The drawing starts at 120/ ,96, the left fin is 6

points across, the rocket and the right fin are 13 + 6, so the drawing is 25

points wide from 114,96 to 139,96. The height is 26 up, plus the nose cone,

120

which is 5 at the point, so the height is 31. Add a few points either way and

call it a 30/ 40/ rectangle with the left top corner at 112,60/ and bottom right at

142,10/0/ .

10/ PMODE 3,1: SCREEN 1,1: PCLS: DIM R(29,39)

20/ R$ = “C8BM120/ ,96;U26R13D26L13;C7L6U6E6BR13

 F6D6L6BU26H6G6”

30/ DRAW R$

40/ GET(112,60/) − (142,10/0/),R,G

10/0/ GOTO 10/0/

The above example draws our rocket as before (all in one string now) and

stores into the array R. Note that we only need a 29 x 39 array, because we

can use the zero elements in the array.

Having stored the drawing we now need to PUT it back onto the screen. The

PUT command has a form similar to GET

PUT (x1,y1) − (x2,y2), arrayname, action

The x1,y1 and x2,y2 are the co−ordinates of the rectangle as before, but this

time refer to the area where you want to PUT the drawing, not where it came

from. The arrayname is the array variable containing the stored drawing. The

action parameter is optional and is only needed when the G parameter has

been used with the GET commands. The action must be one of the following

words, and decides how the result is displayed in its new position.

PSET Set each point that is set in the source array. In other words,

 display it as you get it.

PRESET Reset each point that is set in the source array. This will

 either blank out the picture or reverse the colours,

 depending on the foreground and background colour

settings.

AND Compares the points in the original with those at the

 destination. If both are set then the point will be set. If one

 or other is not set the point will be reset. This means if one

 picture is placed on top of another only the points which

 coincide wall be shown.
OR Compares the points as above. If either the source or

 destination point is set the screen point will be set. This has

 the effect of overlaying one drawing with another.

NOT This reverses each point in the display area, thus displaying

 picture against foreground colour.

121

GET

The GET command may only be used in high resolution graphics modes.

GET will copy the graphics contents of a specified rectangular area on the

screen and store it into an array. The array must have been previously

dimensioned to the correct size.

GET(x1,y1) − (x2,y2),arrayname, G

x1,y1 and x2,y2 are the upper left and lower right co-ordinate of the rectangle

 on the display.

arrayname is the name of the predimensioned array that will store the

rectangle's contents.

G instructs full GRAPHIC detail to be stored, this command is optional.

See the PUT box for an example of GET usage.

122

You must always use PUT in the same mode as GET, otherwise strange

results may occur. We can now return to our example and PUT our rocket in

a different place. Add these extra lines.

50/ Y = 150/ :FOR X = 10/ TO 210/ STEP 40/

60/ PUT(X,Y) − (X + 30/ ,Y + 40/),R,PSET

80/ NEXT X

There should now be a line of rockets along the bottom of the screen. To

make the rocket move along the bottom just add the line,

70/ FOR D = 1 TO 20/0/ :NEXT D: PCLS

By using the joysticks in conjunction with the GET and PUT commands, you

can move your drawing at will,

10/ PMODE 3,1:SCREEN 1,1:PCLS:DIM S(48,48)

20/ DRAW”BM24,12,S8;C4;E2H2D4D8R8H8G8R2

 NR6F3R6E3”

30/ GET(0/ ,0/) − (48,48),S

40/ A$ = INKEY$:IF A$ = “” THEN 40/

50/ PCLS:A = JOYSTK(0/)3.25:B = JOYSTK(1) 2.25

60/ PUT(A,B) − (A+48,B+48),S:GOTO 50/

The above example draws a figure in the top left hand corner of the screen.

When you press any key the screen is erased and the figure can be moved

about using the left joystick.

This completes our coverage of the graphics facilities available. The examples

we have offered are necessarily limited and do not in any way represent what

is possible with a little thought and a lot of patience. Drawing pictures can be

made much easier with a little forward planning and drawing the shapes onto

the graphics worksheet rather than direct onto the screen.

123

DRAW

The DRAW command draws a line, or series of lines according to the

instructions held in a string. It only operates in the high resolution graphics

modes.

DRAW string

The string may be a string constant or a string variable and contain any of the

following subcommands.

Mx;y Move to the draw position at x,y

Un Up n points

Dn Down n points

Ln Left n points

Rn Right n points

En At 45 degrees for n points

Fn At 135 degrees for n points

Gn At 225 degrees for n points

Hn At 315 degrees for n points

X Execute a substring and return

C Set colour of line

Ak Displace next line by angle

 k = 0 0 degrees k = 1 90 degrees

 k = 2 180 degrees k = 3 270 degrees

Sk Scale drawing in units of ¼, k from 1 to 62

 k = 1 is quarter scale, k = 8 is double scale.

 Default k = 4

N No update of draw position

B Blank (do not draw, just move)

Relative movement can be specified with the 8 parameter in the form

M x offset, y offset

Where x offset and y offset are numbers specifying the distance to move from

the current position. Both numbers must be preeceded by either a plus (+) or

minus (−) sign.

An example of the usage of DRAW appears in the PUT box.

124

PUT

The PUT command is used to display the contents of a graphic array stored by

the GET command.

PUT must be used in the same mode that was used to create the array in the

first place, otherwise the results may be unpredictable.

PUT(x1,y1) − (x2,y2),arrayname,action

x1,y1 is the co−ordinate of the top left hand corner of the display area. x2,y2

the bottom right hand corner. The arrayname refers to the predefined array

containing the graphic detail. The action parameter is optional but must be

used if the G parameter was present in the GET command.

PSET Sets destination points as source array

PRESET Resets each point that is set in source array

AND Compares source array and destination. If both points set the

 point remains set, otherwise it is reset

OR Compares points as above, if either point is set the screen point is

 set

NOT Reverses the state of each point in destination area, regardless of

 source array.

The chosen display area must be the same size as the array or ‘garbage’ will be

drawn on the screen.

10/ PCLEAR 4:PMODE 3,1:PCLS:SCREEN 1,1:DIM W(30/ ,30/)

20/ DRAW“BM10/ ,12;S8;R1U3R1D2R2U2R1D3R1D2L1

 D2R1D1L2U3L4D3L2U1R1U2L1U2R1U2BR1BD1D2R2

 U2NL2R2D2L2U2”

30/ PAINT (11,13),6,5:GET(0/ ,0/) − (30/ ,30/),W

40/ A$ = INKEY$:IF A$ =“” THEN 40/

50/ PCLS:FOR C = 0/ TO 10/0/ STEP 20/

60/ FOR A = 0/ TO 20/0/ STEP 20/

70/ PUT(A,C) − (30/+A,30/+C),W

80/ PUT(A,C+30/) − (30/+A,60/+C),W

90/ PUT(A,C+60/) − (30/+A,90/+C),W

10/0/ PLAY”T255;ABFGBA”:PCLS:NEXT A,C

125

126

CHAPTER ELEVEN

THE FINISHING TOUCH

PRINT EXTRAS

While your control over the way results are shown on the screen is quite

extensive, using the PRINT and PRINT @ commands, there is one more

facility available. The PRINT USING command allows you to specify exactly

how each line should be printed. It is especially useful for producing tables,

forms and accounting type layouts.

PRINT USING format; output list

The format is a string constant or a string variable containing the instructions

as to how the output list is to be printed. The output list is the usual list of

constants and variables as appears in the ordinary PRINT command.

The instructions in the format are made up of 'field specifiers'. These are a set

of characters which tell the computer exactly how many print postions to use

to print a number or string.

The # specifier

This character is used to indicate the position of each digit in a number.

PRINT USING “# # #.# #”;A

The above statement will print the contents of A as 3 digits before the decimal

point and 2 after. If there are more than 2 digits after the decimal point, the

number will be rounded to fit. Any unused positions on the left hand side of

the decimal point will be displayed as spaces if the number is too big to fit into

the space allowed, the computer will do the best it can and print the number

with a % sign in front to show that this has happened.

PRINT USING “# # # . # #”; 13.4695

13.47

PRINT USING “# # # . # #”; 1492.878

%1492.88

PRINT USING “# # # . # #”; 146

146.0/0/

PRINT USING “# # #”; 18.76

19

The specifier

127

Most accountants do not like the idea of printing numbers with spaces in

front, especially for cheques. This can be taken care of by using the asterisk

specifier. If you place two asterisks at the beginning of your numeric field the

unused positions will be filled with asterisks.

PRINT USING “# # # . # #”;1.492

1.49

The + specifier

When the + is placed at the beginning of a numeric field it forces the sign of

the number to be printed,

PRINT USING “+ # # # . # #”;14.7

 + 14.70/

PRINT USING “+**# # # . # #”:−7.4

−7.40/

lf the plus sign (+) is placed after the numeric field it wall force the sign to be

printed alter the number.

PRINT USING “# # # .# #+”;27.86

27.86+

PRINT USING “# # # . # #+”;−1.6

1.60/−

If a minus sign is placed after a number it will cause all negative numbers to

appear with a following minus sign, positive numbers will be followed by a

space,

PRINT USING “# # # . # #−”;−12.418

12.4−

PRINT USING “# # # . # #−”;47.25

 47.25

The ↑ ↑ ↑ ↑ specifier

This field allows numbers to be printed in exponential form. The four upward

arrows must follow the number field.

PRINT USING “# # # . # # ↑ ↑ ↑ ↑”;123456

1.2346E+0/5

The ! specifier

This specifier is used with strings. It will print only the first string character

that occurs.

128

PRINT USING “!”;”CREDIT”

C

The % specifier

To print out strings it is necessary to specify the width of the field they are to

appear in. This is done with two % signs separated by a number of spaces.

The width of the field will be the number of spaces plus two. If the string is

longer than the available field, only the first n characters will be printed,

where n is the length of the field.

PRINT USING “%%”;“DEBIT”

DEBIT

PRINT USING “%%”;“BALANCE”

BAL

The $ specifier

The dollar sign ($) is used to represent money. If placed in front of a numeric

it will force a dollar sign onto the output.

PRINT USING “$# # #.# #”;2.87

$2.87

If two dollar signs are used it will cause the $ to be printed just in front of the

number.

PRINT USING “$$# # #.# #”;2.87

$2.87

Used in conjunction with the two asterisks the dollar sign will produce the

following result,

PRINT USING “$#.# #”;14.9

$14.90/

Spaces and other characters appearing in the format string will also appear in

the output,

PRINT USING “MEAN# #.# #TOTAL# # # . # #”;;3.4,40/ .8

MEAN3.40/TOTAL40/ .80/”

If the output list contains more items than the number of fields in a format, the

format is restarted from the beginning.

PRINT USING “# # #.# #”;7.84,142.5,.234

7.84142.50/0/ .23

129

Of course, using the screen, the length of the line produced by the PRINT

USING statement is still limited to 32. Anything over this will cause the line

to ‘wrap around’, i.e. start on the next line. For those with a printer, however,

the line length you can use will be much longer (at least 80/ characters on most

printers). The form for printer use is

PRINT #−2,USING format; output list

format and output list are as before, the −2 means send to the printer channel

not to the screen. If you want it displayed and printed then you will have to

use two PRINT USING statements.

CASETTE INPUT AND OUTPUT

So far all our programs have required us to enter any data we may need (or

READ it from a DATA statement), and all the output has gone to the screen.

You can, however, use your cassette to store data, as well as programs. This

stored data can then be read back in at a later date. The cassette is connected

and set up in exactly the same way as for storing programs. You then need to

tell the computer it is working with data files. This is done with the OPEN

command

OPEN a,#−1,filename

The a must be either “O” or “I”. “O” means output, that is the data is going

out from the computer to the tape. “I” means input, the data is coming from the

tape in to the computer.

The #−1 tells the computer you are using the cassette recorder. The filename

is the name you want to call the data file (any name, beginning with a letter

and 8 or less characters long, will do).

The next step is to write the data to the tape. This is done with a PRINT

command in the following way.

PRINT #−1, output list

The only difference from the PRINT command we have been using all this

time is the #−1. This tells the computer to print the output list to the tape and

not to the screen.

When you have finished writing out the data, you must close the file with

the CLOSE command.

CLOSE #−1

130

PRINT USING

The PRINT USING command allows greater control over the layout of

results output to the screen, (or printer).

PRINT USING format; output list

The format is a string constant or variable containing the 'field specifiers'

indicating how the output list is to be printed. The output list is a list of string

or numeric variables (or constants) separated by commas.

The 'field specifiers' are as follows;

CHARACTER ACTION EXAMPLE RESULT

Formats numbers “# # # #”;147.2 147

. Decimal point “# # .# #”;34.678 34.68

, Display comma to the

 Left of every third character

 “# # # # # .#”;123456 123,456

 Fill leading spaces with

 asterisks “###.###”;1.47 1.470/

$ Places dollar sign ahead of

 number “$####.##”;12.689 $12.69

$ Floating dollar sign “$####.##”;12.689 $12.69

+ In first position causes sign

 to be printed in front, in

 last position prints after

 number “# # .# #+”;−12.689 12.69−

↑ ↑ ↑ ↑ Print in exponential format “# # .# #↑ ↑ ↑ ↑”;12.689 1.27E+0/1

! Prints only the first string

 character “!”;CREDIT C

%spaces% String field. Length of

 field is number of spaces

 plus 2 %%”; “BALANCE” BALANCE

131

Each 'field specifier' may be separated by any number of spaces which will

appears as spaces on the output line.

10/ CLS:INPUT”ENTER LAST BALANCE”;B:C=0/ :D=0/

20/ CLS:T$=“%%%%%%”

30/ L$=“# # # # . # ## # # # . # ## # # #. # #+”

40/ PRINT USING T$;“DEBIT”, “CREDIT”, “BALANCE”

50/ PRINT USING L$;D,C,B

60/ OPENI“,#−1,”CHEQ”

70/ IF EOF(−1)THEN 110/

80/ INPUT#−1,A:D=0/ :C=0/

90/ IF A<= THEN D=ABS(A)ELSE C=A

10/0/ B=B+C−D:PRINT USING L$;D,C,B:GOTO 70/

110/ CLOSE#−1:END

OUTPUT TO PRINTER

For those with a printer connected to the parallel I/O port, there are

variations in some commands which allow output to be directed to the printer

and no to the screen.

PRINT#−2, output list
PRINT#−2, USING format;output list

The format and output list are the same as for use on the screen

POS(−2) will return the current position of the print head

LLIST will list a program directly to the printer. Its use is as for the LIST

command.

Using the [SHIFT][0/] combination allows lower case to be output to the

printer. The lower case option can only be used in strings or REM statements,

as all commands to the computer must be in upper case letters.

132

To read the data back in you use the same steps except this time the file

is opened for INPUT and instead of PRINT you will use,

INPUT#−1, input list

The CLOSE command is the same for both.

The examples below show how it's done. First set up the cassette recorder and

wind the tape to the place you want the file to be, (use SKIPF). Now press the

PLAY and RECORD buttons together.

10/ CLS:PRINT“CREATE PHONE LIST”

20/ OPEN”O”,#−1, “PHONE”: PRINT“ENTER XXX,XXX TO END”

30/ PRINT @ 128, “”;:INPUT”NAME”,N$

40/ INPUT”TELEPHONE NO.”;T$:IF

N$=“XXX” OR T$=“XXX” THEN 60/

50/ PRINT #−1,N$,T$:PRINT @ 128, “”:GOTO 30/

60/ CLOSE #−1:END

When you run the program the tape will come on and start the file on the

tape. Each time you enter a name and number it is written to the file. (the

PRINT @ 128 statement in line 30/ just clears the line on the screen). This will

continue until you enter XXX,XXX, at which point the file is closed and the

program ends.

Now all we have to do is to read it back in again. The main difference between

output and input, is with input you must not try to read past the end of the

file. This is taken care of by the extra statement you will need for input, the

EOF command, this checks to see if the end of the file you are reading has

been reached.

Rewind the tape to the beginning and this time press only the PLAY button.

10/ CLS:PRINT“READ PHONE LIST”

20/ OPEN“I”,#−1, “PHONE”

30/ PRINT”NAME”,NUMBER”

40/ IF EOF(−1)THEN 60/

50/ INPUT #−1,A$,B$:PRINT A$,B$:GOTO 40/

60/ CLOSE #−1:END

When you run the program this time the tape will start and look for the file
“PHONE”. (You may have to wait a short while if it is towards the end of the

tape). It will then read in the name and number and display them on the

screen. Note that you do not have to use the same variable name you used to

write out the data. You must however use the same type of variable. When

the end of the file is reached it is closed and the program ends.

133

The EOF command has to appear before the INPUT #−1 command,

otherwise you wall get an IE error, (trying to read past the end of the file).

Do not forget to CLOSE a file either as this can cause problems, especially

when writing to a file.

A BIT MORE

You are now on your way to becoming an expert BASIC programmer, and

may wish to look ahead to the next step − machine language. This is the

computers native language, and so far you have been talking to it through an

interpreter which speaks BASIC.

Why would you want to bother? Well machine language instructions will

work much faster, may use less memory, and even allow you to do some

things that BASIC doesn't.

The best approach is to obtain a manual on machine language, with special

reference to the 680/0/ series microprocessors. One such manual is

Basic Microprocessors and the 680/0/ by Ron Bishop and published by the

Hayden Book Co. Inc.

Once you have the background, your computer has a number of routines

which allow you to use machine language routines. Brief details of these are

given below.

USRn this allows you to call up to ten (0/ to 9) machine language routines.

The form is,

USRn (argument)

Where argument may be a string or numeric expression. When a USR call is

met in the program, control is transferred to the address given in the DEF

USRn statement. The address specifies the entry point of the machine

language routine.

DEF USRn is used to define the address of a USRn function. Its form is

DEF USRn = address

n is between 0/ and 9 and matches the n in the USR. The address must be

between 0/ and 65535 and contain the entry address for USRn.

CLEAR s,h. The CLEAR statement should be used to reserve memory for USR

functions. The s refers to the amount of string space reserved as before.

134

The h is the highest memory address that BASIC may use. From h + 1

onwards is now reserved for machine language routines.

POKE. The POKE command is used to place a value into a specific part of

memory.

POKE address, value

The address is as above and value must be between 0/ and 255.

VARPTR. A pointer to a BASIC variable can be used as an argument by a

USR function. This would allow a USR function to access the contents of an

array.

VARPTR (variable name)

Where variable name is the BASIC variable you wish to access. VARPTR

is used as part of the USR argument as in.

USR0/ (VARPTR(X))

Machine language routines may be saved and loaded from cassette by

using CSAVEM and CLOADM.

CSAVEM name, start, end, entry

CLOADM name, offset

name is the name for the file on tape, start is the starting address of the

routine in memory, end the last address occupied by the routine and entry is

the program entry point. The offset in the CLOADM command allows you to

reload the routine into memory it an address given by start + offset.

Once loaded, control can be transferred to the routine by the EXEC

command,

EXEC address

The address is the start of the routine, if address is omitted the computer

will use the start from the last CLOAD command.

135

APPENDIX A

A.S.C.I.I. CHARACTERS CODES
(Decimal)

KEY WITHOUT

SHIFT KEY

WITH

SHIFT KEY

[BREAK] 3 3

[CLEAR] 12 92

[ENTER] 13 13

[SPACEBAR] 32 32

! 33 −

“ 34 −

35 −

$ 36 −

% 37 −

& 38 −

' 39 −

(40 −

) 41 −
 42 −

+ 43 −

, 44 −

− 45 −

. 46 −

/ 47 −

0/ 48 18

1 49 −

2 50/ −

3 51 −

4 52 −

5 53 −

6 54 −

7 55 −

8 56 −

9 57 −

: 58 −

; 59 −

< 60 −

= 61 −

> 62 −

136

KEY WITHOUT

SHIFT KEY

 WITH

 SHIFT KEY
? 63 −

@ 64 19

A 97 65

B 98 66

C 99 67

D 10/0/ 68

E 10/1 69

F 10/2 70/

G 10/3 71

H 10/4 72

I 10/5 73

J 10/6 74

K 10/7 75

L 10/8 76

M 10/9 77

N 110/ 78

O 111 79

P 112 80/

Q 113 81

R 114 82

S 115 83

T 116 84

U 117 85

V 118 86

W 119 87

X 120/ 88

Y 121 89

Z 122 90/

↑ 94 95

↓ 10/ 91

← 8 21

→ 9 93

The without shift characters are obtained by using the [SHIFT][0]

combination to move into lower case.
The following lower case characters are available with the CHR$ function:

[CHR$(123) ↑ CHR$(126)

/ CHR$(124) ← CHR$(127)

] CHR$(125)

137

The characters from 128 to 255 are graphics characters as follows:

GRAPHICS CHARACTERS

To produce the above characters use CHR$ with the appropriate code. To

obtain the other colours, add the appropriate number to the code. For

example, PRINT CHR$(142+112) produces character 142 except the green

area is orange.

+ 16 yellow + 32 blue + 48 red

+ 64 buff + 80 cyan + 96 magenta

 + 112 orange

138

APPENDIX B

PRINT AND GRAPHIC SCREENS

The following work sheets are useful for designing graphics and print layouts.

The first is used for the PRINT @ command

The second for low resolution graphics on the text screen, using the SET and

RESET commands.

The third is for the high resolution screen and all the high resolution graphics

commands.

139

Print @ Grid

 4
8

0

 4
4

8

 4
1

6

 3
8

4

 3
5

2

 3
2

0

 2
8

8

 2
5

6

 2
2

4

 1
9

2

 1
6

0

 1
2

8

 9
6

 6
4

 3
2

 0 ►

 ▼

0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0

1

 1

1

 1

1

 1

1

 1

1

 1

1

 1

1

 1

1

 1

1

 1

1

 0

2

 1

2

 2

2

 3

2

 4

2

 5

2

 6

2

 7

2

 8

2

 9

2

 0

3

 1

3

140

Low Resolution Grid

141

High Resolution Grid

142

APPENDIX C

ERROR CODES

CODE EXPLANATION

/0/ Division by zero. Not possible.

AO Attempt to open a file which is already open.

 Usually appears after pressing RESET to stop a program using files.

 Switch off and on again.

BS Bad Subscript. Usually because the value of subscript is greater than

 the declared dimension of the array.

CN Can't Continue. Trying to use CONT when at the END of a program.

DD Attempt to redimension an array. Arrays can only be dimensioned

 once in a program.

DS Direct Statement. Usually appears if you attempt to CLOAD a data file.

FC Illegal Function Call. Usually parameter is out of range or the wrong

 variable type.

FD Bad File Data. Caused by trying to read string data into string

 variable using cassette data files.

FM Bad File Mode. Trying to INPUT from a file which is OPEN for

 output (O), or PRINT data to a file OPEN for input (I).

ID Illegal Direct Statement. Attempt to use a statement which can only be

used in a program e.g. INPUT, DEF FN.

IE Attempt to input past the end of a file. Use IF EOF (−1) to check

 this does not happen.

IO Input/Output Error. Cassette not adjusted correctly or bad tape.

LS String too long. Maximum is 255 characters.

NF NEXT without FOR. Usually occurs when NEXT statements are

reversed in a nested loop.

NO File not open. Input and output to a data filo can only take place after

 OPEN.

OD Out of data. A READ statement has read all the DATA statements.

OM Out of Memory. All available memory is being used or has been

reserved.

OS Out of String Space. Use CLEAR to create more space if available.

143

CODE EXPLANATION

OV Overflow. The number is too large for the computer to handle

 (ABS(X)>1E38).

RG RETURN without GOSUB. Program has most likely fallen through

the end into the subroutine, (use END) or a branch has been made

into the subroutine.

SN Syntax Error. Usually caused by typing errors or incorrect punctuation.

ST String formula too complex. Break the operation into smaller steps.

TM Type Mismatch. Attempt to assign string data to numeric variable or

 vice versa.

UL Undefined Line. A branching statement has been directed to a line

 that does not exist.

144

APPENDIX D

TRIGONOMETRIC FUNCTIONS

In a right angled triangle ABC,

 AB is called the side adjacent to the angle α .

 BC is called the side opposite to the angle α .

 AC is called the hypotenuse.

The SINE, COSINE and TANGENT of the angle α are defined as follows:

 SIN α =
hypotenuse

 side opposite

 COS α =
hypotenuse

 side opposite

 TAN α =
sideadjacent

 side opposite

ALL BASIC trigonometric functions are assumed to be measured in radians.

A radian is a measure of an angle in circular units. There are 360/
o
 degrees, or

2 π radians, in a circle. (π is a Greek letter, pronounced “pie”, representing a

constant numbert 3.1415926). So convert from one to the other as follows:

 degrees/(180/ / π) = radians

 radians(180/ / π) = degrees

The inverse of a function is the reverse of applying a function.

For instance, the tangent of angle of 1.5 radians is,

 TAN(1.5) = 14.10/1419

The inverse of the function TAN is ATN. This is used to find the angle, if you

already know the tangent,

 ATN(14.10/1419) = 1.5

145

The inverse of the SIN and COS functions, are not available in BASIC, but

can be found by using the ATN function in the following formulae:

 Inverse Sine = (ATN(X/SQR(−XX+1))

 Inverse Cosine = (ATN(X)SQR(−XX+1))+ 1.5708

146

INDEX

 Page No.

! in PRINT USING 129

! specifier in PRINT USING 128

specifiers, PRINT USING 127

$ sign in PLAY 114

$ sign, string variables 11,12,14

$ specifier in PRINT USING 131

% in PRINT USING 129

% specifier in PRINT USING 129

 in PRINT USING 127,128

+ in PRINT USING 128

− in PRINT USING 128

6800 microprocessors 134

? symbol 5

?/0 ERROR 2

?OD ERROR 76

?OM ERROR 76

?SN ERROR 2

A command in DRAW 118

ABS function 67

Adding sound to graphics 109

Addition 4

Address of routine 134

Adjusting colour balance of TV 82

Algorithm 27

Altering program line 39

AND in IF statement 50

AND operator 50

AND with PUT command 121

Angle subcommand in DRAW 118

Approach to programming 24,27

Ares 102−104

Arguments, of functions 66−73

Arithmetic expressions 5,6

Arithmetic operations 3

Arithmetic operators 13

Array dimensions 63

Array index 63

147

INDEX

 Page No.

Array sizes with GET 120

Array variables 9

Array variable names 63

Arrays, numeric 63

Arrays, string 63

Arrays, subscripts 63

Arrays, use of 64,66

Arrays, use with GET command 120

Arrow keys 84,85

ASC function 71

ASCII character codes 136

Assigning values to variables 11,12

Assignment statements 11,12,19

ATN function 67,145,146

AUDIO OFF command 109,111

AUDIO ON command 109,111

AUX socket 35

Available colour set 91,93−95

B command in DRAW 117

Background colour 95,97

Backspace key 1

Backward arrow key 16,84,85

BASIC 2

Blank move in DRAW 117

Bouncing ball example 86

Brackets, use of 5

Branching statements 47

Branching statements in loops 57

Branching, in subroutines 60

BREAK key, use of 47

BREAK key 16

Built in functions 72

C command in DRAW 118

Calling subroutines 59

Cassette control example 109

Cassette motor control 109

Cassette output 130,133

148

INDEX

 Page No.

Cassette recorder, type 35

Cassette recorder, use of 35

Cassette recorder, connections 35

Cassette recorder, setting up 35−38

Cassette recorder, remote control 35

Cassette tape as storage 35−38

Castle example 82−83

Changing characters in editor 39

Changing graphics pages 104−107

Changing program lines 24,38

CHR$ function 69,137,138

CHR$, graphics characters 81−82

Chromatic scale in PLAY 112

CIRCLE command 102,103

CIRCLE command, with DRAW 120

Circles 102−104

CLEAR command 76,78,134

CLEAR key 1

Clementine example 112

CLOAD command 36,37

CLOADM command 135

CLOSE command 133

CLS command 16,26

Colon, use as separator 15,20

COLOR command 95,97

Colour codes with CHR$ 138

Colour subcommand in DRAW 118

Colouring shapes 100,101

Combining DRAW and LINE 120

Command summaries 13

Comments in programs 27,33

Computer decisions 49

Computer music 109−115

Concatenation of strings 13

Conditional branch 47−50

Conditions, testing 48,49

Constants 9

149

INDEX

 Page No.

Constructing pictures 82

CONT command 44,46

Continuing a stopped program 44,46

Control, transfer in programs 47

Controlling recorder 109

Converting degrees to radians 73

Copying graphics pages 104−107

Copying values of variables 12

Correct versions of program 34

Correcting errors in line 1

COS function 67,145

Cosine, definition 145

CSAVE command 36,37

CSAVEM command 135

Cursor, use in editor 39

Cursor 1

D command in DRAW 117

DATA command 76,77

Data pointer 76

Dealing cards example 79

Debugging programs 27

DEF FN command 72,74

DEF USRN command 134

Degrees to radians, conversion 145

DEL command 42,43

Delay loops 55

Deleting characters in editor 39

Deleting program lines 42

Diagonal angles in DRAW 118

Dice simulation program 32,34

DIM command 63,65

DIN plug 35

Display screen page 104

Division operator 4

Dotted notes 112

Down command in DRAW 117

Downward arrow key 84

150

INDEX

 Page No.

DRAW command 117,124

Drawing arcs 104

Drawing circles 102

Drawing diagonals 118

Drawing ellipses 104

Drawing lines 96

Drawing method 117

Drawing pictures 81−107

Drawing rectangles 96−99

Dummy variables in DEF FN 72

E command in DRAW 118

EAR socket 35

Earphone socket 35

EDIT command 39,40

EDIT, backspace 39

EDIT, change 39

EDIT, cursor 39

EDIT, delete 39

EDIT, example of use 41

EDIT, extending line 39

EDIT, hack 42

EDIT, insert mode 39

EDIT, insert 39

EDIT, kill 42

EDIT, leaving 41

EDIT, search 39

EDITOR 38−42

Educational programs 53

Ellipses 102−104

End of data filo 133

ENTER key 2,5,

Entering a program 15

Entry point of routines 134

EOF command 133

Equals sign, meaning in BASIC 11

Error codes 143−144

Errors, explanation 143−144

151

INDEX

 Page No.

EXEC command 135

Execute substring in PLAY 114

Execute substring in DRAW 119

EXP function 67

Exponential form, PRINT USING 128

Exponentiation 3

Expression in IF statements 49−55

Expressions, use of variables 12

Expressions, string 12

F command in DRAW 118

False conditions 49

Field specifiers 127

File names 36,130

Firing weapon example 88

FIX function 67

Flipping pages 104

FOR command 55−59

FOR NEXT command 55,58

Foreground colour 95

Formats in PRINT USING 127

Forward arrow key 84

Function names 66

Functions, classes 66

Functions, class I 67−69

Functions, class II 69−70

Functions, class III 70

Functions, class IV 71

Functions, class V 71,72

Functions, list of 67−72

Functions, mixed type 69,71

Functions, types of 67

Functions, user defined 72

Functions 66−73

G command in DRAW 118

G parameter with GET command 120

GET command 120−123

GOSUB command 59,62

152

INDEX

 Page No.

GOTO command 30,47,60

Graphics characters, CHR$ 138

Graphics modes 91

Graphics pages 91

Graphics, screen worksheet 141,142

Graphics, available colors 82

Graphics, use of strings 82

Greensleeves example 115

H command in DRAW 118

HEX$ function 70

High resolution 81

High resolution mode 91

High resolution graphics 91−107

Horizontal movement 84

House drawing, example 98−100

I/O ERROR 36

IF statements, conditions 49

IF statements, strings 50

IF statements, relations 50

IF statements, expressions 49−53

IF statements, relational operators 50

IF statements, logical operators 50

IF THEN ELSE command 49,51

INKEY$ function 52,71

INKEY$, use of 55

INPUT command 16,23

Inserting characters in editor 39

Inserting program lines 24

INSTR function 71

INT function 67

Jack sockets 35

Joystick button 88

JOYSTK command, use of 86

JOYSTK function 68

Keyboard 1

L command in PLAY 112

L command in DRAW 117

153

INDEX

 Page No.

Leaving the editor 41

Left command in DRAW 117

LEFT$ function 70

LEN function 71

Line colour in DRAW 118

LINE command 96−100

LINE command, with DRAW 120

LINE IN socket 35

LINE INPUT command 73,75

LINE INPUT, use of 73

Line length 49

Line number increment 43,44

Line numbers in ON GOTO 47

Line numbers 15

Line numbers, range of 24

Line sequence in subroutines 60

Lines in program 15

LIST command 16,17,42

Listing line in editor 41

Lists 63

Loading programs from cassette 36

LOG function 68

Logical operators 50

Loop counters 55

Loops, delay 55

Loops, nested 56

Loops 55,57

Low resolution 81

Low resolution graphics 81−90

Low resolution worksheet 141

Lower case characters 1,137

M command in DRAW 117

Machine language 134−135

Making decisions 49

MEM function 72

Memory addresses 134

Memory storage of strings 6

154

INDEX

 Page No.

MID$ function 70

Minus sign in DRAW 119,120

Mixing strings and numbers 13

Mode use with GET & PUT 123

MOTOR OFF command 109,111

MOTOR ON command 109,111

Move subcommand in DRAW 117

Movement in graphics 104

Movement with joystick 86

Moving man example 84−85

Moving pictures 84−85

Multiple branching 47,60

Multiplication operator 4

Music keyboard 110

Music sources 115

Music string 110

Musical notes 110

N command in DRAW 119

Nested loops 57

NEW command 18,36

NEXT command 55−59

No update in DRAW 119

NOT with PUT command 121

Note length subcommand 112,114

Note subcommand 112

Notes, music 112

Numeric arrays 63

Numeric characters in strings 6

Numeric expression 47

Numeric functions 67−69

Numeric variables 9

Numeric variable names 9,10

0 and zero, difference 1

0 command in PLAY 112

0 in OPEN command 130

Octave subcommand 112

OK, prompt 1,5

155

INDEX

 Page No.

ON GOSUB command 60,62

ON GOTO command 47,48

OPEN command 130

Operating modes, immediate 2

Operating modes, deferred 2

Options, selecting of 47

OR operator 50

OR with PUT command 121

Order of precedence 4,5

Output to cassette 130

P command in PLAY 114

PAINT command 100−102

PAINT command, with DRAW 120

Parentheses, use of 5,6

Pause subcommand 114

PCLEAR command 91,92

PCLS command 95,97

PCOPY command 105,107

PEEK command, use of 88

PEEK function 68

Placing values in memory 135

PLAY button, cassette recorder 36

PLAY command 109−115

PLAY subcommands 110

PLAY, use in games 115

Plus sign in DRAW 119

Plus sign, used with strings 12

PMODE command 91,93

POINT command, use of 90

POINT function 68

Pointers to BASIC variables 135

Points in high resolution 91,95

Points on TV screen 81

POKE command 135

POS function 68

Position of EOF command 133

Power, raising a number to 3

156

INDEX

 Page No.

PPOINT command 95

PPOINT function 68

Precedence, modifying 5

Precedence, operators of 3

PRESET command 95,97

PRESET command with DRAW 120

PRESET with PUT command 121

PRINT @, in graphics 81−85

PRINT @ command 20,29

PRINT @ command worksheet 140

PRINT command 16,21

PRINT command, after STOP 44

Print screen worksheet 140

PRINT USING command 127,131

PRINT USING, strings 129

PRINT#−2, using command 132

PRINT#−1 command 130

PRINT 2

Printing characters 81

Program construction 24

Program documentation 27

Program order of operation 15

Program order 24

Program sequence 15

Program structure 59

Program, definition 15

Program, lines 15

Program, sections 27

Program, statements 15

Programming example 32−34

PSET command 95,97

PSET commands, with DRAW 120

PSET with PUT command 121

PUT command 121−123,125

PUT command parameters 121,125

Quotation marks 6

R command in DRAW 117

157

 INDEX

 Page No.

Radians to degrees, conversion 145

Radians, definition 145

Radians, use in functions 73

Radians 67−69

READ command 76,77

Reading data from program 76,77

Reading data files 133,134

RECORD button cassette recorder 36

Recording hints 38

Relational operators 50

Relations in IF statements 50

Relative movement in DRAW 119

REM statement 27,33

Remote control socket 35

RENUM command 43,44

Renumbering program lines 43,44

Repeated formats in PRINT USING 129

Repeated phrases in music 114

Repeating line sequence 55

Reserving memory for graphics 91

Reserving string space 76

Reserving memory for routines 134

RESET command 85−87

Resolution of TV screen 81

RESTORE command 76,77

RETURN command 60,62

Right subcommand in DRAW 117

RIGHT$ function 70

RND command 20,25

RND function 20,66,69

RND, use of 20

Rocket example 118−119

Rotation angles in DRAW 118

Rules of arithmetic 3−6

RUN command 16,18,24,42

Running machine language routines 135

S command in DRAW 118

158

INDEX

 Page No.

Saving machine language routines 135

Saving more than one program 38

Saving program onto cassette 36

Scalar variables 9

Scale in C 110

Scale in G 110

Scale subcommand in DRAW 118

Scales, music 110

SCREEN command 94,95

Screen colours 20

Screen type 95

Search, in editor 39

Searching text example 80

Selecting options 47

Semi−colon in PLAY 110

Semi−colon in DRAW 118,119

SET command 85−87

SGN function 69

SHIFT key 1

Ships in space 88

Shooting type games 86

Shuffling cards example 64

Simple variables 9

SIN function 69,145

Sine, definition 145

Single quote as REM 27

SKIPF command 37,38

SKIPF, use of 133

Sorting, alphabetical 66

Sorting, example 66

Sorting, using arrays 66

SOUND command 20,24,31

Sound effects 109

Space dogfight example 88

Spacebar, use in editor 39

Spaces in BASIC statement 7

Spaces in strings 6

159

INDEX

 Page No.

Spaces in PRINT USING 129

SQR function 70

Start point in DRAW 117

STEP command 56−57

STEP, omission of 56

STOP command 44,46

Stopping a program 16,44

Storing data in program 76

Storing data on cassette 130

Storing program line 15

Storing programs on tape 36

Storing string variables 76

Storing values in variables 11

STR$ function 70

String arrays 63

String functions 69−71

String variables 9

String variable names 11,14

String variables in expressions 12

STRING$ function 70

Strings in IF statements 50

Strings, characters 6

Subroutine libraries 60

Subroutines, line numbers 60

Subroutines 59

Subscripts in arrays 63

Substrings in PLAY 114

Subtraction 4

Suffices in PLAY 115

Syntax error 2

System commands 42

T command in PLAY 112

TAN function 69,145

Tangent, definition 145

Tape file names 36

TAPE socket 35

Tempo subcommand 112,114

160

INDEX

 Page No.

Testing conditions 49

Text screen 91

TIMER function 72

Tracing program flow 44

Transfer of program control 47

Trigonometric functions 67−69,145−146

TROFF command 44,46

TRON command 44,46

True conditions 49

Tune, Clementine 112

Tune, Greensleeves 115

Tune, Lavender Blue 114

TV screen 1,81

Twelve tone scale 110

Two dimensional arrays 64

U command in DRAW 117

Unary minus 3

Up subcommand in DRAW 117

Upper case characters 1

Upward arrow key 4,84

User defined functions 72

USRN command 134

VAL function 71

Variable names 9

Variable types 9

Variable types in IF statements 50

Variables, values of 11

Variables 9

VARPTR command 135

Vertical movement 85

Video RAM 91

Volume control, TV 16

Volume control, cassette recorder 35

Volume control setting, cassette 36

X command in PLAY 114

X command in DRAW 119

X,Y grid 84

161

 Page No.

X,Y point 86

Zero, representation 1

 ↑ specifier in PRINT USING 128

162

DRAGON - ADDITIONAL INFORMATION

This booklet contains some extra information which we hope will enable you

to get the best out of your Dragon microcomputer. Particularly important is

the paragraph concerning the cassette recorder lead, as this differs from the

information given in your Dragon “Introduction to Basic Programming”

manual.

information on the connection and adjustments of your television is also

included with details of the printer connection and a copy of the Dragon

memory map.

TELEVISON

Once you have connected your computer to a television anti switched on,

select a spare channel control and tune in, as given in the “Introduction to

Basic Programming'' manual, lithe television picture is not stationary then it

is necessary to adjust to vertical hold on the television set. If there is no

external control for the vertical hold, contact your television service engineer

for assistance.

To obtain a picture of clarity adjust the contrast, brightness and colour

according to personal choice.

CASSETTE

To connect the cassette recorder to the computer using a Dragon Data

cassette lead, put the DIN plug into the socket marked TAPE on the left side

of the computer. The three plugs on the other end of the lead are connected

to the cassette recorder as follows:

ii) The smallest jack plug with blue wire fits into the small jack socket

 usually marked REM and next to the microphone socket.

ii) The jack plug with the red wire fits into the socket usually marked AUX

 or MIC or LINE IN. If there is choice of socket between AUX and MIC,

 always use AUX.

iii) The _jack plug with the white wire fits into the socket marked EAR or

 MONIT, or L/S or SPKR.

When using the rewind or forward wind controls on the cassette recorder, it

may be necessary to remove the jack plug from the REM socket jar these

controls to operate.

Always ensure that this plug is reinserted afterwards.

Alternatively, type MOTOR ON and press ENTER before using the rewind

or forward wind control. Afterwards type MOTOR OFF and press ENTER

to continue using the cassette recorder in con junction with the computer.

If you wish to reuse a cassette tape it is recommended that the complete tape

is erased before re-recording.

PRINTER

The printer point provided on the left hand side of the Dragon computer is for

a printer using a parallel centronics type interface (socket 6 in illustration of

“Introduction to Basic Programming” manual). The pin connections are as

follows.

PIN 1 Print Strobe PIN 2 +5 volts

PIN 3 Data bit 0 PIN 4 +5 volts

PIN 5 Data bit 1 PIN 6 0 volts

PIN 7 Data bit 2 PIN 8 0 volts

PIN 9 Data bit 3 PIN 10 0 volts

PIN 11 Data bit 4 PIN 12 0 volts

PIN 13 Data bit 5 PIN 14 0 volts

PIN 15 Data bit 6 PIN 16 0 volts

PIN 17 Data bit 7 PIN 18 0 volts

PIN 19 ACK PIN 20 BUSY

The position of the odd numbered pins are on the top line of the connector

part with PIN I situated on the right (viewed end on). The even numbered

pins are on the bottom line with PIN 2 situated on the right.

CARTRIDGE

It is advisable to ensure that the power is switched off when inserting or

removing a cartridge from the port on the right hand side of the computer.

© 1982 Dragon Data Limited.

6
5

5
0
4
 - 6

5
5
3
5

6
5

3
7
6
 - 6

5
5
0
3

6
5

2
8
0
 - 6

5
3
7
5

4
9

1
5
2
 - 6

5
2
7
9

3
2

7
6
8
 - 4

9
1
5
1

1
2

2
8
8
 - 1

3
8
2
3

2
5

6
0
 - 1

2
2
8
7

9
2

1
6
 - 2

5
5
9

7
6

8
0
 - 9

2
1
5

6
1

4
4
 - 7

6
7
9

4
6

0
8
 - 6

1
4
3

3
0

7
2
 - 4

6
0
7

1
5

3
6
 - 3

0
7
1

 1
0

2
4
 - 1

5
3
5

1
0

2
3

2
5

5

0
 - 1

0
2
3

 D
ecim

a
l A

d
d

ress

M
P

U
 v

ecto
rs

S
A

M
 C

o
n
tro

l b
its

In
p
u
t/O

u
tp

u
t

C
artrid

g
e M

em
o
ry

B
asic In

terp
reter

 P
ag

e 8

 P
ag

e 7

 P
ag

e 6

 P
ag

e 5

 P
ag

e 4

 P
ag

e 3

 P
ag

e 2

 P
ag

e 1

G
rap

h
ic S

creen
 M

em
o
ry

T
ex

t S
creen

 M
em

o
ry

 E
x
ten

d
ed

 P
ag

e R
A

M

 D
irect P

ag
e R

A
M

S
y
stem

 U
se

 C
o
n

ten
ts H

ex

D
R

A
G

O
N

 M
E

M
O

R
Y

 M
A

P

F
F

E
0
 - F

F
F

F

F
F

6
0

 - F
F

D
F

F
F

0
0

 - F
F

5
F

C
0
0
0
 - F

E
F

F

8
0
0
0
 - B

F
F

F

3
6
0
0
 - 7

F
F

F

2
A

0
0
 - 2

F
F

F

2
4
0
0
 - 2

9
F

F

1
E

0
0

 - 2
3

F
F

1
8
0
0
 - ID

F
F

1
2
0
0
 - 1

7
F

F

C
0
0
 - 1

1
F

F

6
0
0
 - B

F
F

 4
0
0
 - 5

F
F

3
F

F

0
F

F

0
 - 3

F
F

 A
d

d
ress

Release Notes

'An introduction to BASIC programming'

PDF by R.Harding

Dragon Data Archive

http://www.dragondata.co.uk

Version 2 : 2018

Changes From Last Version
 Zeros are now slashed.

 Vertical green edge now present on command description pages

 More accurate text layout

 Multiple text corrections

 Added missing index entries

 Improved formatting on newer versions of Adobe Reader

Major Know Problems/Issues
 None but there’s always more to do.

Previous Versions

Version 1 : 2002

Major Know Problems/Issues
 Zeros are not slashed

 Vertical green edge missing from command description pages

Acknowledgements

Original text version by Miguel Durán Uña − biblioteca8bits

http://www.dragondata.co.uk/
http://www.geocities.com/biblioteca8bits

	OPERATING INSTRUCTIONS
	KEY
	1. TV SOCKET
	2. RESET BUTTON
	3. LEFT JOYSTICK
	4. RIGHT JOYSTICK
	5. CASSETTE INPUT/OUTPUT SOCKET
	6. PARALLEL PRINTER PORT
	7. PROGRAM CARTRIDGE SLOT
	8. POWER PACK SOCKET
	9. MONITOR SOCKET
	10. ON/OFF SWITCH
	CONNECTING YOUR DRAGON 32
	USING PROGRAM CARTRIDGES
	USING GAME JOYSTICKS
	USING A CASSETTE RECORDER
	TAKING CARE OF YOUR DRAGON
	CONTENTS
	CHAPTER
	INTRODUCTION
	CHAPTER ONE
	GETTING STARTED
	THE KEYBOARD
	DRAGON THE CALCULATOR
	ARITHMETIC RULES. OK?
	PRINTING WORDS

	CHAPTER TWO
	WHAT'S IN A NAME
	CONSTANTS
	VARIABLES
	NAMING VARIABLES
	NUMERIC VARIABLE NAMES
	ASSIGNING VALUES TO VARIABLES
	STRINGS AND NUMBERS DO NOT MIX
	COMMAND SUMMARIES
	STRING VARIABLE NAMES

	CHAPTER THREE
	A PROGRAM AT LAST
	PUTTING IN A PROGRAM
	STEP BY STEP
	LIST
	RUN
	NEW
	ASSIGNMENTS STATEMENT
	PRINT
	INPUT
	MAKING CHANGES
	PROGRAM CONSTRUCTION
	RND
	CLS
	PRINT @
	SOUND
	A PROGRAM EXAMPLE
	REM

	CHAPTER FOUR
	GOOD HOUSEKEEPING
	SETTING UP THE RECORDER
	STORING A PROGRAM ON TAPE
	LOADING PROGRAMS INTO MEMORY
	CSAVE
	SAVING MORE THAN ONE PROGRAM
	HINTS ON RELIABLE RECORDING
	THE EDITOR
	MOVING DOWN THE LINE
	ALL CHANGE
	EDIT
	MORE SYSTEM COMMANDS
	RENUM
	TRacing a program flow
	STOPing and starting
	TRACE

	CHAPTER FIVE
	GOING PLACES
	SELECTING OPERATIONS
	ON. . .GOTO
	DECISIONS
	IF. . .THEN. . .ELSE
	INKEY$
	DO IT AGAIN, AND AGAIN, DRAGON
	FOR…NEXT…STEP
	WHEELS WITH WHEELS

	CHAPTER SIX
	NEW DIMENSIONS
	LISTS AND TABLES
	DIM
	D.I.Y FUNCTIONS
	ALTERNATIVES TO INPUT
	DEF FN
	LINE INPUT
	CLEAR
	PAUSE FOR REFLECTION

	CHAPTER SEVEN
	GETTING THE POINT ACROSS
	PRINTING PICTURES
	A NEW RESOLUTION
	SET
	RESET

	CHAPTER EIGHT
	MOVING TO A HIGHER PLACE
	IN THE MODE
	PCLEAR
	SCREEN
	FAMILIAR FRIENDS
	DRAW THE LINE, SOMEWHERE
	LINE
	PAINT
	GOING ROUND IN CIRCLES
	CIRCLE
	TURNING THE PAGE
	PCOPY

	CHAPTER NINE
	SOUNDS ELECTRIC
	ADDING A SOUND TRACK
	PLAY THAT THING!
	AUDIO
	MOTOR
	PLAY

	CHAPTER TEN
	FURTHER GRAPHICS
	GET THE PICTURE?
	GET
	DRAW
	PUT

	CHAPTER ELEVEN
	THE FINISHING TOUCH
	PRINT EXTRAS
	CASETTE INPUT AND OUTPUT
	PRINT USING
	OUTPUT TO PRINTER
	A BIT MORE

	APPENDIX A
	A.S.C.I.I. CHARACTERS CODES
	GRAPHICS CHARACTERS

	APPENDIX B
	PRINT AND GRAPHIC SCREENS

	APPENDIX C
	ERROR CODES

	APPENDIX D
	TRIGONOMETRIC FUNCTIONS

	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	INDEX
	DRAGON - ADDITIONAL INFORMATION
	Release Notes
	Changes From Last Version
	Major Know Problems/Issues
	Previous Versions
	Major Know Problems/Issues
	Acknowledgements

