DRAGON DATA LIMITED

Dragon Data Ltd Kenfig Industrial Estate Margam Port Talbot West Glamorgan SA13 2PE Tel: Kenfig Hill (0656) 744700 Telex: 498934

IR/JML

Dear Sir/Madam,

MACHINE CODE STARTER PACK

Thank you for buying our exclusive Machine Code Starter Pack. Included in the pack, as you know, are various routines that enable you to improve your programming by using Machine Code.

To clarify a few points, the letter that refers to AUTO-RUNNING a program should be tied in with four A4 sheets titled RUN-ONRESET, DISABLE BREAK and LOAD WITHOUT HEADER. The only sheet untitled has three-quarters of mnemonics on it starting with ORG $2 \emptyset \emptyset$, and should be sheet 1 titled AUTO-RUN.

I hope this special offer gives you a great deal of enjoyment and allows you to use your Dragon's "hidden" facilities to their fullest capacity.

Yours faithfully,

Marketing Department

Enc.

DRAGON DATA LIMITED

Dragon Data Ltd Kenfig Industrial Estate Margam Port Talbot West G才amorgan SA1 3 2PE Tel: Kenfig Hill (0656) 744700 Telex: 498934

Dear .

Please find enclosed all the information you will require for auto start and a disabled break key.

There now follows a step by step description of how to use this information.

1. Turn on your machine
2. Load part 1 in at address $\& H 2 \not \partial \varnothing$ onwards by either POKEing or using a hexadecimal loader
3. After part 1 has loaded, load part 2 by using the POKEs described:
4. POKE \&HFF03, (PEEK (\&HFF03)AND \&HFE)

POKE \&HIOD,2
POKE \&HIOE, \varnothing
5. To save the auto start:CASVEM"AUTO", \&H1øD,\&H24C,\&H200
6. Do not rewind the tape
7. Turn the machine off and on again, then load your basic program.
8. Load part 3 by POKEing into address \&H2øø onwards
9. Put the remote into the cassette recorder and press the PLAY and RECORD buttons.
10. TYpe EXEC \&H2øø (ENTER)

The basic program should now be saved directly after the auto start in the format required by the auto start.

I hope that this information is of assistance to you, but should you have any further queries, do not hesitate to contact this department again.

Yours sincerely,

Encs.

$\emptyset 2 \emptyset \emptyset$	$\emptyset 2 \emptyset \emptyset$		ORG	\$2øø
$\emptyset 2 \emptyset \emptyset$	B6FFø 3		LDA	\$FFø3
$\emptyset 2 \emptyset 3$	84 FE		ANDA	\#\$FE
$\emptyset 2 \emptyset 5$	B7FFø3		STA	\$FFD3
$\emptyset 2 \emptyset 8$	CC9D3D		LDD	\#\$9D3D
$\emptyset 2 \emptyset$ B	FDØ1øD		STD	\$ 1 D $^{\text {d }}$
$\emptyset 2 \emptyset \mathrm{E}$	B6FFø3		LDA	\$FFめ3
ø211	$8 \mathrm{~A} \emptyset 1$		ORA	\#1
$\emptyset 213$	B7FFø3		STA	\$FFØ3
Ø216	7 F 1 E ¢ \varnothing		CLR	\$1EØØ
¢219	BE1EØ1		LDX	\#\$1EØ1
Ø21C	9F19		STX	\$19
$\emptyset 21 \mathrm{E}$	BDB75B		JSR	\$B75B
$\emptyset 221$	BD83ED		JSR	\$83ED
$\emptyset 224$	$3 \emptyset \emptyset 2$		LEAX	2, X
$\emptyset 226$	9F1B		STX	\$1B
$\emptyset 228$	9F1D		STX	\$1D
Ø22A	9F1F		STX	\$1F
Ø22C	12	RESET	NOP	
ø22D	B6FFø3		LDA	\$FFØ3
ø23ø	8 8ø1		ORA	\#1
Ø232	B7FFø3		STA	\$FFØ3
Ø235	8655		LDA	\#\$55
ø237	9771		STA	\$71
Ø239	$3 \emptyset 8 \mathrm{DF} \emptyset$		LEAX	RESET, PCR
ø23C	9 F 72		STX	\$ 72
ø23E	$3 \varnothing 8$ Сø6		LEAX	LABEL, PCR
ø241	3263		LEAS	3, S
$\emptyset 243$	4 F		CLRA	
ø244	7E837D		JMP	\$837D
$\emptyset 247$	$2 \emptyset 52554 \mathrm{E} 2 \emptyset$	LABEL	FCC/	RUN/
ø24C	$\emptyset \emptyset$		FCB	
ø24D				

To disable BREAK, type the following commands at the beginning of a program. Disable BREAK

POKE 411,228
POKE 412,203
POKE 413,4
POKE 414,237
POKE 415,228
Disable BREAK - POKE 410,236
Enable BREAK - POKE 410,57

```
4000 ******FIUN ON FESET
4000 12 FESET NOF
4001 8E4000
4004 9F72
4006 30EC06
4007 526%
400E 4F
400C TEBE7D JMF $B.37D
40DF 205S5G4E20 LAEEL FCC/ FUN ./
4015 00
    FCB D
4016
4016
```

LOAD GITHOUT HEADEF
LDX WITH STAFIT ADDFESS
JSF 本E75B
FTS

MACHINE CODE TEXT SCREEN - SCROLL : 2 LEFT

8 E ¢4¢1		LDX \#\$4ø1
A68¢	LOOP	LDA , $\mathrm{X}+$
A 71 E		STA $-2, \mathrm{X}$
1F1¢		TFR X, D
C41F		ANDB \#\$1F
C11F		CMPB \#\$1F
26F4		BNE LOOP
C68F		LDB \#143
A681		LDA , $\mathrm{X}++$
E71E		STB $-2, \mathrm{X}$
A71D		STA -3, X
8Cø6ø¢		CMPX \#\$6 ${ }^{\text {¢ }}$
2FE7		BLE LOOP
39		RTS

SCROLL RIGHT

8E¢41F		LDX \#\$41F
A682	LOOP	LDA , -X
$A 7 \not \subset 1$		STA 1, X
$1 \mathrm{~F} 1 \varnothing$		TFR X, D
C41F		ANDB \#\$1F
C1ф¢		CMPB \#\$ \varnothing
26F4		BNE LOOP
C68F		LDB \#143
E784		STB , X
36883F		LEAX 63, X
8Сø6ø¢		CMPX \#\$6Ø¢
2 FE 8		BLE LOOP
39		RTS

SCROLL UP

$8 E \not \subset 42 \emptyset$		LDX \#\$42ø
$1 \emptyset 8 E \emptyset 4 \emptyset \emptyset$		LDY \#\$4 ${ }^{\text {¢ }}$ /
A68¢	LOOP	LDA , $\mathrm{X}+$
A7A \varnothing		STA , Y +
8Сø6øø		CMPX \#\$6ø¢
2 FF 7		BLE LOOP
8EØ5E \varnothing		LDX \#\$5E $¢$
868F		LDA \#143
A78¢	LOOP2	STA , $\mathrm{X}+$
$8 \subset \emptyset 6 \emptyset \emptyset$		CMPX \#\$6 ${ }^{\text {¢ }}$ ¢
2FF9		BLE LOOP2
39		RTS

$8 \mathrm{E} \varnothing 5 \mathrm{DF}$		LDX \#\$5DF
$1 \emptyset 8 \mathrm{E} \varnothing 5 \mathrm{FF}$		LDY \#\$5FF
A682	LOOP	LDA , -X
A7A2		STA , -Y
$8 \subset \emptyset 4 \emptyset \emptyset$		CMPX \#\$4ø¢
2CF7		BGE LOOP
$8 \mathrm{E} \varnothing 4 \emptyset \emptyset$		LDX \#\$4ø¢
868F		LDA \#143
A $78 \emptyset$	LOOP2	STA , X +
8C¢41F		CMPX \#\$41F
2FF9		BLE LOOP2
39		RTS

MACHINE CODE

There are three main areas in the Dragon which must be written to obtain graphics. These are:

1. \&HFF22 - Video Display Generator
2. \& FFCD - SAM (Vertical Resolution).
3. \&HFFC6 - \&HFFD3 - SAM Chip (Video Display Offset).

The most important area being the Video Display Generator.
I have enclosed details on the location FF22 giving references on bits 3-7 of this byte.

The CSS bit controls the screen type, i.e., if CSS $=1$ then you obtain a screen ?,1 is clear, screen ?, ϕ.

GMÓ - GM2 are all resolution bits setting all three to 1 will give a horizontal resolution of 256 pixels (PMODE 4). The most important of these three is GMO/I/E. This, when set, will give a two colour set and when clear will give a four colour set.

The last bit (bit $7 \mathrm{~A} / \mathrm{G}$) is the bit which controls the Alphanumeric (text) or graphic mode. Setting this bit to 1 will give graphics.

The SAM chip controls both the vertical resolution and the display offset. : bcations in the SAM are arranged in pairs, the even location of the pair is used to clear a bit, the odd being used to set a bit. Therefore, locations FFC0 - FFC5 control three internal SAM bits. These addesses (CO - C5) are used to control the vertical resolution. Writing to $C 3$ and $C 5$ will give a vertical resolution of 192 pixels (MODE $3+4$).

The last area involved with graphics is location FFC8 - FD. These control the area used for graphics. Usually, the area used by graphics is \&H600 - \&H1Dff and, therefore, locations FFC7 (H200 offset) and FFC9 (\&H400 offset) is set. If you wish to relocate graphics the SAM control bits of each give an offset of \&H200 x bit number, i.e., each 3 will give an offset of $\& H 600$.

In brief, to obtain PMODE 4,1 Screen $1, \emptyset$, the following locations have to be written to:-

PMODE 4
PMODE 3
$\mathrm{FF} 22 \rightarrow \mathrm{~F} 0$
FFC3 -: any
FFC5 $-\therefore$ any
FFC7 \rightarrow any
FFr9 $9 \rightarrow$ any
FF22 -E Ø
FF22 \because E \emptyset
FF22 $\rightarrow \mathrm{E} \emptyset$
$F F 22 \rightarrow E \emptyset$
FF22 \rightarrow E \varnothing

MODE 24

Dragon BASIC supports an extensive number of graphics modes. There are, however, a number of extra modes available to the machine code programmer. The most useful of these is Mode 24, which allows text and nine-colour hi-res graphics to be mixed on the screen.

To access this mode you will first need to:-

1. Set the VDG.

This can be done from BASIC by entering SCREEN 0,0 .
2. Set the SAM

POKE \& HFFCO,0
POKE \&HFFC3,0
POKE \&HFFC5,0
The MODE 24 screen is mapped from \&H4OO to \&HlC00. Each location controls a block on the screen which is eight pixels (horizontally) by one pixel (vertically).

Each block is further divided in half, giving two 4 x l elements. These elements may not be controlled uniquely, but may be manipulated if consideration is given to the effect this will have on the other element in the block.

Each 8 x l block is a subset of a particular 8×12 matrix. These matrices correspond to those used to compose characters on the text screen. The effect of writing a byte to a location on the Mode 24 screen depends upon:-
a. The position of the block within the character matrix.
b. The character code that is equivalent to the byte written.

Every character with a code between 32 and 255 has a unique 12 x 8 matrix to determine how it is displayed on the screen. In general, if a Mode 24 location corresponds to the nth row of a text screen position, writing code X to that location results in the nth row of the character X matrix being displayed on the screen.

Thus it is possible to build text characters in Mode 24 by constructing them from their constituent blocks, or to create hi-res graphics from the same basic structures.

